

### UNIVERSIDAD ANDINA DEL CUSCO

# FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL



ANÁLISIS COMPARATIVO DE LA RESPUESTA SÍSMICA DEL EDIFICIO "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" CON BASE FIJA Y CON AISLADORES LRB Y TPF CUSCO-2022.

Línea de investigación: Estructuras

#### Presentado por:

Bach. Jose Eduardo Follana Peralta (N° Orcid: 0009-0004-5551-230X)

Bach. Juan Jesus Cusipaucar Cardenas

(N° Orcid: 0009-0002-1664-4057)

#### Para optar al Título Profesional de:

Ingeniero Civil

#### Asesor:

Dr. Ing. Eliot Pezo Zegarra (N°Orcid: 0000-0001-9136-0295)

CUSCO – PERÚ

2023



#### **Metadatos**

| Datos del autor                      |                                                      |  |
|--------------------------------------|------------------------------------------------------|--|
| Dato                                 | os dei autor                                         |  |
| Nombres y apellidos                  | Jose Eduardo Follana Peralta                         |  |
|                                      | Juan Jesus Cusipaucar Cardenas                       |  |
| Número de documento de identidad     | 72557518                                             |  |
| LIDI 1 O '1                          | 71537482                                             |  |
| URL de Orcid                         | https://orcid.org/0009-0004-5551-230X                |  |
| Data                                 | https://orcid.org/0009-0002-1664-4057  s del as esor |  |
| Dato                                 | s del as esor                                        |  |
| Nombres y apellidos                  | Eliot Pezo Zegarra                                   |  |
|                                      |                                                      |  |
| Número de documento de identidad     | 24006901                                             |  |
| URL de Orcid                         | https://orcid.org/0000-0001-9136-0295                |  |
| one de oreke                         | https://oreid.org/0000-0001-9130-0293                |  |
| Datos                                | s del jurado                                         |  |
| Presidente d                         | lel jurado (jurado 1)                                |  |
| 1 Testdente e                        | icijurado (jurado 1)                                 |  |
| Nombres y apellidos                  | Elvis Yuri Mamani Vargas                             |  |
| Número de documento de identidad     | 41610570                                             |  |
| ivamero de documento de identidad    | 41610370                                             |  |
| J                                    | urado 2                                              |  |
| Nombres y apellidos                  | Camilo Mendoza Escalante                             |  |
|                                      |                                                      |  |
| Número de documento de identidad     | 41878364                                             |  |
| J                                    | urado 3                                              |  |
|                                      |                                                      |  |
| Nombres y apellidos                  | Luis Fernando Paullo Muñoz                           |  |
| Número de documento de identidad     | 422(2122                                             |  |
| Numero de documento de identidad     | 42263122                                             |  |
| Jurado 4                             |                                                      |  |
| Nambura a a Wil                      |                                                      |  |
| Nombres y apellidos                  | Alain Alanoca Aragon                                 |  |
| Número de documento de identidad     | 25220925                                             |  |
|                                      |                                                      |  |
| Datos de la investigación            |                                                      |  |
| Línea de investigación de la Escuela |                                                      |  |
| Professional                         | Estructuras                                          |  |
| 1 TOTESSIOITAT                       |                                                      |  |
|                                      | 1                                                    |  |



Dr. Ing. Eliot Pezo Zegarra

## Revisión pos defensa

por Jose Eduardo Follana Peralta

Fecha de entrega: 28-feb-2024 09:52p.m. (UTC-0500)

Identificador de la entrega: 2307520018

Nombre del archivo: TESIS\_AISL\_LRB\_TFP\_CUSIPAUCAR\_FOLLANA.pdf (21.66M)

Total de palabras: 45483 Total de caracteres: 238874



### UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL



**TESIS** 

ANÁLISIS COMPARATIVO DE LA RESPUESTA SÍSMICA DEL EDIFICIO
"PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" CON BASE
FIJA Y CON AISLADORES LRB Y TPF CUSCO-2022.

Presentado por:

Jose Eduardo Follana Peralta

Juan Jesus Cusipaucar Cardenas

Para optar al Título Profesional de Ingeniero Civil

Asesor:

Dr. Ing. Eliot Pezo Zegarra

CUSCO - PERÚ

2023

Dr. Ing. Elipt Pezo Zegarra



### Revisión pos defensa

INFORME DE ORIGINALIDAD



INDICE DE SIMILITUD

22%

**FUENTES DE INTERNET** 

3%

**PUBLICACIONES** 

Dr. Ing. Eliot Pezo Zegarra

9%

TRABAJOS DEL ESTUDIANTE

| FUENTES | PRIMARIAS                                                           |                    |
|---------|---------------------------------------------------------------------|--------------------|
| 1       | hdl.handle.net Fuente de Internet                                   | 9%                 |
| 2       | Submitted to Universidad Andina del Cuso<br>Trabajo del estudiante  | 2%                 |
| 3       | repositorio.urp.edu.pe Fuente de Internet                           | 1%                 |
| 4       | repositorio.ucv.edu.pe Fuente de Internet                           | 1%                 |
| 5       | Submitted to Universidad Católica San Pal<br>Trabajo del estudiante | blo 1 <sub>%</sub> |
| 6       | repositorio.uandina.edu.pe                                          | 1%                 |
| 7       | repositorio.unica.edu.pe Fuente de Internet                         | <1%                |
| 8       | repositorio.uca.edu.ni Fuente de Internet                           | <1%                |
| 9       | repositorio.unsa.edu.pe Fuente de Internet                          | <1%                |
|         |                                                                     |                    |





### Recibo digital

Este recibo confirma quesu trabajo ha sido recibido por Turnitin. A continuación podrá ver la información del recibo con respecto a su entrega.

La primera página de tus entregas se muestra abajo.

Autor de la entrega: Jose Eduardo Follana Peralta

Título del ejercicio: **Quick Submit** 

Título de la entrega: Revisión pos defensa

Nombre del archivo: TESIS\_AISL\_LRB\_TFP\_CUSIPAUCAR\_FOLLANA.pdf

Tamaño del archivo: 21.66M

> Total páginas: 277

Total de palabras: 45,483

Total de caracteres: 238,874

Fecha de entrega: 28-feb.-2024 09:52p. m. (UTC-0500)

Identificador de la entre... 2307520018

#### UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERÍA Y ARQUITECTURA



Dr. Ing. Eliot Pezo Zegarra

Derechos de autor 2024 Turnitin. Todos los derechos reservados.



#### **AGRADECIMIENTOS**

Quiero agradecer de manera especial a mi asesor Dr. Ing. Eliot Pezo Zegarra por la preocupación, apoyo y enseñanzas tanto en el ámbito profesional como personal.

Al PhD. Dr. Ing. Zenón José Guzmán Nuñez Del Prado por brindarme ayuda desinteresada, confianza y absolución de consultas relacionadas a la ingeniería estructural.

A Fray José Hidalgo Benavides por brindarme facilidades de acceso a la información del Colegio San francisco de Asís.

A mis primos, amigos de la universidad y colegio, que me apoyaron durante la elaboración del presente trabajo.

Jose Eduardo

Quiero agradecer a mi asesor, Dr. Ing. Eliot Pezo Zegarra, por el apoyo y las horas de enseñanza durante mi etapa universitaria como en el desarrollo del presente trabajo.

A mi familia, por el constante apoyo, motivación, formación y esperanza que siempre mantuvieron en mí, para lograr todo lo que me propuse y me propondré.

A mis amigos, que siempre estuvieron a mi lado incondicionalmente, apoyándome desde hace ya muchos años.

A los distintos docentes de la Universidad, de los cuales siempre pude rescatar sus enseñanzas y experiencias que me sirven como guía en el campo profesional.

Juan Jesús

#### **DEDICATORIA**

A Dios, al seráfico padre San Francisco de Asís, por su protección en los momentos más difíciles de mi vida.

... a mi madre por ser mi ejemplo; a mi padre mi apoyo incondicional; mi hermano, lo más importante en mi vida y a mis abuelos para que, desde el cielo, me den la fuerza para ser un buen profesional.

Jose Eduardo

... a Dios, a San Juan Bosco y a la Virgen María Auxiliadora, ya que bajo su protección siempre podré seguir adelante a pesar de cualquier adversidad.

... a mi familia, especialmente a mis papás y a mi hermano, que siempre me apoyaron y me apoyarán en este camino de crecimiento profesional y personal.

Juan Jesús



#### **RESUMEN**

Este trabajo de investigación buscó estudiar el comportamiento sísmico del edificio Pabellón Inicial del Colegio San Francisco de Asís, incorporando un sistema de control de vibraciones en la base de la edificación, además, estudiar a la estructura sin ningún tipo de control (Base Fija). Para el sistema de aislamiento de base, se estudiaron tres tipos de aisladores, el aislador Lead Rubber Bearing (LRB), Sliders (Deslizadores) y el aislador Triple Friction Pendulum (TFP). Los objetivos principales de esta tesis son estudiar el comportamiento sísmico del edificio Pabellón Inicial del Colegio San Francisco de Asís con base fija y cómo cambia el comportamiento incrementando tres tipos de aisladores, el aislador LRB con deslizador y el aislador TFP, y la determinación de la eficiencia de los aisladores con respecto al edificio en Base Fija en términos de la reducción de los desplazamientos relativos, fuerzas cortantes y aceleraciones de entrepiso. Para llevar a cabo esta investigación, se empleó un modelo matemático tridimensional del edificio, desarrollado en el software de análisis no lineal ETABS v19. También se utilizó para comparar la eficiencia entre los aisladores LRB con deslizador y TFP en términos de la respuesta estructural de la edificación frente a fuerzas sísmicas. Los resultados de esta investigación mostraron que los aisladores LRB con deslizadores y TFP son eficaces, logrando reducir las derivas en más de un 77% para la dirección de análisis X y 89% para la dirección de análisis Y, las fuerzas cortantes se redujeron en más de un 67% en la dirección de análisis X y 67% en la dirección de análisis Y; mientras que las aceleraciones de entrepiso se redujeron en más de un 68% en la dirección de análisis X y 64% en la dirección de análisis Y. En conclusión, los resultados de esta tesis demuestran que los aisladores LRB con deslizadores y TFP son sistemas de control de vibraciones eficientes para reducir los efectos de los terremotos en estructuras de edificaciones como lo demostrado en el Colegio San Francisco de Asís. Estos resultados demuestran que el uso de los aisladores LRB con deslizadores y TFP son una buena opción para mejorar la seguridad sísmica de los edificios.

#### Palabras clave:

Aislamiento sísmico, institución educativa, análisis tiempo-historia, control de vibración.



#### **ABSTRACT**

This research work sought to study the seismic behavior of the Initial Pavilion building of the San Francisco de Asís School, incorporating a vibration control system at the base of the building, in addition, to studying the structure without any control (Fixed Base). For the base isolation system, three types of insulators were studied, the Lead Rubber Bearing (LRB) insulator, Sliders (Sliders), and the Triple Friction Pendulum (TFP) insulator. The main objectives of this thesis are to study the seismic behavior of the Initial Pavilion building of the San Francisco de Asís School with a fixed base and how the behavior changes by increasing three types of isolators, the LRB isolator with slider and the TFP isolator, and the determination of the efficiency of the insulators concerning the Fixed Base building in terms of the reduction of relative displacements, shear forces, and mezzanine accelerations. To carry out this research, a three-dimensional mathematical model of the building was developed in the nonlinear analysis software ETABS v19. It was also used to compare the efficiency between LRB slip and TFP isolators in terms of the structural response of the building to seismic forces. The results of this research showed that LRB insulators with sliders and TFP are effective, managing to reduce drifts by more than 77% for the X analysis direction and 89% for the Y analysis direction, the shear forces were reduced by more than 67% in the X analysis direction and 67% in the Y analysis direction; while the mezzanine accelerations were reduced by more than 68% in the X analysis direction and 64% in the Y analysis direction. In conclusion, the results of this thesis demonstrate that LRB isolators with sliders and TFP are efficient vibration control to reduce the effects of earthquakes on building structures as demonstrated at the San Francisco de Asís School. These results demonstrate that using LRB isolators with sliders and TFP is a good option for improving the seismic safety of buildings.

#### **Keywords:**

Seismic isolation, educational institution, time-history analysis, vibration control.



### Índice General

| Indice | e General                                               | Vi |
|--------|---------------------------------------------------------|----|
| Índice | e de Tablas                                             | X  |
| Índice | e de Figuras                                            | XV |
| Introd | lucción                                                 | 1  |
| 1.     | Planteamiento del Problema                              | 3  |
| 1.1    | Ámbito de influencia de la Tesis                        | 3  |
| 1.1.1  | Ubicación Geográfica                                    | 3  |
| 1.1.2  | Ámbito de influencia Teórica                            | 3  |
| 1.2    | Problema de investigación.                              | 3  |
| 1.2.1  | Descripción del problema a investigar.                  | 3  |
| 1.2.2  | Formulación interrogativa del problema general.         | 5  |
| 1.2.3  | Formulación interrogativa de los Problemas Específicos. | 5  |
| 1.3    | Justificación de la Investigación.                      | 5  |
| 1.3.1  | Justificación Técnica.                                  | 5  |
| 1.3.2  | Justificación Social                                    | 7  |
| 1.3.3  | Justificación por viabilidad.                           | 7  |
| 1.3.4  | Justificación por relevancia.                           | 7  |
| 1.4    | Limitación de la investigación.                         | 8  |
| 1.4.1  | Primera Limitación                                      | 8  |
| 1.4.2  | Segunda Limitación                                      | 8  |
| 1.4.3  | Tercera Limitación.                                     | 9  |
| 1.4.4  | Cuarta Limitación                                       | 9  |
| 1.5    | Objetivos                                               | 9  |
| 1.5.1  | Objetivo General                                        | 9  |



| 1.5.2 | Objetivos Específicos.                    | 10 |
|-------|-------------------------------------------|----|
| 2.    | Marco Teórico de la Tesis                 | 11 |
| 2.1   | Antecedentes de la Tesis                  | 11 |
| 2.1.1 | Antecedentes a nivel nacional.            | 11 |
| 2.1.2 | Antecedentes a Nivel Internacional        | 15 |
| 2.2   | Base Teórica-Científicas.                 | 19 |
| 2.2.1 | Dinámica Estructural                      | 19 |
| 2.2.2 | Definición de Aislamiento Sísmico         | 28 |
| 2.2.3 | Tipos de Sistemas de Aislamiento Sísmico  | 30 |
| 2.2.4 | Efecto Del Aislamiento Sísmico            | 42 |
| 2.2.5 | Análisis modal                            | 44 |
| 2.3   | Hipótesis                                 | 49 |
| 2.3.1 | Hipótesis General                         | 49 |
| 2.3.2 | Sub-Hipótesis                             | 49 |
| 2.4   | Variables e indicadores                   | 49 |
| 2.4.1 | Variable independiente (X)                | 49 |
| 2.4.2 | Variable dependiente (Y)                  | 50 |
| 2.4.3 | Cuadro de operacionalización de variables | 52 |
| 3.    | Metodología                               | 53 |
| 3.1   | Metodología de la investigación           | 53 |
| 3.1.1 | Enfoque de Investigación                  | 53 |
| 3.1.2 | Nivel de Investigación                    | 53 |
| 3.1.3 | Método de Investigación                   | 54 |
| 3.2   | Diseño de la Investigación                | 54 |
| 3.2.1 | Diseño Metodológico                       | 54 |



| 3.2.2 | Diseño de Ingeniería                                               | 56  |
|-------|--------------------------------------------------------------------|-----|
| 3.3   | Población y muestra                                                | 57  |
| 3.3.1 | Población                                                          | 57  |
| 3.3.2 | Muestra                                                            | 57  |
| 3.4   | Instrumentos                                                       | 58  |
| 3.4.1 | Instrumentos de recolección de datos                               | 58  |
| 3.4.2 | Instrumentos de Ingeniería                                         | 62  |
| 3.5   | Procedimientos de Recolección de Datos                             | 62  |
| 3.5.1 | Revisión Técnica                                                   | 62  |
| 3.6   | Procedimientos de Análisis de Datos                                | 65  |
| 3.6.1 | Modelos Estructurales                                              | 65  |
| 3.6.2 | Modelamiento estructural                                           | 83  |
| 3.6.3 | Configuración estructural                                          | 84  |
| 3.6.4 | Análisis Estructural                                               | 85  |
| 3.6.5 | Análisis Estático de la Estructura Aislada                         | 88  |
| 3.6.6 | Diseño de un sistema de aislación LRB                              | 89  |
| 3.6.7 | Diseño de un sistema de aislación con Deslizador                   | 97  |
| 3.6.8 | Diseño de un sistema de aislación TFP                              | 101 |
| 4.    | Resultados                                                         | 109 |
| 4.1   | Resultados de la estructura de base fija                           | 109 |
| 4.1.1 | Respuesta Estructural                                              | 109 |
| 4.2   | Resultados de la estructura con aisladores tipo LRB con deslizador | 117 |
| 4.2.1 | Respuesta Estructural                                              | 117 |
| 4.3   | Resultados de la estructura con aisladores tipo TFP                | 129 |
| 4.3.1 | Respuesta Estructural                                              | 129 |



| 5.     | Análisis comparativo                                                             | .142 |
|--------|----------------------------------------------------------------------------------|------|
| 5.1    | Derivas                                                                          | .142 |
| 5.1.1  | Resultados Comparativos de Derivas del Análisis Tiempo Historia                  | .148 |
| 5.2    | Fuerzas Cortantes                                                                | .150 |
| 5.2.1  | Resultados Comparativos de Fuerzas Cortantes del Análisis Tiempo Historia        | .157 |
| 5.3    | Aceleraciones                                                                    | .158 |
| 5.3.1  | Resultados Comparativos de Aceleraciones del Análisis Tiempo Historia            | .165 |
| 5.4    | Porcentajes de Reducción de Resultados en Base Fija y en Base Aislada            | .166 |
| 5.4.1  | Porcentaje de Reducción en Derivas                                               | .166 |
| 5.4.2  | Porcentaje de Reducción en Fuerzas Cortantes                                     | .168 |
| 5.4.3  | Porcentaje de Reducción en Aceleraciones                                         | .170 |
| 5.4.4  | Amortiguamiento Efectivo                                                         | .172 |
| 6.     | Discusión                                                                        | .174 |
| 6.1    | Contraste de resultados con referentes del marco teórico                         | .174 |
| 6.2    | Interpretación de los resultados encontrados en la investigación                 | .175 |
| 6.3    | Comentario de la demostración de la hipótesis                                    | .176 |
| 6.4    | Aporte de la investigación.                                                      | .176 |
| 6.5    | Incorporación de preocupaciones recientes surgidas a lo largo del proceso        | o de |
| invest | rigación pero que no se tuvieron en cuenta al formular los objetivos del estudio | .177 |
| CON    | CLUSIONES                                                                        | .178 |
| RECO   | OMENDACIONES                                                                     | .180 |
|        |                                                                                  |      |
| Glosa  | rio                                                                              | .181 |
|        | rioencias                                                                        |      |



### Índice de Tablas

| Tabla I Cuadro de Operacionalización de Variables.                                | 52           |
|-----------------------------------------------------------------------------------|--------------|
| Tabla 2 Características del Medidor Laser.                                        | 58           |
| Tabla 3 Revisión de Datos de Fundación.                                           | 64           |
| Tabla 4 Modelos Estructurales Analizados.                                         | 65           |
| Tabla 5 Comparación de desplazamientos mediante el Procedimiento estático y Pro-  | ocedimiento  |
| dinámico en dirección X-X.                                                        | 66           |
| Tabla 6 Comparación de desplazamientos mediante el Procedimiento estático y Pro-  | ocedimiento  |
| dinámico en dirección Y-Y.                                                        | 66           |
| Tabla 7 Resumen de Irregularidades en la Estructura.                              | 67           |
| Tabla 8 Características de la estructura.                                         | 84           |
| Tabla 9 Propiedades mecánicas de los materiales.                                  | 86           |
| Tabla 10 Tabla de cargas muertas impuestas a la estructura analizada.             | 87           |
| Tabla 11 Tabla de cargas vivas impuestas a la estructura analizada.               | 88           |
| Tabla 12 Formas de vibrar de la estructura analizada                              | 91           |
| Tabla 13 Propiedades del Aislador Tipo 1 en las direcciones X-Y.                  | 97           |
| Tabla 14 Propiedades del Deslizador en las direcciones X-Y.                       | 99           |
| Tabla 15 Propiedades de aisladores LRB y Deslizadores.                            | 101          |
| Tabla 16 Formas de vibrar de la estructura analizada.                             | 103          |
| Tabla 17 Propiedades del aislador TFP para el análisis de la Estructura.          | 107          |
| Tabla 18 Propiedades del aislador TFP para el análisis de la Estructura           | 107          |
| Tabla 19 Propiedades del aislador TFP para el análisis de la Estructura           | 107          |
| Tabla 20 Propiedades del aislador TFP para el análisis de la Estructura           | 107          |
| Tabla 21 Propiedades de aisladores TFP.                                           | 108          |
| Tabla 22 Parámetros Sísmicos Análisis Dinámico Modal Espectral.                   | 109          |
| Tabla 23 Desplazamientos Absolutos del Análisis Modal Espectral en X e Y          | 109          |
| Tabla 24 Desplazamientos Absolutos del Análisis Tiempo Historia para la dirección | ón X110      |
| Tabla 25 Desplazamientos Absolutos del Análisis Tiempo Historia para la dirección | ón Y110      |
| Tabla 26 Desplazamientos Relativos en Dirección X e Y del Análisis Modal Espec    | tral en Base |
| Fija.                                                                             | 111          |
| Tabla 27 Desplazamientos Relativos del Análisis Tiempo Historia para la direcció  | n X111       |
| Tabla 28 Desplazamientos Relativos del Análisis Tiempo Historia para la direcció  | n Y112       |



| <b>Tabla 29</b> Derivas del Análisis Modal Espectral de la estructura analizada en Dirección X e Y. |
|-----------------------------------------------------------------------------------------------------|
| 112                                                                                                 |
| Tabla 30 Derivas del Análisis Tiempo Historia para la dirección X.    113                           |
| Tabla 31 Derivas del Análisis Tiempo Historia para la dirección Y                                   |
| Tabla 32 Máximas fuerzas cortantes laterales en Dirección X e Y en Base Fija114                     |
| Tabla 33 Fuerza cortante del Análisis Tiempo Historia para la dirección X114                        |
| Tabla 34 Fuerza cortante del Análisis Tiempo Historia para la dirección Y114                        |
| Tabla 35 Aceleraciones de Piso del Análisis Modal Espectral en dirección X e Y115                   |
| Tabla 36 Aceleraciones de Piso del Análisis Tiempo Historia para la dirección X115                  |
| Tabla 37 Aceleraciones de Piso del Análisis Tiempo Historia para la dirección Y116                  |
| Tabla 38 Formas de vibrar de la estructura analizada.   117                                         |
| Tabla 39 Parámetros Sísmicos - Análisis Dinámico Modal Espectral con aisladores LRB y               |
| deslizador117                                                                                       |
| Tabla 40 Desplazamientos Absolutos del Análisis Modal Espectral en X e Y.         118               |
| Tabla 41 Desplazamientos Absolutos del Análisis Tiempo Historia para la dirección X118              |
| Tabla 42 Desplazamientos Absolutos del Análisis Tiempo Historia para la dirección Y119              |
| Tabla 43 Desplazamientos Relativos del Análisis Modal Espectral en X e Y.         120               |
| Tabla 44 Desplazamientos Relativos del Análisis Tiempo Historia para la dirección X120              |
| Tabla 45 Desplazamientos Relativos del Análisis Tiempo Historia para la dirección Y121              |
| Tabla 46 Derivas del Análisis Modal Espectral de la estructura analizada en X e Y122                |
| Tabla 47 Derivas del Análisis Tiempo Historia para la dirección X.    122                           |
| Tabla 48 Derivas del Análisis Tiempo Historia para la dirección Y.    123                           |
| Tabla 49 Fuerza cortante del análisis modal espectral para la dirección X e Y.         123          |
| Tabla 50 Fuerza cortante del Análisis Tiempo Historia para la dirección X.         124              |
| Tabla 51 Fuerza cortante del Análisis Tiempo Historia para la dirección Y.         124              |
| Tabla 52 Aceleraciones de Piso del Análisis Modal Espectral.    125                                 |
| Tabla 53 Aceleraciones de Piso del Análisis Tiempo Historia para la dirección X125                  |
| Tabla 54 Aceleraciones de Piso del Análisis Tiempo Historia para la dirección Y126                  |
| Tabla 55 Amortiguamiento efectivo del sistema con control de vibraciones - LRB con                  |
| deslizador                                                                                          |
| Tabla 56 Periodo y porcentajes de Participación de Masa de la Estructura Aislada con LRB y          |
| deslizador                                                                                          |
| Tabla 57 Parámetros Sísmicos - Análisis Dinámico Modal Espectral con aisladores TFP130              |



| Tabla 58 Desplazamientos Absolutos del Análisis Modal Espectral en X e Y.    130               |
|------------------------------------------------------------------------------------------------|
| <b>Tabla 59</b> Desplazamientos Absolutos del Análisis Tiempo Historia para la dirección X 130 |
| Tabla 60 Desplazamientos Absolutos del Análisis Tiempo Historia para la dirección Y131         |
| Tabla 61 Desplazamientos Relativos del Análisis Modal Espectral en X e Y.         132          |
| Tabla 62 Desplazamientos Relativos del Análisis Tiempo Historia para la dirección X132         |
| Tabla 63 Desplazamientos Relativos del Análisis Tiempo Historia para la dirección Y133         |
| <b>Tabla 64</b> Derivas del Análisis Modal Espectral de la estructura analizada en X e Y134    |
| Tabla 65 Derivas del Análisis Tiempo Historia para la dirección X.    134                      |
| Tabla 66 Derivas del Análisis Tiempo Historia para la dirección Y.    135                      |
| Tabla 67 Fuerza cortante del análisis modal espectral para la dirección X e Y                  |
| Tabla 68 Fuerza cortante del Análisis Tiempo Historia para la dirección X                      |
| Tabla 69 Fuerza cortante del Análisis Tiempo Historia para la dirección Y.    136              |
| Tabla 70 Amortiguamiento efectivo del sistema con control de vibraciones - TFP137              |
| Tabla 71 Aceleraciones de Piso del Análisis Modal Espectral.    139                            |
| Tabla 72 Aceleraciones de Piso del Análisis Tiempo Historia para la dirección X                |
| Tabla 73 Aceleraciones de Piso del Análisis Tiempo Historia para la dirección Y139             |
| Tabla 74 Periodo de la Estructura Aislada con TFP y porcentajes de Participación de Masa       |
| 141                                                                                            |
| Tabla 75 Comparación de derivas según los análisis dinámicos en Base Fija en X142              |
| Tabla 76 Comparación de derivas según los análisis dinámicos en Base Fija en Y142              |
| Tabla 77 Comparación de derivas según los análisis dinámicos en Base Aislada con LRB cor       |
| deslizador en X                                                                                |
| Tabla 78 Comparación de derivas según los análisis dinámicos en Base Aislada con LRB cor       |
| deslizador en Y                                                                                |
| Tabla 79 Comparación de derivas según los análisis dinámicos en Base Aislada con TFP en        |
| X                                                                                              |
| Tabla 80 Comparación de derivas según los análisis dinámicos en Base Aislada con TFP en        |
| Y146                                                                                           |
| Tabla 81 Comparación de Valores Máximos de Derivas en Base Fija y Base Aislada en X            |
|                                                                                                |
| Tabla 82 Comparación de Valores Máximos de Derivas en Base Fija y Base Aislada en Y            |
|                                                                                                |
| Tabla 83 Resultado Comparativo de Derivas del Análisis Tiempo Historia en X                    |



| Tabla 84 Resultado Comparativo de Derivas del Análisis Tiempo Historia en Y.         149                                      |
|-------------------------------------------------------------------------------------------------------------------------------|
| Tabla 85 Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Fija en X                                      |
| Tabla 86 Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Fija en Y                                      |
| Tabla 87 Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada cor                                    |
| LRB con deslizador en X                                                                                                       |
| Tabla 88 Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada cor                                    |
| LRB con deslizador en Y                                                                                                       |
| Tabla 89 Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada cor         TFP en X.       153        |
| <b>Tabla 90</b> Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada cor         TFP en Y.       154 |
| Tabla 91 Comparación de Valores Máximos de Fuerzas Cortantes en Base Fija y Base Aislada         en X.       155              |
| <b>Tabla 92</b> Comparación de Valores Máximos de Fuerzas Cortantes en Base Fija y Base Aislada         en Y.       156       |
| Tabla 93 Resultado Comparativo de Fuerzas Cortantes del Análisis Tiempo Historia en X                                         |
| Tabla 94 Resultado Comparativo de Fuerzas Cortantes del Análisis Tiempo Historia en Y                                         |
| <b>Tabla 95</b> Comparación de Aceleraciones según los análisis dinámicos en Base Fija en X158                                |
| Tabla 96 Comparación de Aceleraciones según los análisis dinámicos en Base Fija en Y159                                       |
| Tabla 97 Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con                                        |
| LRB con deslizador en X                                                                                                       |
| Tabla 98 Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con                                        |
| LRB con deslizador en Y                                                                                                       |
| Tabla 99 Comparación de Aceleraciones según los análisis dinámicos en Base Aislada cor         TFP en X.       162            |
| Tabla 100 Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con                                       |
| TFP en Y                                                                                                                      |
| Tabla 101 Comparación de Valores Máximos de Aceleraciones en Base Fija y Base Aislada                                         |
| en X                                                                                                                          |



| Tabla 102 Comparación de Valores Máximos de Aceleraciones en Base Fija y Base Aislada      |
|--------------------------------------------------------------------------------------------|
| en Y                                                                                       |
| Tabla 103 Resultado Comparativo de Aceleraciones del Análisis Tiempo Historia en X165      |
| Tabla 104 Resultado Comparativo de Aceleraciones del Análisis Tiempo Historia en Y165      |
| Tabla 105 Porcentaje de Reducción de Derivas en Base Fija y Base Aislada en X e Y 166      |
| Tabla 106 Promedio de porcentaje de Reducción de Derivas en Base Fija y Base Aislada en    |
| X167                                                                                       |
| Tabla 107 Promedio de porcentaje de Reducción de Derivas en Base Fija y Base Aislada en    |
| Y167                                                                                       |
| Tabla 108 Porcentaje de Reducción de Fuerzas Cortantes en Base Fija y Base Aislada en X e  |
| Y168                                                                                       |
| Tabla 109 Promedio de porcentaje de Reducción de Fuerzas Cortantes en Base Fija y Base     |
| Aislada en X                                                                               |
| Tabla 110 Promedio de porcentaje de Reducción de Fuerzas Cortantes en Base Fija y Base     |
| Aislada en Y                                                                               |
| Tabla 111 Porcentaje de Reducción de Aceleraciones en Base Fija y Base Aislada en X e Y.   |
| 170                                                                                        |
| Tabla 112 Promedio de porcentaje de Reducción de Aceleraciones en Base Fija y Base Aislada |
| en X171                                                                                    |
| Tabla 113 Promedio de porcentaje de Reducción de Aceleraciones en Base Fija y Base Aislada |
| en la Dirección de Análisis Y                                                              |
| Tabla 114 Comparación de amortiguamiento según los análisis dinámicos en Base Aislada.     |
| 172                                                                                        |



### Índice de Figuras

| <b>Figura 1</b> Efecto del aislamiento sísmico en las máximas aceleraciones de entrepiso  | 6       |
|-------------------------------------------------------------------------------------------|---------|
| Figura 2 Sistema de 1 Grado de Libertad Idealizado                                        | 22      |
| Figura 3 Factor de amplificación dinámica, en función del amortiguamiento                 | 27      |
| Figura 4 Diferenciación entre las estructuras con aislamiento sísmico y las estructuras c | on una  |
| base fija.                                                                                | 28      |
| Figura 5 El comportamiento de una única estructura durante un evento sísmico              | 29      |
| Figura 6 Un aislante de goma se ha cortado en secciones con fines de ilustración. (l      | Rubber  |
| Bearing)                                                                                  | 30      |
| Figura 7 Un aislante de goma con un núcleo de cobre se muestra en la sección trans        | versal. |
| (Lead Rubber Bearing).                                                                    | 30      |
| Figura 8 Curvas que describen el comportamiento de una barra de plomo                     | 31      |
| Figura 9 Aislador de goma típico a un conjunto de fuerzas externas típicas es lo que c    | onsiste |
| este experimento.                                                                         | 32      |
| Figura 10 Los aisladores de goma con un núcleo de plomo y otros materiales sin            | milares |
| muestran un comportamiento cíclico.                                                       | 32      |
| Figura 11 Modelización del comportamiento cíclico de los aisladores de goma y las prin    | cipales |
| características de estos materiales.                                                      | 33      |
| Figura 12 Coeficiente de fricción - Efecto de Carga en un deslizador.                     | 35      |
| Figura 13 Sección transversal de un Deslizador.                                           | 35      |
| Figura 14 Aisladores típicos de fricción simple.                                          | 36      |
| Figura 15 Aislador de triple péndulo friccional.                                          | 36      |
| Figura 16 Características típicas del aislador de triple péndulo de fricción.             | 37      |
| Figura 17 Regímenes del comportamiento cíclico de un aislador de triple péndulo de fr     | icción. |
|                                                                                           | 37      |
| Figura 18 Regímenes de comportamiento del aislador de triple péndulo de fricción          | 38      |
| Figura 19 Regímenes del comportamiento cíclico de un aislador de triple péndulo de fr     | icción. |
|                                                                                           | 40      |
| Figura 20 Relación entre el coeficiente de fricción y la velocidad de aplicación de la    | a carga |
| lateral                                                                                   | 41      |
| Figura 21 Efecto del aislamiento sísmico en la aceleración espectral.                     | 42      |
| Figura 22 Efecto del aislamiento sísmico en el desplazamiento espectral                   | 42      |
| Figura 23 Efecto del aislamiento sísmico en estructuras visto en un espacio ADRS          | 43      |



| <b>Figura 24</b> Espectros de aceleración obtenidos a partir de cinco diferentes tipos de sismos | .45  |
|--------------------------------------------------------------------------------------------------|------|
| Figura 25 Espectro de aceleraciones de diseño característico.                                    | .46  |
| Figura 26 Registros de aceleración característicos en sus tres componentes.                      | .47  |
| Figura 27 Mapa de peligro sísmico del Perú.                                                      | .47  |
| Figura 28 Medidor Laser.                                                                         | .58  |
| Figura 29 Metrado de elementos estructurales.                                                    | .58  |
| Figura 30 Metrado de columnas.                                                                   | .59  |
| Figura 31 Metrado de elementos estructurales y arquitectónicos.                                  | .59  |
| Figura 32 Especificación del Estudio de Mecánica de Suelos                                       | .60  |
| Figura 33 Ubicación de la edificación.                                                           | .62  |
| Figura 34 Vista 3D de arquitectónicas de la edificación.                                         | .63  |
| Figura 35 Ejemplificación de la incorporación de la Excentricidad Accidental en la Estruct       | ura  |
| Analizada.                                                                                       | .67  |
| Figura 36 Espectro de respuesta para Diseño de Edificación-E.030 - Pabellón Colegio S            | San  |
| Francisco.                                                                                       | .68  |
| Figura 37 Espectro de desplazamientos para la zona de emplazamiento.                             | .68  |
| Figura 38 Registro de aceleración del sismo de 1966, componente EW                               | .69  |
| Figura 39 Registro de aceleración del sismo de 1966, componente NS                               | .70  |
| Figura 40 Registro de aceleración del sismo de Arequipa, componente EW                           | .70  |
| Figura 41 Registro de aceleración del sismo de Arequipa, componente NS                           | .71  |
| Figura 42 Registro de aceleración del sismo de Pisco del 2007, componente EW                     | .71  |
| Figura 43 Registro de aceleración del sismo de Pisco del 2007, componente NS                     | .72  |
| Figura 44 Espectros de aceleración de las componentes NS y EW sin escalar del sismo              | de   |
| 1966                                                                                             | .72  |
| Figura 45 Espectro de aceleraciones del sismo de Arequipa, componentes EW y NS                   | sin  |
| escalar.                                                                                         | .73  |
| Figura 46 Espectros de aceleración de las componentes NS y EW sin escalar del sismo              | de   |
| Pisco del 2007.                                                                                  | .73  |
| Figura 47 Comparativa de los registros de aceleración seleccionados sin escalar y el espec       | etro |
| objetivo.                                                                                        | .74  |
| Figura 48 Comparativa de los registros de aceleración escalado y el espectro objetivo            | .74  |
| Figura 49 Espectro de Pseudo-Aceleraciones para Escalamiento de Espectros - E.031                | .75  |
| Figura 50 Espectro de Pseudo-Desplazamientos para Escalamiento de Espectros - E.031              | .76  |



| Figura 51 Espectro de Pseudo-Aceleraciones para Análisis Modal Espectral                 | 76     |
|------------------------------------------------------------------------------------------|--------|
| Figura 52 Espectro de Pseudo-Desplazamientos para Análisis Modal Espectral               | 76     |
| Figura 53 Registro de aceleración del sismo de Tacna - 2010, componente EW               | 78     |
| Figura 54 Registro de aceleración del sismo de Tacna - 2010, componente NS               | 79     |
| Figura 55 Registro de aceleración del sismo de Lima - 1974, componente EW                | 79     |
| Figura 56 Registro de aceleración del sismo de Lima - 1974, componente NS                | 80     |
| Figura 57 Registro de aceleración del sismo de Lomas 2018, componente EW                 | 80     |
| Figura 58 Registro de aceleración del sismo de Lomas 2018, componente NS                 | 81     |
| Figura 59 Registro de aceleración del sismo Turquía 2023 escalado, componente EW         | 81     |
| Figura 60 Registro de aceleración del sismo Turquía 2023 escalado, componente NS         | 82     |
| Figura 61 Comparativa de los registros de aceleración escalado y el espectro objetivo l  | Ξ.031. |
|                                                                                          | 83     |
| Figura 62 Modelo estructural tridimensional de la estructura analizada.                  | 84     |
| Figura 63 Vista en planta del primer nivel de la estructura analizada.                   | 85     |
| Figura 64 Vista en planta del primer y segundo nivel de la estructura analizada          | 85     |
| <b>Figura 65</b> Sección transversal de la columna C50x50.                               | 86     |
| <b>Figura 66</b> Sección transversal de la viga V30x50.                                  | 86     |
| Figura 67 Sección transversal de la Losa Aligerada 20cm.                                 | 87     |
| Figura 68 Dispositivo de aislamiento sísmico LRB con deslizador.                         | 90     |
| Figura 69 Definición del modelo de comportamiento del aislador LRB                       | 96     |
| Figura 70 Definición de las propiedades no lineales del aislador para la dirección X e Y | 96     |
| Figura 71 Definición del modelo de comportamiento del Slider                             | 99     |
| Figura 72 Definición de las propiedades no lineales del Slider para la dirección X e Y   | 100    |
| Figura 73 Modelo tridimensional con aisladores LRB y Deslizadores.                       | 101    |
| Figura 74 Modelo tridimensional de distribución de aisladores LRB y Deslizadores         | 101    |
| Figura 75 Características geométricas de los aisladores TFP.                             | 102    |
| Figura 76 Modelo tridimensional con aislamiento TFP.                                     | 107    |
| Figura 77 Modelo tridimensional de distribución de aisladores TFP.                       | 108    |
| Figura 78 Desplazamiento Absoluto del Análisis Modal Espectral y Tiempo Historia en      | ı base |
| fija                                                                                     | 111    |
| Figura 79 Desplazamientos Relativos del Análisis Modal Espectral y Tiempo Historia en    | n base |
| fija                                                                                     | 112    |
| Figura 80 Derivas del Análisis Modal Espectral y Tiempo Historia en base fija            | 113    |



| Figura 81 Máximas fuerzas cortantes laterales del Análisis Modal Espectral y Tiempo Historia |
|----------------------------------------------------------------------------------------------|
| en base fija                                                                                 |
| Figura 82 Aceleraciones de Piso del Análisis Modal Espectral y Tiempo Historia en base fija  |
| 116                                                                                          |
| Figura 83 Desplazamientos absolutos del Análisis Modal Espectral y Tiempo Historia con       |
| Aislador LRB y deslizador                                                                    |
| Figura 84 Desplazamientos relativos del Análisis Modal Espectral y Tiempo Historia con       |
| Aislador LRB y deslizador                                                                    |
| Figura 85 Distorsiones laterales del Análisis Modal Espectral y Tiempo Historia con Aislado  |
| LRB y deslizador. 123                                                                        |
| Figura 86 Fuerzas cortantes del Análisis Modal Espectral y Tiempo Historia con Aislador LRE  |
| y deslizador                                                                                 |
| Figura 87 Aceleraciones de Piso del Análisis Modal Espectral y Tiempo Historia con Aislado   |
| LRB y deslizador. 126                                                                        |
| Figura 88 Amortiguamiento y Energía disipada del Sistema Estructural con LRB con             |
| deslizador para Atico.                                                                       |
| Figura 89 Amortiguamiento y Energía disipada del Sistema Estructural con LRB con             |
| deslizador para Turquía                                                                      |
| Figura 90 Primera y segunda formas de modo de la estructura con aislamiento LRB con          |
| deslizador                                                                                   |
| Figura 91 Desplazamientos absolutos del Análisis Modal Espectral y Tiempo Historia con       |
| Aislador TFP                                                                                 |
| Figura 92 Desplazamientos relativos del Análisis Modal Espectral y Tiempo Historia con       |
| Aislador TFP                                                                                 |
| Figura 93 Desplazamientos Relativos del Análisis Tiempo Historia en X e Y133                 |
| Figura 94 Distorsiones laterales del Análisis Modal Espectral y Tiempo Historia con Aislado  |
| TFP                                                                                          |
| Figura 95 Fuerzas cortantes del Análisis Modal Espectral y Tiempo Historia con Aislador TFP  |
|                                                                                              |
| Figura 96 Amortiguamiento y Energía disipada del Sistema Estructural con TFP para Atico      |
|                                                                                              |
| Figura 97 Amortiguamiento y Energía disipada del Sistema Estructural con TFP para Turquía    |
|                                                                                              |



| Figura 98 Aceleraciones de Piso del Análisis Modal Espectral y Tiempo Historia con Aislador |
|---------------------------------------------------------------------------------------------|
| TFP                                                                                         |
| Figura 99 Primera y segunda formas de modo de la estructura con aislamiento TFP140          |
| Figura 100 Comparación de derivas según los análisis dinámicos en Base Fija en X 143        |
| Figura 101 Comparación de derivas según los análisis dinámicos en Base Fija en Y 143        |
| Figura 102 Comparación de derivas según los análisis dinámicos en Base Aislada con LRB      |
| con deslizador en X                                                                         |
| Figura 103 Comparación de derivas según los análisis dinámicos en Base Aislada con LRB      |
| con deslizador en Y                                                                         |
| Figura 104 Comparación de derivas según los análisis dinámicos en Base Aislada con TFP en   |
| X146                                                                                        |
| Figura 105 Comparación de derivas según los análisis dinámicos en Base Aislada con TFP en   |
| Y147                                                                                        |
| Figura 106 Comparación de Valores Máximos de Derivas en Base Fija y Base Aislada en X.      |
| 147                                                                                         |
| Figura 107 Comparación de Valores Máximos de Derivas en Base Fija y Base Aislada en Y.      |
| 148                                                                                         |
| Figura 108 Resultado Comparativo de Derivas del Análisis Tiempo Historia en X e Y 149       |
| Figura 109 Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Fija en    |
| X                                                                                           |
| Figura 110 Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Fija en    |
| Y151                                                                                        |
| Figura 111 Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada    |
| con LRB con deslizador en X                                                                 |
| Figura 112 Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada    |
| con LRB con deslizador en Y                                                                 |
| Figura 113 Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada    |
| con TFP en X                                                                                |
| Figura 114 Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada    |
| con TFP en Y                                                                                |
| Figura 115 Comparación de Valores Máximos de Fuerzas Cortantes en Base Fija y Base          |
| Aislada en X                                                                                |



| Figura 116 Comparación de Valores Máximos de Fuerzas Cortantes en Base Fija y Base        |
|-------------------------------------------------------------------------------------------|
| Aislada en Y                                                                              |
| Figura 117 Resultado Comparativo de Fuerzas Cortantes del Análisis Tiempo Historia en X e |
| Y158                                                                                      |
| Figura 118 Comparación de Aceleraciones según los análisis dinámicos en Base Fija en X.   |
| 159                                                                                       |
| Figura 119 Comparación de Aceleraciones según los análisis dinámicos en Base Fija en Y.   |
| 159                                                                                       |
| Figura 120 Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con  |
| LRB con deslizador en X                                                                   |
| Figura 121 Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con  |
| LRB con deslizador en Y161                                                                |
| Figura 122 Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con  |
| TFP en X163                                                                               |
| Figura 123 Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con  |
| TFP en Y163                                                                               |
| Figura 124 Comparación de Valores Máximos de Aceleraciones en Base Fija y Base Aislada    |
| en X164                                                                                   |
| Figura 125 Comparación de Valores Máximos de Aceleraciones en Base Fija y Base Aislada    |
| en Y                                                                                      |
| Figura 126 Resultado Comparativo de Aceleraciones del Análisis Tiempo Historia en X e Y.  |
| 166                                                                                       |
| Figura 127 Porcentaje de Reducción de Derivas en Base Fija y Base Aislada en X167         |
| Figura 128 Porcentaje de Reducción de Derivas en Base Fija y Base Aislada en Y168         |
| Figura 129 Porcentaje de Reducción de Fuerzas Cortantes en Base Fija y Base Aislada en X. |
| 169                                                                                       |
| Figura 130 Porcentaje de Reducción de Fuerzas Cortantes en Base Fija y Base Aislada en Y. |
| 170                                                                                       |
| Figura 131 Porcentaje de Reducción de Aceleraciones en Base Fija y Base Aislada en X. 171 |
| Figura 132 Porcentaje de Reducción de Aceleraciones en Base Fija y Base Aislada en Y. 172 |
| Figura 133 Comparación de amortiguamiento según los análisis dinámicos en Base Aislada.   |
| 173                                                                                       |



#### Introducción

En la actualidad, los terremotos son uno de los fenómenos naturales que se producen con mayor frecuencia en todo el planeta, cuya ocurrencia en determinados lugares provoca grandes pérdidas materiales, y en muchos casos, grandes pérdidas de vidas humanas. Esto se ha podido observar claramente a lo largo de la historia, ya que la actividad tectónica ha provocado numerosos sismos, con consecuencias devastadoras, tanto en países industrializados como en países aún en vías de desarrollo. No cabe duda de que los dos terremotos que sacudieron Turquía el 6 de febrero de 2023, con magnitudes de 7.8 Mw y 7.5 Mw, respectivamente, son sin duda uno de los sucesos más simbólicos ocurridos en los últimos tiempos. Esta secuencia de terremotos se dio por la intensa actividad tectónica a la que está expuesta este país, donde ambos terremotos dejaron 5000 edificios colapsados en las 10 provincias de Turquía, dejó alrededor de 130 derrumbes de edificios en Malatya donde también afecto a Alepo, Latakia y Hama, ciudades de Siria. Estos países sufrieron cuantiosos daños a la infraestructura tanto privada como estatal según el Reporte Preliminar por Garini y Gazetas (2023).

Otro de los terremotos de mayor intensidad y de mayor magnitud ocurrido en los últimos 10 años fue el terremoto de Maule en Chile, con una magnitud de 8.8Mw. Este terremoto ocurrido en la región del Pacífico puso a prueba la potencia y la tecnología en ingeniería sísmica disponible en el vecino país del sur. Este terremoto dejó un saldo de aproximadamente 450 personas fallecidas, el colapso de una edificación multifamiliar emblemática, construido con lo más reciente de la tecnología en ingeniería sísmica del mundo.

Los hechos comentados nos muestran con claridad que los terremotos son uno de los problemas de mayor envergadura y de los más desafiantes a los que se enfrenta en la actualidad la ingeniería civil y más específicamente la ingeniería de estructuras. Fenómenos como los comentados, no sólo han ocurrido en países vecinos, de hecho, en el Perú existieron sismos de gran intensidad que dejaron grandes pérdidas materiales y pérdidas de vidas humanas, a continuación, se detallan sólo 2 de los más importantes ocurridos en los últimos 25 años.

En el 2001, frente a las costas del departamento de Arequipa, ocurrió un terremoto que indujo una aceleración máxima en el terreno de aproximadamente 0.3g, un valor considerablemente elevado que produjo numerosos colapsos de vivienda, daño irreparable a cuantiosas estructuras ubicadas en la zona, y lamentablemente la pérdida de numerosas vidas



humanas. Este terremoto puso en evidencia las precariedades del sistema constructivo típico usado en el Perú, y de la misma forma hizo hincapié en los defectos e insuficiencias inherentes a la norma de diseño sísmico de aquella época.

Más recientemente, en el año 2007 ocurrió otro terremoto devastador en el Perú. Este evento ocurrió frente a las costas del departamento de Ica, afectando a decenas de miles de familias ubicadas en el litoral de la zona. Las indicaciones del Instituto Nacional de Defensa Civil (INDECI) apuntan a que el número de víctimas mortales alcanzó la cifra de 750 personas, muchas de ellas perdieron la vida bajo los escombros de sus viviendas colapsadas por el terremoto. Además, de acuerdo con el mismo instituto, por lo menos 135000 personas se vieron afectadas directamente como consecuencia.

El Cusco interactúa con la falla de Tambomachay, lo que origina movimientos sísmicos que puede provocar la trágica pérdida de vidas humanas, así como daños físicos en el edificio. Dado que Perú está situado en una región propensa a los sismos, es fundamental conocer a fondo la norma técnica E.031 sobre aislamiento sísmico. Al 2023 existen más de 100 edificaciones con Aislamiento Sísmico en el Perú, entre las estructuras más recientes está el Hospital de Sullana (institución pública) y el Centro de Bienestar Universitario de la Universidad de Lima (institución privada).

Como se ha descrito párrafos arriba, los sismos tienen impactos negativos en las estructuras construidas por el hombre, los mismos que deben de ser afrontados de manera práctica y eficiente ideando nuevos sistemas de construcción de edificaciones sismo resistentes, o un debate sobre cómo hacer más funcional y productiva la instalación de sistemas de protección sísmica en los edificios. Por ende, este trabajo de investigación pretende promover cómo hacer más útil y eficaz la utilización de dispositivos de protección antisísmica en los edificios, pero lamentablemente se dispone de poca información técnica, y su aplicación práctica al diseño estructural y el reforzamiento de estructuras es limitada.

Se pretende responder a la pregunta de cuál es la mejor opción para mejorar la respuesta sísmica del Pabellón de Nivel Inicial del Colegio San Francisco de Asís situado en la ciudad de Cusco, los aisladores de plomo-caucho, a menudo conocidos como LRB, pueden llevar acoplados deslizadores, o aisladores de triple péndulo de fricción (TFP).



#### 1. Planteamiento del Problema

#### 1.1 Ámbito de influencia de la Tesis

#### 1.1.1 Ubicación Geográfica.

La estructura conocida como PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS, se encuentra en la Calle Nueva Baja 483 del distrito de Cusco, provincia de Cusco y departamento de Cusco, donde se lleva a cabo la investigación.

#### 1.1.2 Ámbito de influencia Teórica.

La disciplina de la ingeniería estructural, y más concretamente el tema de los sistemas de protección sísmica, sirve de marco conceptual para el presente trabajo de investigación.

#### 1.2 Problema de investigación.

#### 1.2.1 Descripción del problema a investigar.

Por estar situado frente a una de las mayores zonas de subducción del mundo y por formar parte del llamado Cinturón de Fuego del Pacífico, Perú está considerado como un país con un alto nivel de sismicidad. Esto se debe a que la Placa de Nazca y la Placa Sudamericana están siendo subductadas bajo él. Como consecuencia de ello, está predispuesto a ser golpeado por una alta frecuencia de actividad sísmica de una magnitud significativa. Esta situación afecta a diferentes regiones del Perú, especialmente a la ciudad del Cusco.

Los sismos ocurridos en esta región están asociados a movimientos intra-placa, típicamente asociados a fallas geológicas. Sobre este tipo de formaciones geológicas es importante recordar que la región Cusco está afectada por numerosas fallas, entre las más importantes se pueden citar a las fallas de Tambomachay, Ccoricocha, Pachatusan, Paruro y Amaru (Benavente et al, 2013).

La filosofía del diseño sismorresistente en el Perú es evitar la pérdida de vidas humanas, mantener la continuidad de los servicios esenciales y sufrir el menor número posible de daños estructurales como lo menciona la norma técnica E.030; sin embargo, muchas edificaciones tienen que estar operativas después de un sismo severo pero la mayoría no están preparadas para resistirlo. En los últimos 50 años no se ha tenido la

presencia de un evento sísmico destructivo, por consecuencia se creó una Zona de Silencio Sísmico (ZCS) ya que durante mucho tiempo no se ha liberado una cantidad de energía considerable, por ende, se ha anticipado que Lima será golpeada por un sismo de magnitud 8.5 Mw, dicha información proviene del Ministerio de Vivienda, Construcción y Saneamiento (MVCS), la cual traerá como consecuencia miles de muertos y viviendas colapsadas, del mismo modo por la zonificación sísmica del MVCS, el Perú posee zonas con suelos arenosos, en este tipo de suelos las ondas sísmicas se amplifican y esto daría como resultado que edificaciones importantes sufran daños importantes o colapsos.

Actualmente en el mercado peruano existe una gran variedad de opciones para los sistemas de control sísmico. Los aisladores para actividad sísmica reducen significativamente los desplazamientos laterales relativos y las aceleraciones que experimentan las estructuras. Se ha demostrado en el pasado que los edificios que se apoyan en una base estacionaria experimentan importantes desplazamientos laterales relativos y aceleraciones del suelo, que en determinados casos llevaron a la estructura al colapso. En caso de que se produzca el fenómeno de la resonancia, se producirán daños en la estructura que no podrán repararse.

El "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" de Cusco será el objeto de investigación de este proyecto, el que califica como una edificación de categoría A, ya que se trata de una Institución Educativa que reúne gran cantidad de personas y está situado en el corazón del casco antiguo de Cusco, en vía importante de la ciudad, ubicado en calle Nueva Baja 483, del distrito de Cusco, con las coordenadas 13°31'5.21"S - 71°59'0.12"O a una elevación de 3430 m.s.n.m. Esta edificación presenta una base fija, debido a esto, el trabajo actual se centra en una investigación del Pabellón que incorpora aisladores de base elastomérica con núcleo de plomo, deslizadores de fricción y aisladores de fricción tipo péndulo en cumplimiento de la norma E.031 de Aislamiento Sísmico con el fin de comparar la respuesta sísmica en cada uno de los tres escenarios diferentes, y evaluar los beneficios potenciales de la implantación de sistemas de aislamiento sísmico. Como parte de la presente investigación, se analizarán siete registros sísmicos correspondientes a la zona de estudio mediante un análisis dinámico modal espectral, así como un análisis dinámico tiempo-historia.



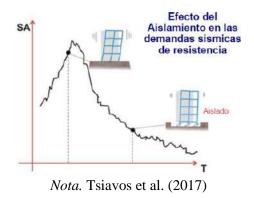
#### 1.2.2 Formulación interrogativa del problema general.

¿En qué medida la incorporación de los Aisladores de Núcleo de Plomo con deslizadores y Triple Péndulo Friccionante influirá en la magnitud de los parámetros de respuesta sísmica del sistema estructural "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS", empleando un análisis sísmico tiempo-historia y análisis dinámico modal espectral, según la NTP E.031?

#### 1.2.3 Formulación interrogativa de los Problemas Específicos.

- 1. ¿En qué porcentaje variará la deriva máxima para el sistema estructural "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" en base fija con relación al sistema estructural con la incorporación de aisladores sísmicos de núcleo de plomo con deslizadores y triple péndulo friccionante, empleando un análisis tiempo-historia y análisis dinámico modal espectral?
- 2. ¿En qué porcentaje la fuerza cortante variará para la edificación "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" en Base Fija con relación a la Estructura en Base Aislada con incorporación de aisladores sísmicos de núcleo de plomo con deslizadores y posteriormente con incorporación de aisladores de triple péndulo friccionante, mediante un análisis tiempo-historia y análisis dinámico modal espectral?
- 3. ¿Cuál será el factor el amortiguamiento para el Edificio "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" con aisladores de núcleo de plomo con deslizadores y triple péndulo friccionante, mediante un análisis tiempo-historia y análisis dinámico modal espectral?
- 4. ¿En qué porcentaje variarán las aceleraciones para el sistema estructural "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" en base fija con relación al sistema estructural con la incorporación de aisladores sísmicos de núcleo de plomo con deslizadores y triple péndulo friccionante, empleando un análisis tiempo-historia y análisis dinámico modal espectral?

#### 1.3 Justificación de la Investigación.


#### 1.3.1 Justificación Técnica.

El presente estudio se está llevando a cabo en el subcampo de las estructuras dentro del campo de la ingeniería civil; más concretamente, en el campo de la ingeniería

sismorresistente, que es donde se están investigando soluciones como el uso de los aisladores sísmicos. Esta investigación se lleva a cabo con el fin de avanzar en el campo de la ingeniería sismorresistente. Para este trabajo se tienen en cuenta los sistemas de aislamiento de neopreno con núcleo de plomo y los aisladores de fricción de triple péndulo, donde se evalúan comparativamente mediante modelamiento estructural, la respuesta sísmica calculada mediante un análisis sísmico dinámico tiempo-historia y basada en las consideraciones de las normas técnicas E.030 y E.031.

La utilización de aisladores sísmicos tiene como objetivo principal la prolongación del periodo básico de la estructura de base fija (también conocido como Periodo de Base Fija), y con esto tener de dos a tres veces el periodo mencionado, logrando el conocido periodo de base aislada, este proceso es conocido como el fenómeno de *shifting* (Tena-Colunga, 2007), es decir, salto de la zona de elevados niveles de aceleración a las zonas con aceleraciones moderadas, tal como muestra el grafico presentado a continuación.

**Figura 1** *Efecto del aislamiento sísmico en las máximas aceleraciones de entrepiso.* 



La principal consecuencia de tener menores demandas de aceleración en la superestructura es que, las máximas distorsiones laterales de entrepiso disminuyen en la misma medida que las demandas de cortante basal disminuyen. Es cierto que se pueden lograr grandes disminuciones en las distorsiones máximas entre pisos; sin embargo, también se pueden lograr reducciones significativas en las distorsiones máximas entre pisos. Es esencial tener en cuenta que los desplazamientos máximos totales de la superestructura y del sistema de aislamiento tienden a aumentar considerablemente. (Tsiavos et al, 2017).



#### 1.3.2 Justificación Social.

La investigación actual tiene el potencial de actuar como barómetro del progreso de la sociedad, proporcionando una indicación de nuestras esperanzas y sueños para el futuro de las nuevas construcciones en el sentido de siempre tratar de considerar reforzar aquellas edificaciones que se consideren esenciales como hospitales, centros educativos o Estructuras que albergan a una población importante pero que no están equipadas con un sistema de vigilancia sísmica y de alerta rápida que han demostrado reducir costos en reparaciones de la edificación después de un sismo. Los dispositivos de aislamiento sísmico garantizan seguridad y confort de los habitantes durante un sismo. Del mismo modo, los estudiantes y profesionales de ingeniería civil que trabajan en el campo del diseño sismorresistente en edificios con sistemas de protección sísmica se beneficiarían de esta investigación al tener acceso a una ayuda y una guía que pueden utilizar en su trabajo. Conforme se vayan socializando los resultados de la investigación, los beneficiarios serán los profesionales ingenieros civiles que lo considerarán y hasta emplearán para diseñar edificaciones con este sistema de protección de aisladores sísmicos.

#### 1.3.3 Justificación por viabilidad.

El presente estudio puede llevarse a cabo con éxito ya que tenemos acceso a todos los recursos necesarios. La investigación sobre aislantes sísmicos puede encontrarse en diversos ámbitos, como tesis de licenciatura y posgrado, así como en entornos nacionales e internacionales. El desarrollo de la investigación es posible gracias a los conocimientos adquiridos no sólo durante la etapa de formación, sino también a través de actividades extracurriculares. Se cuenta con los planos correspondientes de la edificación elegida e información importante, como las normas utilizadas (E.030 Diseño sismorresistente, E.031 Aislamiento sísmico y E.020 Cargas). Para la recopilación y procesamiento de datos se usará el software ETABS v19, SeismoMatch 2018 y Microsoft Excel y Mathcad Prime 8.0 que permite analizar la estructura sin y con aisladores sísmicos.

#### 1.3.4 Justificación por relevancia.

Esta investigación es significativa porque demuestra que los edificios tienen la obligación de prestar un servicio continuo y resistente en caso de que se produzcan



movimientos sísmicos, los cuales la ciudad del Cusco siempre estará propensa a verse afectada. Los edificios en lugares determinados deben disponer de sistemas de protección antisísmica de acuerdo con las normas E.030 y E.031, que ambas contemplan y regulan.

Según la forma y composición del suelo del Cusco, que en su mayoría es como un depósito lacustre, se espera que existan valores de amplificación significativa; los aisladores son un tipo de sistema de protección sísmica cuyo uso debe considerarse, ya que permiten la continuación inmediata de los servicios del edificio y proporcionan comodidad a las personas que se encuentran en su interior cuando se produce un terremoto de gran magnitud. Por lo tanto, es vital considerar el uso de este tipo de sistemas. Por eso se pretende normalizar el uso de esta tecnología en el diseño de las futuras edificaciones.

Además de lo expuesto, es importante decir que el uso de aislamiento sísmico permite reducir la magnitud de parámetros importantes como, máximos desplazamientos relativos de entrepiso, máximas distorsiones laterales e incluso, máximas aceleraciones de piso, minimizando así el riesgo de daño en componentes no estructurales de gran valor, como equipo médico de alta generación si fuera el caso o cualquier mobiliario que se considere de valor.

#### 1.4 Limitación de la investigación.

#### 1.4.1 Primera Limitación.

El alcance de la investigación se restringe a un edificio de tres pisos que pertenece a la categoría esencial y se conoce como "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS." Esta estructura se encuentra en la calle Nueva Baja 483 en el distrito de Cusco, que es también el nombre de la provincia y el departamento que se encuentran ambos en Cusco.

#### 1.4.2 Segunda Limitación.

El objetivo de esta investigación es estudiar y analizar las magnitudes de los parámetros de respuesta sísmica del edificio "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" sin y con aisladores de núcleo de plomo y péndulo de triple fricción, mediante la realización de un modelado estructural en el software



ETABS v19. Estos parámetros incluyen desplazamientos, periodos, fuerzas, energía disipada, amortiguamiento y momentos.

#### 1.4.3 Tercera Limitación.

El ámbito de aplicación de este estudio se limita a lo estipulado en las normas o reglamentos enumerados a continuación:

- Norma Técnica Peruana E.020 Cargas, que se utiliza para la medición de carga muerta y carga viva además de la obtención de pesos unitarios.
- Norma Técnica Peruana E.030 Diseño Sismorresistente; utilizada para el análisis sísmico dinámico tiempo-historia.
- Norma Técnica Peruana E.031 Aislamiento Sísmico, que se utiliza para la planificación y construcción de sistemas de aislamiento.

#### 1.4.4 Cuarta Limitación.

El modelamiento estructural es el resultado de los datos obtenidos en base a los planos obtenidos de la entidad. Para la realización del análisis estructural se utilizó el software ETABS v19. A efectos de este modelado, se tuvo en cuenta una resistencia del hormigón de f'c=210 kgf/cm2 para todas las partes estructurales. Además, se utilizó Microsoft Excel para los cálculos complementarios. Debido a que en la versión de pregrado del programa SeismoMatch sólo se consideró una tolerancia de 0,3 y un número máximo de 30 iteraciones, éste resultó ser uno de los obstáculos que fue necesario superar durante el proceso de desarrollo del trabajo.

#### 1.5 Objetivos

#### 1.5.1 Objetivo General.

Evaluar comparativamente los parámetros de respuesta sísmica del sistema estructural "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS", en base fija y con la incorporación de aisladores de Núcleo de Plomo con deslizadores y aisladores de Triple Péndulo Friccionante, empleando un análisis sísmico tiempohistoria y análisis dinámico modal espectral según la NTP E.031.



#### 1.5.2 Objetivos Específicos.

- 1. Determinar el porcentaje de variación de la deriva máxima para el sistema estructural "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" en base fija con relación al sistema estructural con la incorporación de aisladores sísmicos de núcleo de plomo con deslizadores y triple péndulo friccionante, empleando un análisis tiempo-historia y análisis dinámico modal espectral.
- 2. Determinar el porcentaje de variación de la fuerza cortante para la edificación "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" en Base Fija con relación a la Estructura en Base Aislada con incorporación de aisladores sísmicos de núcleo de plomo con deslizadores y posteriormente con incorporación de aisladores de triple péndulo friccionante, mediante un análisis tiempo-historia y análisis dinámico modal espectral.
- 3. Determinar mediante un análisis tiempo-historia y análisis dinámico modal espectral, el amortiguamiento para la edificación "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" con la incorporación de aisladores sísmicos de núcleo de plomo con deslizadores y triple péndulo friccionante.
- 4. Determinar el porcentaje de variación de las aceleraciones para el sistema estructural "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" en base fija con relación al sistema estructural con la incorporación de aisladores sísmicos de núcleo de plomo con deslizadores y triple péndulo friccionante, empleando un análisis tiempo-historia y análisis dinámico modal espectral.



#### 2. Marco Teórico de la Tesis

#### 2.1 Antecedentes de la Tesis

#### 2.1.1 Antecedentes a nivel nacional.

1) <u>TÍTULO</u>: "Análisis y diseño de edificios con aisladores sísmicos de péndulo friccional doble y triple"

#### **RESUMEN:**

La investigación realizada por Ruiz (2017) se centra en la investigación y planeación de estructuras que cuenten con aisladores sísmicos de doble y triple péndulo de fricción. El objetivo principal de esta investigación es diseñar un procedimiento para la aplicación de aisladores sísmicos de doble y triple péndulo de fricción en la construcción de estructuras de edificios. La metodología desarrollada por el autor incluye el análisis de los efectos de los aisladores sísmicos de péndulo friccional doble y triple en el comportamiento estructural de los edificios. El autor también realizó un análisis a nivel experimental para determinar el comportamiento de los aisladores sísmicos bajo distintas condiciones de carga. Además, el autor utilizó un análisis de límites de respuesta para llevar a cabo una evaluación de la funcionalidad de los aisladores sísmicos de péndulo de fricción doble y triple. Esto permitió determinar los límites de la resistencia y la rigidez del aislador. Esta información fue usada para desarrollar las recomendaciones de diseño para su uso en edificios. El autor también realizó una investigación sobre el comportamiento de los aisladores sísmicos de péndulo friccional doble y triple cuando se instalan en edificios estructuralmente complejos. Por ello, era factible evaluar la eficacia de los aisladores sísmicos para mitigar el impacto negativo que los terremotos tienen en estas estructuras.

#### **CONCLUSIONES:**

Según los resultados, los aisladores sísmicos de péndulo de fricción doble y triple son capaces de reducir el desplazamiento horizontal del edificio hasta en un 80%, al tiempo que reducen el desplazamiento vertical hasta en un 70%. Además, los aisladores reducen el desplazamiento vertical hasta un 50%. Los resultados también demostraron que es posible que los aisladores sísmicos de doble y triple péndulo de fricción reduzcan la respuesta de velocidad del edificio hasta un 50% en comparación

con un edificio sin aisladores. Además, los aisladores pueden reducir el esfuerzo máximo en los elementos estructurales hasta un 78%. Por ello, la instalación de aisladores sísmicos de péndulo de fricción doble y triple en las estructuras puede resultar un método eficaz para mitigar el potencial destructivo de los terremotos. Estos resultados indican que los aisladores sísmicos de doble y triple péndulo de fricción pueden ser una técnica eficaz para aumentar la resistencia sísmica de las estructuras y, por tanto, mejorar su seguridad general.

<u>TÍTULO</u>: "Comportamiento sísmico de edificios aislados en la base en distintas etapas del proceso constructivo"

#### **RESUMEN:**

Hernández (2016) realizó una investigación sobre el comportamiento sísmico de edificios que cuentan con aislamiento en la base. Para lograr este objetivo, se realizaron evaluaciones computacionales y experimentales con el fin de evaluar la eficiencia de los aisladores de edificios ubicados en la cimentación de una estructura. Durante el estudio, se desarrollaron modelos mecánicos para la simulación de los efectos de un terremoto en edificios con aisladores en la base. Estos modelos se validaron mediante ensayos de laboratorio para evaluar la capacidad de los aisladores en la reducción de la intensidad de los efectos sísmicos. Además, para investigar el comportamiento sísmico de las estructuras equipadas con aisladores de base, se realizaron análisis numéricos.

# **CONCLUSIONES**:

El trabajo concluye que los edificios aislados en la base son más resistentes a los movimientos sísmicos que los edificios sin aislamiento. Esta conclusión se desprende de los resultados obtenidos del análisis de los efectos de la actividad sísmica durante las distintas fases del proceso de construcción. Según los resultados, la resistencia sísmica de los edificios aislados es alta. Los resultados muestran que la resistencia sísmica de los edificios aislados en la base aumenta un 6% en comparación con los edificios sin aislamiento. Además, el análisis determinó que el aislamiento en la base también mejoró la resistencia sísmica del edificio en un 10% durante la etapa de construcción y un 15% durante el periodo de pruebas. Estos resultados demuestran que el aislamiento en la base es una herramienta importante para mejorar la resistencia

sísmica de los edificios. Además, el análisis mostró que los edificios aislados en la base tuvieron una mayor resistencia a los movimientos sísmicos durante los periodos de construcción y prueba. El aislamiento colocado en los cimientos del edificio ralentiza la velocidad a la que las ondas sísmicas viajan a través de la estructura, aumentando así la resistencia de ésta a las sacudidas provocadas por los terremotos. El análisis también demostró que el aislamiento en la base reduce la magnitud de los movimientos sísmicos en un 17%, lo que significa que los edificios serán menos vulnerables a los daños causados por los sismos. En conclusión, el trabajo de Hernández (2016) demuestra que el aislamiento en la base es una herramienta eficaz para mejorar la resistencia sísmica de los edificios. Los resultados obtenidos mostraron que el aislamiento en la base aumenta la resistencia sísmica del edificio en un 6%, mejora la resistencia sísmica durante la construcción y prueba en un 10% y 15% respectivamente, y reduce la magnitud de los movimientos sísmicos en un 17%. Estos resultados son una prueba clara de que el aislamiento en la base es una herramienta eficaz para mejorar la resistencia sísmica de los edificios.

<u>TÍTULO</u>: "Respuesta sísmica de tanques de almacenamiento de agua con sistema de aislamiento en la base"

### **RESUMEN:**

Mamani (2016) tuvo como objetivo investigar el comportamiento sísmico de tanques de almacenamiento de agua que estaban equipados con un sistema en la base de la estructura. Para lograr este objetivo, fue necesario realizar estudios tanto computacionales como experimentales con el fin de evaluar la eficiencia de estos sistemas para mitigar las consecuencias negativas de la actividad sísmica. Durante el estudio, se desarrollaron modelos numéricos para la simulación de los efectos de un terremoto en los tanques. Estos modelos se validaron mediante ensayos de laboratorio para evaluar la capacidad de los sistemas en la reducción de la intensidad de los efectos sísmicos. Además, se realizaron ensayos de carga para estudiar el comportamiento sísmico de los tanques, bajo diferentes cargas y condiciones de suelo.

#### **CONCLUSIONES:**

Los hallazgos que Mamani recogió para su tesis titulada "Respuesta sísmica de tanques de almacenamiento de agua con sistema en la base" revelan que la utilización

de sistemas montados en la base es un factor muy esencial en la respuesta sísmica de los tanques de almacenamiento de agua, puede reducir significativamente los efectos de la acción sísmica, mejorando la seguridad estructural de los tanques. Esto se debe a que los sistemas en la base pueden disminuir la amplificación de los efectos sísmicos, así como la transmisión de energía a la estructura superior. Además, según los resultados, la utilización de sistemas de base tiene el potencial de mejorar la resistencia sísmica de los tanques, incluso en condiciones de cargas y suelos severos. Estos resultados pueden ser útiles para la ingeniería estructural, especialmente en áreas con un alto riesgo sísmico.

<u>TÍTULO</u>: "Análisis estructural de un edificio aislado sísmicamente y de su sistema de aislamiento"

### **RESUMEN:**

En este trabajo de investigación que realizaron Hernández y Fernández-Dávila (2015), investigaron la resistencia sísmica de un edificio que había sido aislado sísmicamente, así como la técnica de aislamiento que utilizaba. Para alcanzar este objetivo, la tesis desarrolló una metodología sistemática para analizar el comportamiento estructural del edificio. Esta metodología consistió en la realización de un estudio previo para determinar los requisitos geométricos, la capacidad resistente y los parámetros sísmicos pertinentes. Esto fue seguido por el uso de un modelo de elementos finitos para simular cómo reaccionará el edificio ante la actividad sísmica y su sistema de aislamiento a los diferentes terremotos. Finalmente, se realizó un análisis estadístico para evaluar la resistencia sísmica del edificio y su sistema de aislamiento. Esta metodología permitió a los autores desarrollar una comprensión profunda de los fenómenos sísmicos que afectan a los edificios aislados sísmicamente y de los diferentes sistemas de aislamiento. Los resultados obtenidos de la tesis contribuyen al campo de la ingeniería sísmica, proporcionando información útil para la mejora futura de los sistemas de aislamiento y la prevención de daños durante los terremotos.

## **CONCLUSIONES**

Los resultados de la investigación realizada por Hernández y Fernández-Dávila mostraron que el sistema de aislamiento utilizado para el edificio aislado sísmicamente tenía una eficacia del 91% en la reducción de los efectos de los terremotos. Esto

significa que el sistema de aislamiento fue capaz de reducir los daños causados por los terremotos en un 91% en comparación con un edificio sin aislamiento. Además, los resultados mostraron que el edificio aislado sísmicamente fue capaz de resistir terremotos con una magnitud hasta el 8.0 en la escala de Richter sin sufrir daños significativos. Esto indica que el sistema de aislamiento fue exitoso en su función de proteger el edificio de los efectos de los terremotos de gran magnitud. Finalmente, los resultados también mostraron que el sistema de aislamiento redujo la velocidad de vibración promedio en el edificio en un 68%, lo que proporciona una mayor estabilidad estructural. Estos resultados indican que el sistema de aislamiento utilizado para el edificio aislado sísmicamente es eficaz en la reducción de los efectos de los terremotos y en la mejora de la estabilidad estructural del edificio.

#### 2.1.2 Antecedentes a Nivel Internacional.

En los últimos años se ha prestado mucha más atención al estudio de los sistemas de aislamiento sísmico, tanto en el extranjero como en el país. En el extranjero, En los últimos años, los investigadores han creado nuevos sistemas de aislamiento sísmico, como los sistemas de aislamiento elastomérico, los sistemas de aislamiento por resorte y otros sistemas de aislamiento sísmico como el aislamiento con masa. Estos sistemas se han probado y evaluado en diferentes entornos sísmicos, como Japón, Estados Unidos y Europa, para determinar su eficacia frente a terremotos de diferentes magnitudes. Además, se han desarrollado nuevos métodos para mejorar la resistencia sísmica de estos sistemas, como el uso de materiales compuestos y la adición de una segunda capa de aislamiento. Estos avances permitirán a los investigadores desarrollar nuevos diseños de sistemas de aislamiento sísmico que ofrezcan mejores niveles de resistencia frente a terremotos de cualquier magnitud. A continuación, se exponen algunos de los resultados más recientes de las investigaciones realizadas en este ámbito.

<u>TÍTULO:</u> "Dynamics of inelastic base-isolated structures subjected to recorded ground motions"

#### **RESUMEN:**

La investigación "Dynamics of inelastic base-isolated structures subjected to recorded ground motions", realizada por Tsiavos, se centró principalmente en el análisis de construcciones de aislamiento de bases inelásticas sacudidas por la actividad sísmica.

En particular, el objetivo fue el de evaluar los efectos de la base aislada inelástica sobre la respuesta vibratoria y el comportamiento estructural. Para lograr este objetivo, Tsiavos propuso un método de modelización de estructuras y movimientos sísmicos basado en el concepto de análisis de elementos finitos. Además, se utilizaron técnicas numéricas para simular los efectos de la base aislada inelástica. El modelo numérico incluyó una cuantificación de los parámetros de aislamiento y los parámetros de la base aislada inelástica. Los resultados de la investigación demostraron que la respuesta de las estructuras aisladas con base inelástica es significativamente diferente a la respuesta de las estructuras aisladas con base elástica. En particular, se encontró que el uso de la base aislada inelástica permite reducir el desplazamiento de la estructura en un 90% y los desplazamientos laterales en un 80%. Además, se observó que la base aislada inelástica permite una reducción del 50% en la aceleración de la estructura.

### **CONCLUSIONES:**

Tsiavos concluyó que, el uso de la base aislada inelástica permite reducir significativamente el desplazamiento de la estructura y los desplazamientos laterales. En particular, se encontró que el uso de la base aislada inelástica permite reducir el desplazamiento de la estructura en un 90% y los desplazamientos laterales en un 80%, además de proporcionar una reducción del 50% en la aceleración de la estructura. Además, se descubrió que la base aislada inelástica disminuye la amplitud de los movimientos sísmicos que se comunican a la estructura en un 40%. Además, la investigación también concluyó que la base aislada inelástica también permite disminuir los impactos perjudiciales provocados por los movimientos sísmicos. Por ejemplo, se ha descubierto que el uso de una base aislada inelástica se asocia con una disminución del 65% en la estimación de la cantidad de daños en comparación con el uso de una base aislada elástica. En conclusión, se determinó que la utilización de la base aislada inelástica disminuye significativamente el desplazamiento de la estructura, así como los desplazamientos laterales, y reduce la amplitud de los movimientos sísmicos transmitidos a la estructura en un 40%. Además, la utilización de esta base disminuye los efectos perjudiciales causados por los movimientos sísmicos, reduciendo así la estimación de daños en un 75%.

<u>TÍTULO</u>: "Experimental and analytical investigation of the inelastic behavior of structures isolated using friction pendulum bearings"



#### **RESUMEN:**

Los objetivos y la metodología usada en la investigación "Experimental and analytical investigation of the inelastic behavior of structures isolated using friction pendulum Bearings" de Tsiavos abarca una amplia gama de aspectos. El objetivo principal de esta investigación era averiguar hasta qué punto era inelástico el comportamiento de estructuras aisladas cuando se utilizaban cojinetes de péndulo de fricción. Para lograr este objetivo se llevaron a cabo experimentos e investigaciones teóricas con el fin de determinar los parámetros que influyen en el comportamiento de un material inelástico. Además, se evaluó la eficacia de los aislamientos de péndulo de fricción para las estructuras aisladas. Para lograr estos objetivos, la investigación de Tsiavos utilizó una metodología que combinaba tanto experimentos como análisis teóricos. El 80% de los experimentos se realizaron en una plataforma de vibración montada en la Universidad de Patras, Grecia. Estos experimentos se utilizaron para evaluar el comportamiento inelástico de las estructuras aisladas. El 20% restante de los experimentos, en cambio, se llevó a cabo en el interior de una cámara reverberante para poder comprobar el nivel de eficacia de los aisladores de péndulo de fricción. Además de los experimentos, la investigación también se basó en los análisis teóricos. Estos análisis incluyeron el uso de modelos de elementos finitos para estimar el comportamiento inelástico de las estructuras aisladas. La exactitud de los modelos se comprobó comparándolos con los resultados de varios experimentos. Además, también se utilizaron análisis teóricos para determinar los componentes que influyen en el comportamiento inelástico.

## **CONCLUSIONES:**

Los resultados mostraron que el comportamiento inelástico de las estructuras aisladas se veía afectado por el coeficiente de fricción. Para un período natural de 3s, se encontró que, cuanto mayor era el coeficiente de fricción ( $\mu$ ), mayor era el nivel de resistencia inelástica (Ry). Por ejemplo, para  $\mu=2$ , la Ry fue de 1.37 y para  $\mu=4$ , la Ry fue de 3.57. Estos resultados indican que un aumento en el coeficiente de fricción también aumenta la resistencia inelástica. Además, los resultados de la investigación también mostraron que los aislamientos de péndulo de fricción eran eficaces para reducir el comportamiento inelástico de las estructuras aisladas. Esto se demostró contrastando los resultados obtenidos en los experimentos realizados en la plataforma



vibratoria con los obtenidos en los experimentos realizados en la cámara reverberante. Los resultados mostraron que los aislamientos de péndulo de fricción eran eficaces para reducir el comportamiento inelástico de las estructuras aisladas.

<u>TÍTULO</u>: "Simplified Method for the Seismic Design of Low-Rise, Shear Wall Base Isolated Buildings"

## **RESUMEN:**

En la investigación "Simplified Method for the Seismic Design of Low-Rise, Shear Wall Base Isolated Buildings" de Tena-Colunga, el objetivo principal era idear un método más sencillo para el diseño sísmico de edificios de poca altura que contuvieran muros de corte aislados. Se estudiaron varios edificios con diferentes configuraciones y geometrías, empleando modelos de elementos finitos para predecir los efectos de los terremotos. El método simplificado propuesto se basó en el análisis de los efectos dinámicos en el edificio completo, donde se emplearon porcentajes y valores cuantitativos para determinar el diseño. En primer lugar, el método estableció un límite superior del 50% para el desplazamiento de la base del edificio aislado. Esto indica que el edificio está aislado, solo puede desplazarse en un 50% a partir de su posición inicial. Esta cantidad se estableció como un límite superior para garantizar la seguridad del edificio. En segundo lugar, se estableció un límite superior del 25% para el aumento de la rigidez del edificio aislado. Este límite se estableció para reducir la gravedad de los efectos que los terremotos tienen sobre el edificio. Además, el método simplificado también estableció un límite superior del 20% para el aumento de la masa del edificio aislado. Esto significa que el edificio aislado solo puede aumentar la masa en un 20% a partir de su masa inicial. Esto se estableció como límite superior para garantizar la seguridad del edificio. Finalmente, se estableció un límite superior del 10% para el aumento de la rigidez del edificio aislado. Se creó para reducir los daños causados al edificio por los terremotos. En conjunto, estos límites superiores ayudaron a establecer los porcentajes y valores cuantitativos necesarios para diseñar edificios aislados seguros y resistentes a terremotos. Esto permitió a los investigadores desarrollar un enfoque más sencillo para el diseño sísmico de edificios de poca altura con muros de cortante aislados.

## **CONCLUSIONES:**



En conclusión, el estudio fue hecho con un modelo de base rígida con T=0.182, donde se consideraron 154 pares de registros acelerográficos llegando a desplazamientos máximos de 0.02508 m, donde comparan factores de amplificación para sistemas elásticos lineales y demuestra que los desplazamientos ante acción sísmica bidireccional entre la acción unidireccional para sistemas de aislamiento sísmico simétricos, no es constante en el intervalo de periodos considerado para terrenos firmes o roca.

#### 2.2 Base Teórica-Científicas.

#### 2.2.1 Dinámica Estructural

El estudio del comportamiento de los sistemas estructurales cuando están sometidos a la acción de cargas externas entra en el ámbito de este subcampo de la mecánica, especialmente aquellas que están variando en función del tiempo. Las cargas actuantes deberán ser usualmente definidas de forma unívoca (Villarreal, 2016).

### 2.2.1.1 Conceptos de Dinámica

#### 2.2.1.1.1 Masa y Peso

Son dos conceptos relacionados, pero diferentes. El peso es una medida de la fuerza gravitatoria que se ejerce sobre una masa, mientras que la masa es una medida de la cantidad de materia presente en un objeto. La masa de un objeto permanece constante independientemente de su ubicación, mientras que el peso depende de la ubicación donde se encuentre. Por ejemplo, debido a la disparidad en la fuerza de la gravedad entre la Tierra y la Luna, el peso de una persona puede cambiar significativamente dependiendo de dónde se encuentre. Esto indica que el peso es una fuerza que se produce por la combinación de la masa de un objeto y la fuerza de la gravedad. Por lo tanto, una persona puede tener la misma masa en la Tierra y la Luna, pero diferentes pesos (García, 1998).

#### *Unidades en el sistema internacional: [kg]*

De la definición brindada en el acápite anterior se puede colegir que la masa es una característica intrínseca del sistema estructural, que puede aumentar o disminuir si se agregan o eliminan elementos del sistema. La masa es una medida independiente del campo gravitarlo; sin embargo, de acuerdo con el desarrollo histórico y técnico de la



civilización, una primera medida, y más fácil de hacer es la referida al peso del sistema. La fuerza con la que un cuerpo es atraído hacia el núcleo terrestre puede cuantificarse examinando el peso del sistema estructural que lo sostiene. Evidentemente, esta medida está directamente relacionada con la masa, de acuerdo con la siguiente expresión:

$$W = M * g \tag{1}$$

Donde:

M = masa

g = aceleración de la gravedad

# 2.2.1.1.2 Rigidez

La relación que hay entre las fuerzas externas que inducen a la deformación en un cuerpo (García, 1998). Por tanto, sus unidades vienen dadas como fuerza por unidad de longitud. Matemáticamente se expresa por medio de la siguiente relación:

$$K = \frac{F}{u} \tag{2}$$

Donde:

 $F = fuerza\ excitadora$ 

u = desplazamiento

#### 2.2.1.1.3 Amortiguamiento

Es la fuerza que actúa contra el movimiento de un cuerpo, este movimiento tiende a disminuir con el tiempo debido a la pérdida de energía (cinética o potencial) contenida en el cuerpo; esta energía se transforma en otros tipos de energía como calor o ruido. Sus unidades vienen dadas por fuerza por unidad de velocidad (García, 1998).

$$c = \frac{f_D}{\dot{u}} \tag{3}$$

Donde:

 $f_D = fuerza de amortiguamiento$ 

*u* = velocidad a través del amortiguador viscoso lineal



### 2.2.1.1.4 Periodo y frecuencia

Cuando un sistema se encuentra en estado de oscilación libre, el tiempo que tarda en completar un ciclo de vibración libre se denomina periodo natural de vibración del sistema. Sus unidades usuales son los ciclos por segundo, o simplemente Hertz.

La frecuencia es una medida de la cantidad de veces que un evento o ciclo se repite en un determinado periodo de tiempo. La medición puede hacerse en hercios (Hz) o en ciclos por segundo (CPS). La frecuencia se utiliza para describir todo, desde el ritmo cardíaco humano hasta la velocidad de una onda electromagnética (Chopra, 2014).

$$[Tn] = s / ciclos = 1 / Hertz$$
 (4)

#### 2.2.1.1.5 **Ductilidad**

La ductilidad de un sistema estructural puede medirse por su capacidad para sufrir deformaciones superiores a sus límites elásticos. La definición más tradicional de esta magnitud es la división obtenida entre el desplazamiento máximo alcanzado por el sistema y el desplazamiento de inicio de fluencia (García, 1998).

$$U = uD \max/uy \tag{5}$$

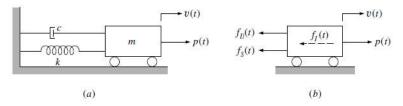
$$[U] = adimensional$$

Como se puede apreciar de la definición de ductilidad, esta magnitud carece de unidades, por lo que se dice adimensional.

#### 2.2.1.2 Ecuaciones de Movimiento

#### 2.2.1.2.1 Grado de Libertad

El número de vectores linealmente independientes que deben estar presentes para proporcionar una especificación completa de un sistema estructural tanto en el espacio como en el tiempo es igual al número de grados de libertad que posee un sistema estructural (García, 1998).


## 2.2.1.2.2 Equilibrio dinámico

El equilibrio dinámico es un concepto utilizado en mecánica que se refiere a un estado en el que cada una de las fuerzas que actúan sobre un sistema equilibra a las demás. En este estado, el sistema no se mueve, pero está sujeto a cambios externos. Por

ejemplo, un péndulo en equilibrio dinámico está sujeto a la fuerza de la gravedad, pero no se mueve. El principio de D'Lambert se refiere a la ley que establece que nunca hay diferencia entre la cantidad de luz que entra en una superficie y la que sale de ella. Esta ley se aplica en muchas áreas de la física, desde la óptica hasta la mecánica. De acuerdo con el principio de D'Lambert. Esto significa que el sistema se mantiene estable y no se mueve (Chopra, 2014).

Ecuación de movimiento del sistema dinámico básico

**Figura 2**Sistema de 1 Grado de Libertad Idealizado.



Nota. Clough & Penzien. (2003)

En la Figura 2, la ecuación se formula expresando directamente el estado en el que todas las fuerzas que actúan sobre la masa están en equilibrio empleando el principio de d'Alembert, por otra parte, las fuerzas que actúan en la dirección del grado de libertad del desplazamiento son la carga aplicada, denotada por p(t), así como las tres fuerzas opuestas que surgen como consecuencia del movimiento, es decir, la fuerza de inercia fI(t), la fuerza de amortiguamiento fD(t) y la fuerza del resorte fS(t) (Clough & Penzien, 2003).

La Ecuación 1, de movimiento es el equilibrio de estas fuerzas dado por

$$fI(t) + fD(t) + fS(t) = p(t)$$
(6)

Las fuerzas del lado izquierdo de esta ecuación es función del desplazamiento v(t) o de una de sus derivadas temporales. El sentido positivo de estas fuerzas se ha elegido deliberadamente para que se corresponda con el sentido de desplazamiento negativo para que se opongan a una carga aplicada positiva (Clough & Penzien, 2003).

Según el principio de d'Alembert, Si se supone un mecanismo de amortiguación viscoso, la fuerza de inercia es igual al producto de la masa y la aceleración, la fuerza de amortiguación es igual al producto de la constante de amortiguación c, la velocidad, y la fuerza elástica es igual al producto de la rigidez del resorte y el desplazamiento.

$$fI(t) = m \ddot{v}(t) \tag{7}$$

$$fD(t) = c \dot{v}(t) \tag{8}$$

$$fS(t) = k v(t)$$
 (9)

Cuando la Ecuación 7, Ecuación 8 y Ecuación 9 se introducen en la Ecuación 6, a continuación, se muestra la ecuación de movimiento para un sistema con un grado de libertad:

$$m \ddot{v}(t) + c \dot{v}(t) + k v(t) = p(t)$$
 (10)

Para considerar un procedimiento de formulación alternativo, se debe desarrollar esta misma ecuación de movimiento a través de un enfoque de trabajo virtual. Si a la masa se le da un desplazamiento virtual  $\delta v$ , el trabajo total realizado por el sistema de fuerzas en equilibrio en la Figura 2 debe ser igual a cero, como se muestra en

$$\left[ -fI(t)\delta v - fD(t)\delta v - fS(t)\delta v + p(t) \right] \delta v = 0$$
 (11)

donde los signos negativos resultan del hecho de que las fuerzas asociadas actúan en sentido contrario al del desplazamiento virtual. Reemplazando la Ecuación 7, Ecuación 8 y Ecuación 9 en la Ecuación 11 y al factorizar  $\delta v$  se obtiene

$$\left[ -m \ddot{v}(t) - c \dot{v}(t) - k v(t) + p(t) \right] \delta v = 0$$
 (12)

Ya que  $\delta v$  no es cero, la cantidad entre paréntesis en esta ecuación debe ser igual a cero, en este caso se aplica la misma ecuación de movimiento descrita en la Ecuación 10.



### 2.2.1.3 Vibración Libre

### 2.2.1.3.1 Para un grado de libertad

El movimiento sin restricciones de un sistema estructural se logra cuando las cargas externas que originaron el movimiento cesan, y entonces en el sistema empiezan las conocidas oscilaciones naturales de todo sistema estructural. Tomando en cuenta las ecuaciones del movimiento mostradas anteriormente, se tendría que:

$$M\ddot{x} + C\dot{x} + Kx = 0 \tag{13}$$

Es usual que cuando un sistema está en vibración libre, se omita el termino referido al amortiguamiento, pues este es usualmente pequeño, obteniendo la siguiente ecuación diferencial:

$$M\ddot{x} + Kx = 0 \tag{14}$$

$$\ddot{x} + \omega^2 x = 0 \tag{15}$$

### 2.2.1.4 Vibración Libre amortiguado

# 2.2.1.4.1 Vibración Libre en varios grados de libertad

Cuando se tiene un sistema de osciladores mecánicos conectados de alguna forma, mediante elementos de rigidez, se trata de una generalización de un sistema con un grado de libertad, que da lugar a un sistema con numerosos grados de libertad. A continuación, se representa un sistema de este tipo en forma de sistema de ecuaciones diferenciales.

$$M\ddot{x} + C\dot{x} + Kx = -Ja_{\sigma} \tag{16}$$

Donde;

M : Es la matriz de masas del sistema

C : Es la matriz de coeficiente de amortiguamiento

*K* : Es la matriz de rigidez del sistema.

 $-a_g$ : Es el vector de aceleraciones del terreno.

J : Es la matriz de correspondencia

La capacidad de describir y predecir el comportamiento de un sistema de ecuaciones diferenciales es posible gracias al sistema de ecuaciones diferenciales que aquí se describe, cuando está sometido a un conjunto de aceleraciones de terreno descrito por el vector de aceleraciones del terreno. En el caso de que se desee un sistema libre de fuerzas, el sistema de ecuaciones diferenciales que describe el movimiento tiene la misma la forma de la Ecuación 13.

## 2.2.1.4.2 Sistemas sin amortiguamiento

Es posible simplificar aún más el sistema presentado, asumiendo que en el caso de vibraciones libres el amortiguamiento puede ser ignorado para periodos de tiempo pequeños, obteniendo el sistema de vibración libre mostrado en la Ecuación 14.

### 2.2.1.4.3 Frecuencias y modos de vibración naturales

Para resolver el problema de los valores y vectores propios, primero hay que resolver el sistema de ecuaciones diferenciales de primer orden que describen la vibración libre, como se muestra a continuación:

$$M\ddot{x} + Kx = 0$$

$$x = A\operatorname{sen}(\omega t + \delta)$$
(17)

Sustituyendo, se tiene:

$$MA\omega^{2}\operatorname{sen}(\omega t + \delta) + KA\operatorname{sen}(\omega t + \delta) = 0$$
(18)

$$(\mathbf{M}\omega^2 + K)A = 0 \tag{19}$$

La solución de este sistema permite obtener los autovalores y vectores propios del sistema, las que muestran las distintas formas en que puede vibrar la estructura estudiada.

### 2.2.1.4.4 Matriz Modal

Un arreglo espacial de los vectores modales nos arroja la matriz de modos del sistema o la actriz modal, de la siguiente forma:

$$\begin{pmatrix} F_{11} & F_{12} & \dots & F_{1n} \\ F_{21} & F_{22} & \dots & F_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ F_{n1} & F_{n2} & \dots & F_{nn} \end{pmatrix}$$
(20)

### 2.2.1.4.5 Ortogonalidad en los modos

La ortogonalidad de las formas de modo es una propiedad que nos dice que el producto de las formas de modo se anula, siempre que los índices correspondientes sean iguales a cero, dicho de otra forma:

$$Fi *TM *Fi = 1 \tag{21}$$

$$Fi*TM*Fi=0 (22)$$

# 2.2.1.4.6 Interpretación de la ortogonalidad modal

La ortogonalidad de los modos de vibración puede ser entendida en el sentido de la independencia lineal de las formas de modo, y que, por tanto, este sistema de vectores puede ser usado como una base del sistema, que permita el desacoplamiento del sistema de ecuaciones diferenciales.

### 2.2.1.4.7 Sistemas con amortiguamiento

En el caso de los sistemas más generales, aquellos con amortiguamiento estructural presente, estos deberán tener en cuenta para su predicción, el amortiguamiento estructural mostrado en la Ecuación 13.

La solución de este tipo de sistemas puede hacerse considerando la matriz exponencial, en este trabajo no se consideran los desarrollos correspondientes, por estar fuera del alcance del trabajo de investigación.

### 2.2.1.5 Vibración forzada

### 2.2.1.5.1 Vibración forzada amortiguada

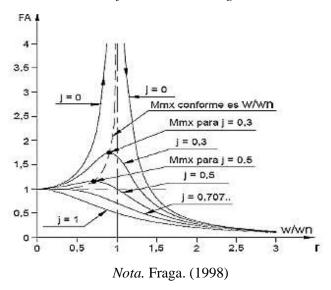
El siguiente grupo de ecuaciones diferenciales describe la vibración forzada de un sistema estructural, donde los términos que la componen se han definido previamente.

$$M\ddot{x} + C\dot{x} + Kx = f(t) \tag{23}$$

Para un grado de libertad



En el caso de un oscilador con un grado de libertad, tenemos una ecuación diferencial de segundo orden, como se ilustra a continuación:


$$M\ddot{x} + C\dot{x} + Kx = f \tag{24}$$

Factores de amplificación dinámica

La relación entre la respuesta dinámica de un oscilador con un grado de libertad y la respuesta dinámica de un oscilador con un grado de libertad es el factor de amplificación dinámica., y su correspondiente respuesta máxima, como se define a continuación:

$$FAD = Rd\max / \operatorname{Re}\max \tag{25}$$

**Figura 3**Factor de amplificación dinámica, en función del amortiguamiento.



Ecuación de movimiento, para una estructura con excitación de base

$$M\ddot{x} + C\dot{x} + Kx = -Ja \tag{26}$$

### Para varios grados de libertad

Arriba se han mostrado las ecuaciones de movimiento de un sistema que posee varios grados de libertad, por lo que ya no se repiten aquí; sin embargo, es importante mencionar que se debe hablar del amortiguamiento en el caso de los sistemas de varios grados de libertad. Esto es así, La amortiguación no puede expresarse de ningún modo



en función de la geometría o de las cualidades dinámicas de un sistema estructural. A continuación, se muestran dos formulaciones, muy usadas en la práctica.

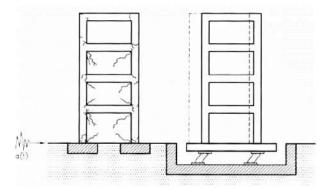
Amortiguamiento de Rayleigh

El amortiguamiento de Rayleigh, generalmente se acepta que es la combinación lineal de la matriz de masa y la matriz de rigidez del sistema, tal como se muestra a continuación:

$$C = aM + Bk \tag{27}$$

Amortiguamiento de Caughey

Por otro lado, el amortiguamiento de Caughey, permite considerar y filtrar amortiguamientos en ciertas frecuencias, de acuerdo con la siguiente expresión:

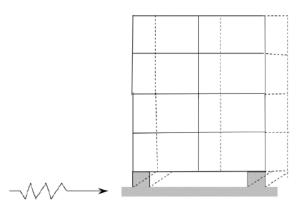

$$C = a_0 / 2w + a_1 w / 2 (28)$$

### 2.2.2 Definición de Aislamiento Sísmico.

Como el nombre implica, la aislación sísmica es un proceso que permite una reducción significativa de la interacción horizontal y vertical entre una estructura y el suelo. Esto suele realizarse construyendo una interfaz entre la superestructura de una estructura y sus cimientos. Un sistema de aislamiento sísmico es un término utilizado para describir esta interfaz, y ahora hay una gran variedad de dispositivos disponibles que están específicamente diseñados para ello. (Skinner, 1998 y Kelly, 2002).

#### Figura 4

Diferenciación entre las estructuras con aislamiento sísmico y las estructuras con una base fija.




Nota. Adaptado de CDV Ingeniería Antisísmica, s.a., (https://www.cdvperu.com/)

Una representación gráfica de las diferencias entre las respuestas similares de dos edificios se muestra en la Figura 4, la primera con una base estable (según las normas tradicionales), y la segunda con una base independiente. Como puede verse, cuando el efecto de un sismo, representado por la aceleración horizontal del terreno, alcanza una estructura, la energía introducida por el sismo en la estructura es absorbida directamente por el sistema de resistencia, formado por pilares, placas y vigas. Por otro lado, cuando se construye una estructura aislada en la base, el efecto del terremoto se concentra únicamente en el sistema de aislamiento sísmico, lo que es evidente debido al alto grado de flexibilidad que demuestra el sistema de aislamiento sísmico.

Figura 5

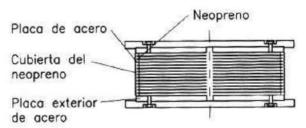
El comportamiento de una única estructura durante un evento sísmico.



Nota. Adaptado de CDV Ingeniería Antisísmica, s.a., (https://www.cdvperu.com/)

Para que el aislamiento tenga éxito, el sistema de aislamiento debe absorber la mayor parte de la energía. Esto indica que la relación de rigidez debe ser tal que la rigidez de la parte superior del sistema de aislamiento, que denominaremos superestructura, debe ser significativamente mayor que la rigidez del sistema de aislamiento. Como consecuencia de la realidad mencionada, el movimiento de la estructura será análogo al de un cuerpo duro que se desplaza sobre una base extremadamente flexible, como se ve en la Figura 5.




### 2.2.3 Tipos de Sistemas de Aislamiento Sísmico

### 2.2.3.1 Aisladores De Goma (RB).

Este tipo de aislador está compuesto de caucho. La Figura 6 representa una vista en sección de un aislador de caucho típico, en la que se aprecian claramente los componentes más comunes, como las placas de acero y una cubierta de neopreno.

### Figura 6

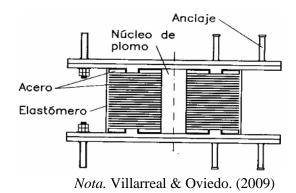
Un aislante de goma se ha cortado en secciones con fines de ilustración. (Rubber Bearing).



Nota. Villarreal & Oviedo. (2009)

#### 2.2.3.2 Aislador De Goma De Alto Amortiguamiento (HRB).

En muchos casos, estos aisladores son idénticos a los mostrados en la sección anterior; sin embargo, la goma de la que están hechos ha sido modificada de manera que la amortiguación intrínseca del material aumente, desde casi cero en el caso de la goma natural hasta valores del 15% de la relación de amortiguación crítica en el caso de la goma sintética.

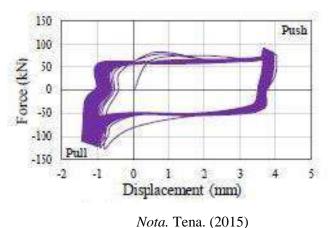

### 2.2.3.3 Aisladores De Goma Con Núcleo De Plomo (LRB).

Estos aisladores se utilizan para proteger estructuras vitales. El caucho es un material plástico, lo que significa que es capaz de recuperarse de cualquier deformación generada por una carga externa. Es crucial darse cuenta de que el caucho es una sustancia plástica; esto implica que es capaz de recuperarse de todas las deformaciones. La Figura 7 muestra los aislantes con núcleo de plomo, que no son más que caucho al que se ha añadido un núcleo de plomo.

### Figura 7

Un aislante de goma con un núcleo de cobre se muestra en la sección transversal. (Lead Rubber Bearing).






Sin embargo, esto no implica que el comportamiento mecánico del acero sea lineal; de hecho, es bien conocido que el acero tiene un comportamiento no lineal, esto indica que la relación entre las fuerzas que se aplican y los desplazamientos que se obtienen no sigue el patrón de magnitudes proporcionales que se observa con otros tipos de materiales.

En lo que respecta al núcleo de plomo, se considera que esta sustancia metálica tiene un alto grado de ductilidad. La ductilidad se describe como la capacidad de algunos materiales para deformarse más allá de su límite de fluencia sin sufrir una pérdida importante de resistencia o durabilidad. La Figura 8 ilustra una curva de histéresis típica de una muestra de plomo. Es esencial señalar que el gráfico que aquí se muestra corresponde a una muestra concreta; a pesar de ello, resulta instructivo para demostrar que el cobre es un material que produce enormes enlaces de histéresis y, en consecuencia, permite disipar una cantidad considerable de calor.

Figura 8

Curvas que describen el comportamiento de una barra de plomo.



En comparación con los aisladores de goma convencionales, la combinación de estos dos materiales permite aumentar significativamente la tensión de flujo del



dispositivo, lo que constituye una ventaja de la combinación, lo que a su vez permite una mayor disipación de energía en la práctica.

El comportamiento histerético de los aisladores LRB se caracteriza por su capacidad de absorber y almacenar energía durante los ciclos de trabajo. Esta energía se libera gradualmente a medida que el material absorbe la carga axial. Esta propiedad es muy útil para proteger equipos eléctricos de los cambios en la carga axial que se producen durante su funcionamiento. Los aisladores LRB también son conocidos por ser capaces de soportar cargas axiales muy elevadas sin sufrir roturas o desgaste. Esta característica los hace adecuados para su uso en lugares donde los equipos eléctricos están expuestos a condiciones ambientales extremas. Además, los aisladores LRB tienen una excelente resistencia al fuego y a la corrosión, lo que los hace ideales para su uso en aplicaciones en exteriores. Esta resistencia se debe a que el material se comporta de forma diferente cuando se somete a cargas diferentes. Por ejemplo, el material se endurece cuando la carga aumenta, lo que aumenta su resistencia y su durabilidad.

Figura 9

Aislador de goma típico a un conjunto de fuerzas externas típicas es lo que consiste este experimento.

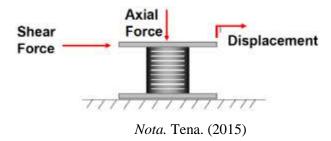
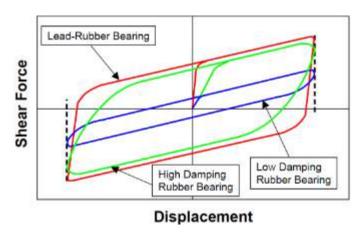
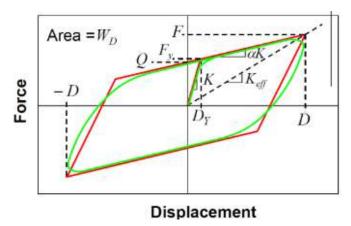




Figura 10

Los aisladores de goma con un núcleo de plomo y otros materiales similares muestran un comportamiento cíclico.




Nota. Symans. (2015)

Los aisladores sísmicos LRB (Restraint Bearing) son dispositivos diseñados para reducir el daño causado por terremotos. Estos aisladores, también conocidos como aisladores de frenado o aisladores de retención, están diseñados para moverse de forma cíclica durante un terremoto. Esto se debe a que están diseñados con una combinación de resortes, amortiguadores y elementos elásticos que absorben y disipan la energía sísmica. Durante un terremoto, el aislador se mueve cíclicamente, reduciendo la amplitud de las ondas sísmicas y disminuyendo el daño a la estructura. Los aisladores sísmicos LRB también ofrecen una resistencia adicional a los movimientos laterales y verticales durante un terremoto, lo que los hace especialmente útiles para estructuras como edificios, puentes, presas y equipos industriales. Estos aisladores tienen una vida útil de hasta 50 años, lo que los hace una excelente opción para la protección sísmica.

Figura 11

Modelización del comportamiento cíclico de los aisladores de goma y las principales características de estos materiales.



Nota. Symans. (2015)

Existe una correlación entre el comportamiento histerético de los aisladores de caucho con su capacidad de absorber y almacenar energía durante los ciclos de trabajo. Esta propiedad los hace ideales para su uso en equipos electrónicos sometidos a carga inercial. Se puede utilizar un modelo bilineal para crear una representación del comportamiento histerético de los aisladores de caucho. Un modelo bilineal es una representación matemática de un material que se comporta de forma diferente en función de la carga aplicada. Esta representación es útil para predecir el comportamiento de los aisladores de goma cuando se someten a carga axial. El modelo bilineal puede representar la forma en que el material se comporta cuando la carga aumenta o disminuye.

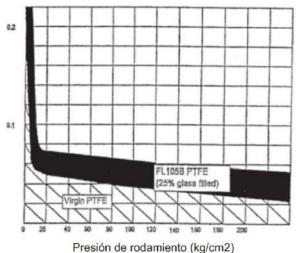
En el modelo bilineal, el comportamiento histéretico de los aisladores de goma se representa a través de dos curvas. Estas curvas muestran la relación entre el esfuerzo mecánico aplicado y el alargamiento del material. Estas curvas muestran que cuando la carga aumenta, el material se endurece y su alargamiento disminuye. Esta representación matemática del comportamiento histéretico de los aisladores de goma es útil para predecir el comportamiento de los materiales en condiciones de carga axial. Esto ayuda a los ingenieros a diseñar equipos eléctricos con aisladores de goma que sean capaces de resistir cambios en la carga axial durante su funcionamiento.

#### 2.2.3.4 Deslizador (Slide Bearings).

Los deslizadores son dispositivos de amortiguamiento que se basan en la fricción de un elemento superior y uno inferior. En un deslizador se tendrán dos placas de acero inoxidable puro. El elemento superior, por lo general, posee una mayor dimensión que el inferior, debido a la cantidad de movimiento anticipado. Para el inicio de su funcionamiento, la intensidad de la fuerza producida por el sismo debe de ser mayor que la fuerza de fricción del aislador.

Los deslizadores pueden soportar pesos verticales, pero ofrecen poca resistencia cuando se empujan hacia los lados. Éstos se usan generalmente con aisladores elastoméricos para optimizar el sistema de aislamiento (Dynamic Isolation Systems Inc., 2007).

Entre algunas ventajas que pueden tener son que al tener un diseño simple y de fácil fabricación e instalación lo convierten en una unidad rentable. Dado que el

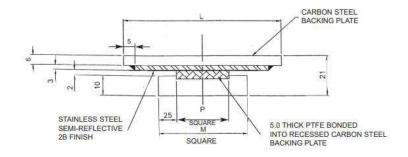



coeficiente de fricción de la superficie de apoyo es siempre el mismo, no suele ser necesario realizar un mantenimiento periódico de los propios cojinetes.

El coeficiente de fricción se verá afectado por una amplia variedad de factores, como la presión, la velocidad de deslizamiento y la temperatura, entre otros. Aunque se suele hallar coeficientes entre 0.02 a 0.2, dependerá de la superficie y de la prueba a la que se someta el dispositivo (Carpenter & Paterson Ltd, 2015).

Figura 12

Coeficiente de fricción - Efecto de Carga en un deslizador.



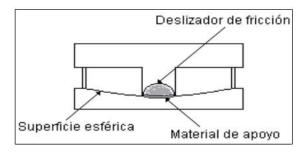

(Nota: PTFE virgen = 70 kg/cm2 de capacidad de carga

Nota. Carpenter & Paterson Ltd. (2015)

A continuación, se muestra una vista de perfil de los componentes de un deslizador según el catálogo de (Carpenter & Paterson Ltd, 2015):

**Figura 13**Sección transversal de un Deslizador.




*Nota.* Carpenter & Paterson Ltd. (2015)

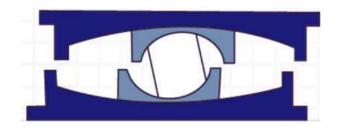


### 2.2.3.5 Aisladores De Fricción Simple

Un aislador sísmico de fricción simple es un dispositivo de amortiguamiento diseñado para reducir las vibraciones producidas por terremotos. Está compuesto por dos superficies paralelas, generalmente metálicas, unidas por un material elástico como caucho o goma. Cuando el edificio se ve sometido a sacudidas sísmicas, el material elástico absorbe la energía y reduce la cantidad de vibración que llega al resto del edificio. Esto reduce la cantidad de daños ocasionados por el sismo.

Figura 14
Aisladores típicos de fricción simple.



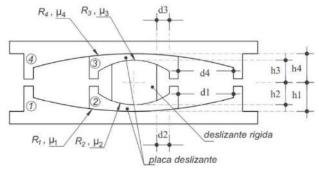

Nota. Zayas, Low & Mahin. (1987)

La Figura 14 representa las partes más significativas de este tipo de dispositivo; algunas de estas partes, como la placa de conexión, la placa cónica o la superficie esférica, etc.

### 2.2.3.6 Aisladores de Triple Fricción

Un aislador sísmico de triple péndulo de fricción es un dispositivo mecánico diseñado para atenuar el efecto de los movimientos sísmicos en una estructura. Consiste en tres péndulos unidos entre sí con pasadores de fricción, que se montan en una plataforma.

**Figura 15**Aislador de triple péndulo friccional.

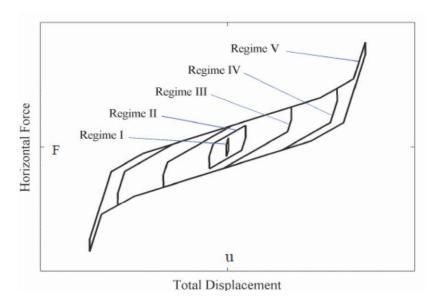



Nota. Earthquake Protection Systems.

Los péndulos están conectados a la estructura a través de unas barras de acero. El dispositivo se diseña para permitir que los péndulos se muevan libremente durante los terremotos, reduciendo las fuerzas trasmitidas a la estructura. Esto se logra gracias a la fricción entre los pasadores y los péndulos, que reduce la velocidad de oscilación. Además, los péndulos absorben la energía sísmica y la disipan en forma de calor.

Figura 16

Características típicas del aislador de triple péndulo de fricción.




Nota. Aguiar et. al. (2014)

Las curvas de carga-desplazamiento de los aisladores sísmicos de triple péndulo de fricción muestran cómo estos aisladores se comportan bajo cargas de diferentes magnitudes. Estas curvas muestran que los aisladores tienen un comportamiento lineal bajo cargas pequeñas. Esto significa que cuando se aplica una carga pequeña, el desplazamiento es proporcional a la carga. Sin embargo, cuando se aplica una carga más grande, el desplazamiento se reduce. Esto se debe a la fricción entre los elementos del aislador. Esta fricción reduce el desplazamiento cuando se aplica una carga más grande. Esta curva también muestra que los aisladores sísmicos de triple péndulo de fricción tienen una excelente resistencia a la carga. Esto significa que los aisladores pueden resistir cargas de gran magnitud sin que se produzcan daños en la estructura.

#### Figura 17

Regímenes del comportamiento cíclico de un aislador de triple péndulo de fricción.



Nota. Constantinou et. al. (2015)

Según la explicación que ofrecieron (Fenz y Constantinou, 2015), el Régimen I es un estado en el que los niveles de fuerza lateral crean un movimiento relativo entre las superficies dos y tres, también conocidas como entre las superficies interiores más pequeñas del dispositivo, y esto se puede ver en la Figura 17. Esto se debe a la presencia de una deformación plástica en la superficie exterior del dispositivo, la cual es mayor que la deformación plástica en la superficie interior. Se genera una fuerza lateral como resultado de la diferencia de deformación, y esta fuerza es responsable del movimiento relativo que se produce entre las superficies dos y tres. Las características que definen el Régimen I son un alto nivel de tensión, una alta frecuencia de vibración, una alta resistencia a la fluencia, una baja resistencia al choque y un alto nivel de resistencia a la fatiga. Estos factores, junto con la Figura 18, nos permiten entender mejor cómo funciona el Régimen I. Además, estos factores también nos ayudan a evaluar el rendimiento del dispositivo cuando está expuesto a estas condiciones de operación.

Figura 18

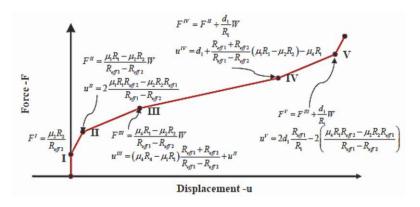
Regímenes de comportamiento del aislador de triple péndulo de fricción.

| Gráfico | Fase | Superficies activadas                     |
|---------|------|-------------------------------------------|
|         | I    | Deslizamiento en las superficies<br>2 y 3 |
|         | П    | Deslizamiento en las superficies<br>1 y 3 |
|         | Ш    | Deslizamiento en las superficies<br>1 y 4 |
|         | IV   | Deslizamiento en las superficies<br>2 y 4 |
|         | v    | Deslizamiento en las superficies<br>2 y 3 |

Nota. Fenz y Constantinou. (2015)

El segundo régimen de comportamiento se caracteriza por el movimiento relativo entre las superficies uno y dos. Este movimiento se caracteriza por la presencia de la superficie dos. Esto ocurre cuando los niveles de tensión de cizallamiento alcanzan un punto en el que el deslizamiento sobre la superficie dos se detiene y comienza a producirse un desplazamiento relativo sobre la superficie uno. Como consecuencia de ello, se genera movimiento en la superficie tres. Cuando el desplazamiento entre las superficies tres y cuatro se detiene y se produce el deslizamiento entre las superficies tres y cuatro, se inicia el tercer régimen de comportamiento. El movimiento relativo que se produce entre la parte superior e inferior del dispositivo es controlado finalmente por las superficies uno y cuatro del dispositivo.

El sistema pasará a su cuarto régimen de funcionamiento cuando se haya alcanzado el movimiento máximo permitido en la superficie uno. En este momento, el movimiento relativo de la superficie tres se ha detenido por completo, mientras que el movimiento de las superficies dos y cuatro aún está en proceso de desarrollo. Por último, una vez alcanzados los límites de desplazamiento de las superficies uno y cuatro, mientras que en las superficies dos y tres se ha producido deslizamiento, se ha cumplido el régimen cinco de comportamiento del dispositivo.


Cabe destacar que, una vez alcanzados los límites máximos de desplazamiento, los niveles de fuerza lateral necesarios para alcanzar niveles adicionales de desplazamiento aumentan significativamente. Esto es algo a tener en cuenta. Esto se

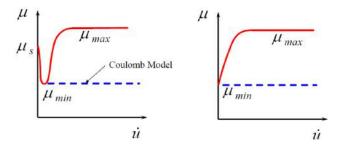


puede apreciar en la Figura 19. Esto demuestra el gran aumento de fuerza lateral que se requiere para lograr mayores niveles de desplazamiento.

Los cinco regímenes de comportamiento del dispositivo son completamente diferentes entre sí, cada uno con sus propias características en cuanto a movimiento relativo. Como consecuencia, esto conduce a una variedad de comportamientos distintos con respecto a las cantidades de fuerza lateral que son necesarias para lograr diversos grados de desplazamiento. Por este motivo, el dispositivo puede resultar útil a la hora de elegir la configuración de un sistema de triple fricción.

**Figura 19**Regímenes del comportamiento cíclico de un aislador de triple péndulo de fricción.




Nota. Constantinou et. al. (2015)

Otra característica importante de los aisladores de péndulo de fricción triple es que requieren niveles crecientes de fuerza lateral para lograr los mismos niveles de desplazamiento en el caso de un terremoto que supere los niveles previstos por el diseño. En caso de que se produzca un terremoto de magnitud superior a la prevista en el diseño, el aparato presentado necesitará mayores niveles de fuerza lateral para producir los mismos niveles de desplazamiento.

Por último, es interesante investigar la relación entre el coeficiente de fricción y la velocidad a la que se aplica la carga lateral, debido simplemente a que los niveles de fuerza cortante lateral están exactamente relacionados con este parámetro. Como se muestra en la Figura 20, es posible demostrar que el coeficiente de fricción es, en general, de magnitud variable debido a que su magnitud depende en gran medida de la velocidad a la que se aplica la carga.

Figura 20

Relación entre el coeficiente de fricción y la velocidad de aplicación de la carga lateral.

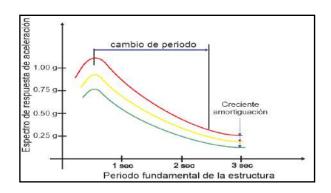


Nota. Fenz y Constantinou. (2015)

El gráfico ilustra claramente cómo varía el coeficiente de fricción en función de la velocidad a la que se aplica una carga. A medida que la velocidad aumenta, el coeficiente de fricción disminuye, comenzando con el bien conocido coeficiente de carga estática y llegando a un valor mínimo en un nivel específico de velocidad de aplicación de la carga. Luego, el coeficiente de fricción comienza a aumentar hasta alcanzar un valor casi constante, que se conoce como u (max) en la mayoría de los casos.

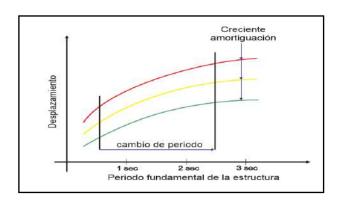
Es importante entender el comportamiento de la fricción para poder aplicarlo en la ingeniería. El modelo descubierto experimentalmente es diferente al modelo de Coulomb, que afirma que, para velocidades altas, el coeficiente de carga es mucho más pequeño que el coeficiente de carga estática y que es constante, denominado u (min). Esto significa que, para aplicar el coeficiente de fricción en la ingeniería, es necesario utilizar un modelo simplificado que solo considera los coeficientes mínimos o moderados, y los coeficientes máximos o de grandes velocidades.

Esto nos enseña la importancia de conocer los límites de la fricción para aplicarla correctamente en la ingeniería. Es necesario entender los límites de la fricción para poder tomar decisiones acertadas y evitar problemas que podrían resultar de la aplicación inadecuada del coeficiente de fricción. A la hora de construir un sistema mecánico, todo ingeniero debe tener esto en cuenta. El conocimiento de la fricción es una herramienta esencial para poder predecir el comportamiento de los sistemas mecánicos.




#### 2.2.4 Efecto Del Aislamiento Sísmico

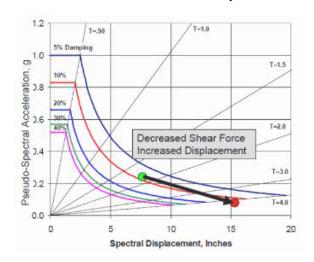
Aumentar la resistencia de los edificios a las sacudidas causadas por los terremotos es uno de los objetivos del enfoque conocido como aislamiento sísmico. Para lograr este objetivo, se utilizan dispositivos de aislamiento sísmico que aíslan la estructura del suelo en el que está situada. El periodo esencial de la estructura se alargará como consecuencia directa de este aislamiento, lo que en última instancia hará que la estructura posea un mayor grado de adaptabilidad. Debido a ello, se produce un aumento de los desplazamientos espectrales, lo que contribuye a mejorar la resistencia de la estructura a los efectos de los terremotos. Además, el aislamiento sísmico puede reducir la magnitud de los daños que un terremoto puede causar en las estructuras. Esto se debe a que la mayor flexibilidad de la estructura reduce la cantidad de energía que se transfiere a la estructura durante el terremoto. En conclusión, el aislamiento sísmico tiene un gran impacto en la resistencia de las estructuras frente a los terremotos, dando lugar a una mayor flexibilidad y resistencia, ver Figura 21.


Figura 21

Efecto del aislamiento sísmico en la aceleración espectral.



Nota. Dynamic Engineering Systems.


**Figura 22** *Efecto del aislamiento sísmico en el desplazamiento espectral.* 



Nota. Dynamic Engineering Systems.

La proyección de la respuesta sísmica en un espacio ADRS es un método adicional que puede utilizarse para observar el efecto del aislamiento sísmico. Un espacio ADRS es un espacio en el que los componentes del eje horizontal representan desplazamientos espectrales y los componentes del eje vertical representan aceleraciones espectrales, respectivamente.

**Figura 23** *Efecto del aislamiento sísmico en estructuras visto en un espacio ADRS.* 



Nota. Symans. (2015)

De acuerdo con Symans (2015), la aislación sísmica en la base de una estructura proporciona una disminución en la aceleración y los desplazamientos espectrales, mientras que los periodos se incrementan. Esto se puede ver claramente en la Figura 23, donde se muestra el efecto de la aislación sísmica en la base. Esta técnica ha sido ampliamente utilizada por los ingenieros sísmicos para mejorar la seguridad sísmica de las estructuras. Además, también se ha demostrado que la aislación sísmica en la base se puede utilizar para reducir el riesgo de daños en estructuras sísmicas sensibles. Esto



se debe a que la aislación sísmica en la base reduce la aceleración espectral, lo que a su vez aumenta los periodos y reduce los desplazamientos espectrales, lo que reduce el riesgo de daño. Por lo tanto, la aislación sísmica en la base es una herramienta útil para mejorar la seguridad sísmica de las estructuras.

#### 2.2.5 Análisis modal

El análisis modal es una técnica numérica que utiliza como base el espacio de forma modal. Permite desacoplar entre sí las ecuaciones diferenciales del movimiento.

$$x = \sum_{i=1}^{n} \xi_i \theta_i \tag{29}$$

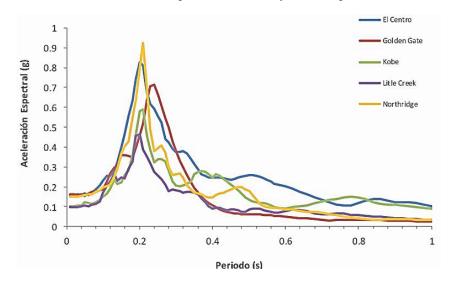
En el espacio de formas modales, es posible escribir la respuesta sísmica como una combinación lineal de las formas modales y posteriormente aprovechar las propiedades de orto-normalidad de las mismas para lograr el desacoplamiento modal.

$$\theta_i * M * \theta_i^T = m_i \tag{30}$$

$$\theta_i * K * \theta_i^T = k_i \tag{31}$$

$$\theta_i * C * \theta_i^T = c_i \tag{32}$$

#### 2.2.5.1 Análisis dinámico modal espectral


El análisis espectral modal dinámico es una técnica que se basa en el desacoplamiento modal y permite utilizar ecuaciones diferenciales desacopladas de los espectros de movimiento y aceleración. Esto se hace con el fin de obtener las respuestas máximas, que posteriormente pueden sumarse mediante técnicas de reacoplamiento como la suma de valores absolutos, la raíz cuadrada de la suma de cuadrados o la combinación cuadrática completa. (Leyton, 2017).

#### Espectros de aceleración

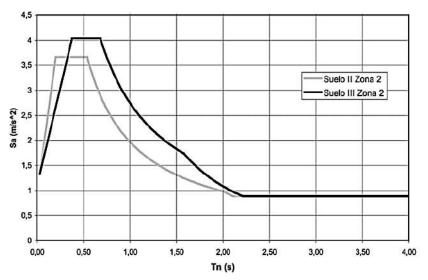
Los espectros de aceleración son funciones que relacionan las máximas aceleraciones que un oscilador con un solo grado de libertad tiene la capacidad de alcanzar un registro de aceleración predeterminado al producirse. Es decir, un espectro de aceleraciones es una propiedad intrínseca un registro de aceleraciones especifico. Un ejemplo de tal grafico se muestra a continuación:

Figura 24

Espectros de aceleración obtenidos a partir de cinco diferentes tipos de sismos.



Nota. Hernández. (2016)


## Espectros de diseño

Un espectro de diseño es el resultado del análisis de un conjunto de espectros de aceleración surgidos de una fuente sismogénica especifica; es decir, un espectro de aceleraciones es una función que relaciona las máximas aceleraciones laterales inducidas por una fuente sismogénica a un oscilador de un grado de libertad.

Por las cualidades que posee, este tipo de espectro puede ser considerado como una función de un determinado lugar, y no de un sismo especifico. El procedimiento para su obtención está estrechamente vinculado con la estadística, pues para su confección se requieren una serie de espectros de aceleración de un periodo de tiempo prolongado, a partir del cual se obtiene un espectro de aceleraciones medio, se considera espectro cuando existe un 50% de probabilidades de que se supere durante dicho periodo de exposición; un espectro más dos desviaciones estándares puede ser considerado como un sismo con una probabilidad de 10% de ser excedido en tal periodo de exposición, y así sucesivamente.

La actual norma de diseño sísmico en el Perú da un rango de aceleraciones de diseño que están determinadas por factores como la zona, el uso, el tipo de suelo y el sistema estructural predominante. La siguiente ilustración muestra un espectro de aceleración de diseño.

**Figura 25** *Espectro de aceleraciones de diseño característico.* 

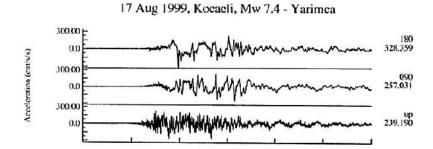


Nota. Hernández. (2016)

### 2.2.5.2 Análisis tiempo historia

El análisis tiempo historia es una técnica numérica que consiste en la integración paso a paso de las ecuaciones diferenciales del movimiento, con la finalidad de obtener el estado futuro de una configuración estructural (Bonilla, 2015).

La integración numérica se hace usualmente mediante las técnicas de integración más conocidas como, aceleración constante, aceleración lineal o el método β de Newmark. Actualmente, existen algoritmos de gran potencia que permite la integración paso a paso, aun en el caso de la consideración de no linealidades, este es el caso, por ejemplo, del algoritmo *faster nonlinear* de ETABS, permite integrar las ecuaciones diferenciales del movimiento, aun en el caso de que existan no linealidades concentradas (Mamani, 2016).


## Registros de aceleración

Los registros de aceleración consisten en una serie de pares de números que, en la mayoría de los casos, miden el tiempo de registro, con respecto de alguna referencia específica y los niveles de aceleración del terreno registrado en tales momentos. Los registros de aceleración pueden medirse en diferentes unidades, siendo las más comunes, m/s², cm/s² (gals), t. Entre otras características típicas de los registros de aceleración, debe mencionarse que usualmente estos se graban en ternas, considerando



las componentes del vector aceleración, los cuales son, componente NS, componente EW, componente V. Un ejemplo de tales componentes se muestra a continuación.

**Figura 26**Registros de aceleración característicos en sus tres componentes.



### Niveles de peligro sísmico

Los niveles de peligro sísmico son una medida de las máximas aceleraciones esperadas en determinados lugares. Usualmente se determinan de forma probabilística, considerando una serie de registros de máximas aceleraciones inducidas en determinado lugar. Como resultado, el peligro sísmico en un lugar determinado se define como un valor que tiene una probabilidad de r por ciento de ser superado en un periodo de tiempo de m años. La actual norma de diseño sísmico en Perú fija el nivel de peligro para la zona costera peruana en 0,45 g, con una posibilidad del 10% de ser superado en un periodo de 50 años. (Reglamento Nacional de Edificaciones, 2018).

**Figura 27** *Mapa de peligro sísmico del Perú.* 



Nota. Reglamento Nacional de Edificaciones. (2018)

# Escalamiento de registros de aceleración

Usualmente, los registros de aceleración obtenidos mediante la medición de fenómenos telúricos naturales tienen ciertos valores de pga (peak ground acceleration) que, en la generalidad de los casos no se condice con los niveles de aceleración máximos establecidos de un estudio de amenaza o de peligro sísmico; es decir, estudios que nos dicen cuál es la máxima aceleración esperada en determinado lugar, de producirse un evento sísmico. En estos casos, es necesario recurrir a un procedimiento matemático conocido como escalamiento de registros de aceleración.

Este proceso consiste en escalar el registro de aceleraciones, de alguna forma, de tal forma que los niveles de peligro arrojados de un estudio específico se condigan con los niveles de aceleración del registro sísmico. Este proceso puede realizarse de forma simple, considerando el escalamiento del pga, y de todas las abscisas de aceleración, de tal forma que el pga y el estudio de aceleración producto de la amenaza sísmica, coincidan.



# 2.3 Hipótesis

### 2.3.1 Hipótesis General

La incorporación de aisladores de Núcleo de Plomo con deslizadores y aisladores de Triple Péndulo Friccionante mejorara la magnitud de los parámetros de Respuesta Sísmica del sistema estructural "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" empleando un análisis sísmico tiempo-historia y análisis dinámico modal espectral según la NTP E.031.

# 2.3.2 Sub-Hipótesis

- La deriva máxima del "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS", obtenidos mediante el análisis dinámico tiempo historia con aisladores sísmicos de núcleo de plomo con deslizadores y triple péndulo friccionante se reducirán en un rango de 60% a 90%.
- 2. Las Fuerzas para la Edificación "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" con incorporación de aisladores de Núcleo de Plomo con deslizadores y aisladores de Triple Péndulo Friccionante, se reducirá en un rango de 60% a 90%, mediante un análisis tiempo-historia y análisis dinámico modal espectral.
- 3. El amortiguamiento para la Edificación "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" con incorporación de aisladores sísmicos de núcleo de plomo con deslizadores y triple péndulo friccionante, incrementara en un rango de 15% a 30%, mediante un análisis tiempo-historia y análisis dinámico modal espectral.
- 4. La aceleración para el sistema estructural "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" en base fija con relación al sistema estructural con la incorporación de aisladores sísmicos de núcleo de plomo con deslizadores y triple péndulo friccionante, se reducirán en un rango de 50% a 90%, empleando un análisis tiempo-historia y análisis dinámico modal espectral.

### 2.4 Variables e indicadores

### 2.4.1 Variable independiente (X)

X1: Movimientos de Base: Son las vibraciones que generan el movimiento de la base del sistema, las cuales son de dos tipos de registros.



X2: Sistema de Protección Sísmica: Conjunto de dispositivos de protección sísmica que se incorpora en el edificio con la finalidad de analizar la respuesta sísmica.

X3: Propiedades Dinámicas: Está relacionado con las propiedades dinámicas de la Estructura y la ecuación de movimiento.

### **Dimensiones**

Movimiento de Base (X1):

- 1. Registros Sísmicos
  - i. Acelerogramas

Sistema de Protección Sísmica (X2):

- 1. Aislador de Núcleo de Plomo
  - i. Cantidad de Aisladores
- ii. Ubicación de los Aisladores
- iii. Diseño de los Aisladores
- 2. Deslizador
  - i. Cantidad de Deslizador
- ii. Ubicación de los Deslizadores
- iii. Diseño del Deslizador
- 3. Aislador de Triple Péndulo Friccionante
  - i. Cantidad de Aisladores
- ii. Ubicación de los Aisladores
- iii. Diseño de los Aisladores

Propiedades Dinámicas (X3):

- 1. Periodo de Vibración
  - i. Tiempo
- 2. Frecuencia de Vibración
  - i. Hertz
- 3. Formas Modales
  - i. Cantidad

# 2.4.2 Variable dependiente (Y)

Espectro de Respuesta (Y1): Para cada espectro de respuesta se toman los valores máximos, que pueden expresarse en desplazamientos, velocidades o aceleraciones, para poder modificar el periodo estructural en un paso posterior.



En este punto, es esencial traer a colación la variable "Espectro de respuesta" su nivel vendría ser "Respuesta Estructural" esta es la más estudiada y analizada dentro de la ingeniería sísmica y estructural, como lo demuestra un gran número de trabajos académicos publicados a escala mundial, como los publicados por (Oviedo, 2006) y (Gatica, 2012).

# Dimensión (Nivel)

Espectro de Respuesta (Y1):

- 1. Respuesta Estructural
  - i. Deriva
  - ii. Fuerza Cortante
  - iii. Factor de Amortiguamiento
  - iv. Aceleraciones.



# 2.4.3 Cuadro de operacionalización de variables.

Tabla 1 Cuadro de Operacionalización de Variables.

| Tipo de<br>variable | Denominación<br>de Variable         | Descripción de Variable                                                                                                                | Nivel                                         | Indicadores                                                                          | Unidad                              | Instrumentos             |           |           |
|---------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------|--------------------------|-----------|-----------|
| Independiente X1    | Movimientos<br>de Base              | Son las vibraciones que generan<br>el movimiento de la base del<br>sistema, las cuales son de dos<br>tipos de registros.               | Registros<br>Sísmicos                         | Acelerogramas                                                                        | Gráfico<br>Aceleración vs<br>Tiempo | Gráficos g vs<br>T       |           |           |
|                     |                                     | Conjunto de dispositivos de                                                                                                            | Aislador de<br>Núcleo de Plomo                | Cantidad de Aisladores<br>Ubicación de los<br>Aisladores<br>Diseño de los Aisladores | Und.                                | Und.                     |           |           |
| Independiente X2    | Sistema de<br>Protección<br>Sísmica | protección sísmica incorporados<br>a la estructura con el objetivo de<br>realizar un análisis de la<br>respuesta del edificio ante los | Deslizador                                    | Cantidad de Deslizador<br>Ubicación de los<br>Deslizador<br>Diseño de los Deslizador | Und.                                | Und.                     |           |           |
|                     |                                     | terremotos.                                                                                                                            | Aislador de<br>Triple Péndulo<br>Friccionante | Cantidad de Aisladores<br>Ubicación de los<br>Aisladores<br>Diseño de los Aisladores | Und.                                | Und.                     |           |           |
|                     |                                     | Está relacionado con las                                                                                                               | Periodo de<br>Vibración                       | Tiempo                                                                               | segundo                             |                          |           |           |
| Independiente X3    | Propiedades<br>Dinámicas            |                                                                                                                                        |                                               |                                                                                      |                                     | Hertz                    | 1/segundo | ETABS v19 |
|                     |                                     | movimiento.                                                                                                                            | Formas Modales                                | Cantidad                                                                             | unidad                              |                          |           |           |
|                     |                                     | Para cada espectro de                                                                                                                  |                                               | Deriva                                                                               | (Adimensional)                      |                          |           |           |
| Dependiente<br>Y1   |                                     | respuesta se toma valores                                                                                                              |                                               | Fuerza Cortante                                                                      | Tonf                                | Hoja Mathcad             |           |           |
|                     | Espectro de<br>Respuesta            | pico estos expresados en aceleraciones                                                                                                 | Respuesta<br>Estructural                      | Factor de<br>Amortiguamiento                                                         | %                                   | y Software<br>ETABS v19. |           |           |
|                     |                                     | para posteriormente modifica el periodo estructural.                                                                                   |                                               | Aceleraciones                                                                        | m/s^2                               |                          |           |           |



# 3. Metodología

### 3.1 Metodología de la investigación

### 3.1.1 Enfoque de Investigación

Según (Hernández et al, 2014), se considera que una investigación es cuantitativa cuando hace uso de la recopilación de datos para probar hipótesis basadas en la medición numérica y el análisis estadístico con el fin de determinar patrones de comportamiento. El método cuantitativo se puede descomponer en pasos y se basa en evidencias. Aunque, por supuesto, podemos reformular algunas de las fases, una etapa siempre va antes de la que le sigue, y no se puede saltar ninguna de las etapas. El orden es estricto.

La presente investigación emplea la recolección de datos a partir de los planos de arquitectura, estructuras, de la edificación "Pabellón Inicial del Colegio San Francisco de Asís", incluyendo cosas como las características primarias de los elementos estructurales, el tipo de edificio, el uso del suelo y el sistema estructural, y luego hacer una evaluación comparativa del sistema estructural con y sin aislantes sísmicos LRB utilizando deslizador y TFP, y así finalmente probar la hipótesis planteada. Por lo expuesto anteriormente la investigación tiene un **Enfoque Cuantitativo**.

### 3.1.2 Nivel de Investigación

En la investigación descriptiva, el método de análisis se utiliza para caracterizar un objeto de estudio o un escenario concreto con el fin de poner de manifiesto sus rasgos y propiedades. Esto puede hacerse para ayudar en la redacción de un informe descriptivo. Cuando se combina con otros criterios de clasificación, ayuda a clasificar, categorizar o sistematizar las cosas que forman parte de la actividad de investigación que se está realizando. Lo que hay que describir para lograr este objetivo es la estructura de los fenómenos y la dinámica de esas estructuras, así como cualquier característica importante de la realidad. (Hernández et al, 2014).

El presente trabajo de investigación describirá las magnitudes de los parámetros de respuesta sísmica de la edificación "Pabellón Inicial del Colegio San Francisco de



Asís", con el propósito de analizar y evaluar mediante un modelamiento estructural, con y sin aislador sísmico de núcleo de plomo. Por lo tanto, la investigación presenta un **Nivel Descriptivo**.

# 3.1.3 Método de Investigación

Según (Hernández et al, 2014), este método de investigación se denomina método de investigación hipotético deductivo, se enfoca en la compresión de un marco teórico, del cual se formularán las denominadas "hipótesis" que serán sometidas a pruebas para demostrar su veracidad o no durante las pruebas desarrolladas como parte de la investigación.

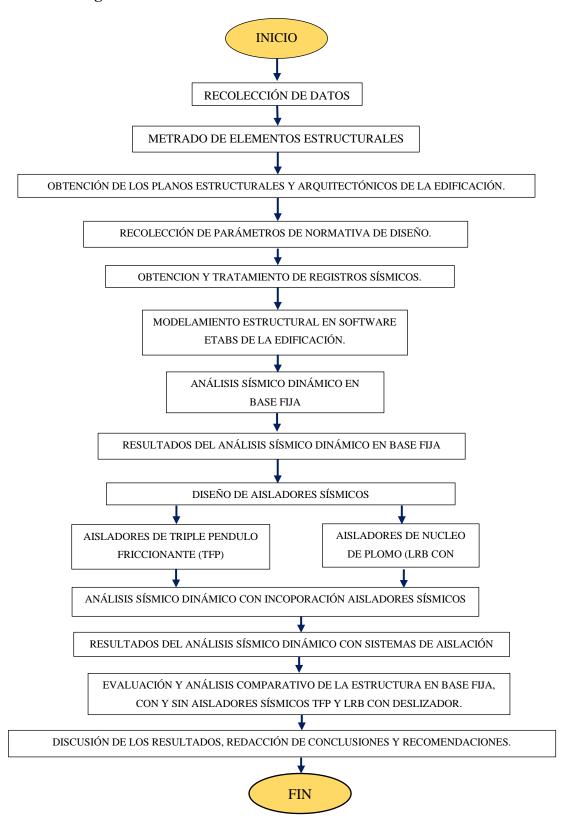
El método de esta investigación parte de una inferencia deductiva para llegar a conclusiones a partir de las hipótesis previamente planteadas; que conduce a la comparación de las magnitudes y atributos del edificio modelado con el sistema estructural actual, y también modelado con la incorporación de aisladores sísmicos de núcleo de plomo con deslizadores y con aisladores de fricción de triple péndulo, ambos como sistemas de protección sísmica en el programa ETABS. El método de investigación que se utilizará se conoce como **Hipotético Deductivo**.

# 3.2 Diseño de la Investigación

### 3.2.1 Diseño Metodológico

En el diseño cuasiexperimental, Los sujetos en estudio pueden asignarse aleatoriamente a los grupos, y en algunos casos puede haber o no un grupo de control. El investigador puede o no ejercer ningún control sobre las variables extrañas. Estos formatos suelen utilizarse para grupos u organizaciones preexistentes (Bernal, 2018).

A continuación, se describen algunos diseños cuasi experimentales. (Bernal, 2018):


- Diseños con un solo grupo, con mediciones realizadas antes y después del tratamiento.
- Diseños de grupos de comparación con equivalencia.
- Diseños con series temporales interrumpidas.



Debido al hecho de que se realiza una comparación entre el sistema estructural existente del edificio y el mismo sistema integrando aisladores sísmicos utilizando un modelado estructural en el software ETABS, esta investigación hace uso de un tipo de diseño **Cuasiexperimental**.



# 3.2.2 Diseño de Ingeniería





### 3.3 Población y muestra

### 3.3.1 Población

# 3.3.1.1 Descripción de la población

En la presente investigación, la estructura del edificio denominada "Pabellón Inicial del Colegio San Francisco de Asís", que se encuentra construida de concreto armado constituye la población de estudio que se examinará.

# 3.3.1.2 Cuantificación de la población

Se considera que la cantidad de elementos incluidos dentro de la población es de una unidad (1), que corresponde a la edificación en estudio y se asume como única según su estructuración y arquitectura.

#### 3.3.2 Muestra

### 3.3.2.1 Descripción de la muestra

La muestra estaría conformada por el único elemento de la población, es decir, la estructura del Pabellón Inicial del Colegio San Francisco de Asís, construido en concreto armado y que presenta un Sistema Estructural Dual.

### 3.3.2.2 Cuantificación de la población

La muestra se define como un conjunto (1), que se trata de la edificación a analizar, empleando un modelo que fue asistido por computador.

### 3.3.2.3 Métodos de muestreo

La muestra del siguiente estudio se considera no probabilística debido a que su selección no dependió de la probabilidad, sino de las características, los criterios y los objetivos del propio estudio (Hernández et al, 2014).

### 3.3.2.4 Criterios de evaluación de la muestra

En la evaluación de la muestra se aplicaron normas técnicas peruanas en consideración a los siguientes tipos de análisis a los que será sometida como parte de esta investigación:

- E.020: Cargas (2020)
- E.030: Diseño Sismorresistente (2020)
- E.031: Aislamiento Sísmico (2019)



### 3.4 Instrumentos

# 3.4.1 Instrumentos de recolección de datos

# 3.4.1.1 Equipos utilizados

a) MEDIDOR LÁSER.

Tabla 2

Características del Medidor Laser.

| Marca                    | BOSH                |
|--------------------------|---------------------|
| Modelo                   | GLM 40 PROFESSIONAL |
| Rango de medición        | 0,15 – 40,00 m      |
| Tiempo medio de medición | < 0,5 s             |

Figura 28

Medidor Laser.



# 3.4.1.2 Recolección de datos en Campo

# Figura 29

Metrado de elementos estructurales.



Figura 30

Metrado de columnas.



**Figura 31** *Metrado de elementos estructurales y arquitectónicos.* 





**Figura 32** *Especificación del Estudio de Mecánica de Suelos* 



Nota. Expediente Técnico de Pabellón Nivel Inicial Colegio San Francisco.

# 3.4.1.3 Metrado de elementos estructurales

# 3.4.1.3.1 Metrado de Vigas

|      | Metrado de elementos estructurales |     |          |         |       |  |  |  |  |  |  |
|------|------------------------------------|-----|----------|---------|-------|--|--|--|--|--|--|
|      | Vigas                              |     |          |         |       |  |  |  |  |  |  |
| Piso | Eje                                | Eje | Longitud | Peralte | Ancho |  |  |  |  |  |  |
|      | m m m                              |     |          |         |       |  |  |  |  |  |  |



# 3.4.1.3.2 Metrado de Columnas

|      | Metrado de elementos estructurales |     |        |         |         |  |  |  |  |  |  |
|------|------------------------------------|-----|--------|---------|---------|--|--|--|--|--|--|
|      | Columnas                           |     |        |         |         |  |  |  |  |  |  |
| Piso | Eje                                | Eje | Altura | Ancho X | Ancho Y |  |  |  |  |  |  |
|      |                                    |     | m      | m       | m       |  |  |  |  |  |  |
|      |                                    |     |        |         |         |  |  |  |  |  |  |
|      |                                    |     |        |         |         |  |  |  |  |  |  |
|      |                                    |     |        |         |         |  |  |  |  |  |  |
|      |                                    |     |        |         |         |  |  |  |  |  |  |
|      |                                    |     |        |         |         |  |  |  |  |  |  |

# 3.4.1.3.3 Metrado de Columnas

|      | Metrado de elementos estructurales                                    |  |   |   |   |   |   |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------|--|---|---|---|---|---|--|--|--|--|--|--|
|      | Placas                                                                |  |   |   |   |   |   |  |  |  |  |  |  |
| Piso | iso Eje Eje Altura Longitud Longitud Longitud Mayor X Mayor Y Menor X |  |   |   |   |   |   |  |  |  |  |  |  |
|      |                                                                       |  | m | m | m | m | m |  |  |  |  |  |  |
|      |                                                                       |  |   |   |   |   |   |  |  |  |  |  |  |
|      |                                                                       |  |   |   |   |   |   |  |  |  |  |  |  |
|      |                                                                       |  |   |   |   |   |   |  |  |  |  |  |  |
|      |                                                                       |  |   |   |   |   |   |  |  |  |  |  |  |
|      |                                                                       |  |   |   |   |   |   |  |  |  |  |  |  |
|      |                                                                       |  |   |   |   |   |   |  |  |  |  |  |  |
|      |                                                                       |  |   |   |   |   |   |  |  |  |  |  |  |
|      |                                                                       |  |   |   |   |   |   |  |  |  |  |  |  |

# 3.4.1.3.4 Metrado de Losa Maciza

|      | Metrado de elementos estructurales |     |         |            |            |  |  |  |  |  |  |
|------|------------------------------------|-----|---------|------------|------------|--|--|--|--|--|--|
|      | Losa Maciza                        |     |         |            |            |  |  |  |  |  |  |
| Piso | Eje                                | Eje | Peralte | Longitud X | Longitud Y |  |  |  |  |  |  |
|      |                                    |     | m       | m          | m          |  |  |  |  |  |  |
|      |                                    |     |         |            |            |  |  |  |  |  |  |
|      |                                    |     |         |            |            |  |  |  |  |  |  |
|      |                                    |     |         |            |            |  |  |  |  |  |  |
|      |                                    |     |         |            |            |  |  |  |  |  |  |
|      |                                    |     |         |            |            |  |  |  |  |  |  |



# 3.4.2 Instrumentos de Ingeniería

- Microsoft Office Word 2021
- Microsoft Office Excel 2021
- Revit 2022
- ETABS v19
- PTC MathCad 8.00
- SeismoSignal
- SeismoMatch
- MathType v7

### 3.5 Procedimientos de Recolección de Datos

### 3.5.1 Revisión Técnica

### 3.5.1.1 Revisión de datos de sitio

En este trabajo de investigación se estudiará el "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" del Cusco, está situado en el corazón del casco antiguo de Cuzco, en una de las vías más importantes de la ciudad, ubicado en calle Nueva Baja 483, del distrito de Cusco, con las coordenadas 13°31'5.21"S -71°59'0.12"O a una elevación de 3430 m.s.n.m.

Figura 33 Ubicación de la edificación.



Nota. Google Earth Pro.

### 3.5.1.2 Revisión de datos de arquitectura

La estructura, que consta de tres niveles, estaba destinada a servir a los fines de una institución educativa cuando se construyó. El edificio ocupa una superficie de terreno de 250,00 m2 y se creó en esta propiedad.

La primera planta, emplazada sobre el terreno, estaba compuesta de divisiones destinadas a salones y pasadizos. La segunda planta está compuesta de tres salones, un área común para el pasillo este consta de un techo de un agua que soportaran un marco de madera que tendrá columnas 18.5 cm x 18.5 cm. El tercer nivel ocupa menos espacio que el segundo y el tercero juntos, pero sigue teniendo tres salones. La única diferencia es que el pasillo entre ellas tiene un tejado a dos aguas construido con teja andina. Estaba previsto que el entresuelo tuviera una altura de 2,55 metros sobre todas las plantas.

**Figura 34**Vista 3D de arquitectónicas de la edificación.





#### 3.5.1.3 Revisión de datos de estructuras

El plan inicial para la construcción de este edificio preveía el uso de un sistema estructural doble de hormigón armado. Este sistema se diseñó suponiendo que el hormigón tendría una resistencia nominal a la compresión de 210 kgf/cm2 y que la armadura de acero tendría un límite elástico nominal de 4200 kgf/cm2.

El sistema estructural estaba formado por dos tipos diferentes de pilares que tenían una sección transversal constante, vigas que tenían una única geometría de sección constante o prismática, losas macizas que estaban reforzadas en una dirección y tenían un espesor de veinte centímetros, y dos losas que tenían un espesor constante.

Los muros no portantes debían construirse con mampostería de ladrillo macizo de arcilla y estaban dispersos sobre las vigas y losas de la estructura. Por otro lado, los muros no estructurales se diseñaron para ser construidos con cuerda en todos los casos.

### 3.5.1.4 Revisión de datos suelo de fundación

Las características del suelo de cimentación se dividieron en las siguientes categorías de acuerdo con los requisitos del Estudio de Mecánica de Suelos, que se derivaron de la información obtenida a partir de los datos recogidos en los Planos de Análisis Estructural:

Tabla 3Revisión de Datos de Fundación.

| Tipo de Suelo                  | Grava Arena            |
|--------------------------------|------------------------|
| Capacidad de Carga (q adm)     | 1.45 kg/cm2            |
| Categoría de la Estructura (U) | 1.50                   |
| Zona Sísmica                   | Zona 2 / Z=0.25        |
| Perfil del Suelo               | Tipo 3                 |
| Factor de Suelo                | S = 1.4                |
| Coeficiente de Respuesta       | Cs= 2.5 x (Tp/T) = 2.5 |
|                                |                        |



### 3.6 Procedimientos de Análisis de Datos

### 3.6.1 Modelos Estructurales

Se presentan los modelos que será analizados en el presente trabajo de investigación:

**Tabla 4** *Modelos Estructurales Analizados.* 

|                       | <b>Modelos Estructurales</b> | Norma | Análisis        |
|-----------------------|------------------------------|-------|-----------------|
| Modelo sin Aisladores | Mod. 1                       |       | Modal Espectral |
| Sísmicos              |                              | Norma |                 |
|                       | Mod. 2                       | E.030 | Tiempo -        |
|                       |                              |       | Historia        |
| Modelo con Aisladores | Mod. 3                       | Norma | Modal Espectral |
| Sísmicos LRB y        |                              | E.031 |                 |
| Deslizadores          |                              |       |                 |
|                       | Mod. 4                       | Norma | Tiempo -        |
|                       |                              | E.031 | Historia        |
| Modelo con Aisladores | Mod. 5                       | Norma | Modal Espectral |
| Sísmicos TFP          |                              | E.030 |                 |
|                       | Mod. 6                       | Norma | Tiempo -        |
|                       |                              | E.031 | Historia        |

### 3.6.1.1 Modelo Sin Aisladores Sísmicos

### 3.6.1.1.1 Análisis Dinámico Modal Espectral

Es necesario revisar la Norma Peruana E.030 para realizar el análisis de la estructura. En esta norma, al Factor de Zona (Z) se le dio un valor de 0.25, al Factor de Suelo (S) se le dio un valor de 1.4, al Coeficiente de Uso (U) se le dio un valor de 1.5, y al Coeficiente de Reducción Sísmica (R) se le dio un valor de 7.

# Irregularidad Torsional

Según (Fahjan, Tuzun, & Kubin), para determinar esta irregularidad mediante un Análisis Dinámico es necesario modificar las características dinámicas de la

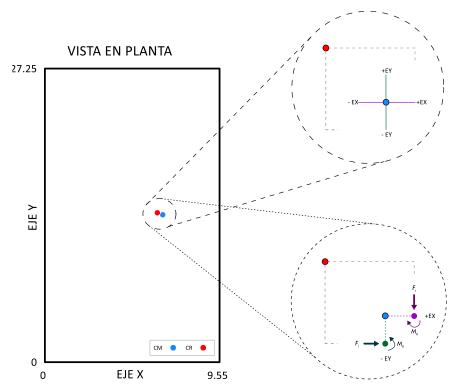


estructura de manera que considere la amplificación dinámica de la torsión accidental, para este procedimiento se debe desplazar la masa en cada piso la distancia requerida por la Norma E.030 (5%). El centro de masa puede desplazarse en cualquier dirección, reduciendo o incrementando los desplazamientos.

Las razones para considerar la excentricidad accidental dentro de los códigos de construcción son:

- Movimiento torsional del suelo.
- Distribución desigual de la masa de carga.
- Variación entre valores calculados y reales de propiedades estructurales.

**Tabla 5**Comparación de desplazamientos mediante el Procedimiento estático y Procedimiento dinámico en dirección X-X.


|       | Dirección X-X |               |       |           |              |       |                          |             |       |  |  |
|-------|---------------|---------------|-------|-----------|--------------|-------|--------------------------|-------------|-------|--|--|
|       | Excentri      | cidad Accide  | ental | Excentri  | cidad Accide | ental | Excentricidad Accidental |             |       |  |  |
|       | Procedi       | imiento estát | ico   | Proceding | niento diná  | mico  | Procedin                 | miento diná | mico  |  |  |
|       |               |               |       | ()        | SX +EY)      |       | (                        | SX -EY)     |       |  |  |
| Piso  | Max Drift     | Avg Drift     | Ratio | Max Drift | Avg Drift    | Ratio | Max Drift                | Avg Drift   | Ratio |  |  |
|       | mm            | mm            |       | mm        | mm           |       | mm                       | mm          |       |  |  |
| Piso3 | 2.621         | 2.295         | 1.142 | 3.672     | 2.766        | 1.327 | 3.859                    | 2.825       | 1.366 |  |  |
| Piso2 | 3.089         | 2.693         | 1.147 | 4.28      | 3.239        | 1.321 | 4.575                    | 3.33        | 1.374 |  |  |
| Piso1 | 1.701         | 1.477         | 1.152 | 2.129     | 1.693        | 1.258 | 2.421                    | 1.766       | 1.371 |  |  |

**Tabla 6**Comparación de desplazamientos mediante el Procedimiento estático y Procedimiento dinámico en dirección Y-Y.

|                                                 | Dirección Y-Y |           |          |                                         |           |         |                                         |           |       |  |  |
|-------------------------------------------------|---------------|-----------|----------|-----------------------------------------|-----------|---------|-----------------------------------------|-----------|-------|--|--|
| Excentricidad Accidental Procedimiento estático |               |           | Procedin | cidad Accido<br>niento dinán<br>SY +EX) |           | Procedi | cidad Accido<br>miento dinán<br>SY -EX) |           |       |  |  |
| Piso                                            | Max Drift     | Avg Drift | Ratio    | Max Drift                               | Avg Drift | Ratio   | Max Drift                               | Avg Drift | Ratio |  |  |
|                                                 | mm            | mm        |          | mm                                      | mm        |         | mm                                      | mm        |       |  |  |
| Piso3                                           | 1.651         | 1.629     | 1.013    | 1.608                                   | 1.572     | 1.023   | 1.651                                   | 1.568     | 1.053 |  |  |
| Piso2                                           | 3.652         | 3.56      | 1.026    | 3.468                                   | 3.393     | 1.022   | 3.652                                   | 3.484     | 1.048 |  |  |
| Piso1                                           | 1.811         | 1.723     | 1.051    | 1.811                                   | 1.66      | 1.091   | 1.664                                   | 1.649     | 1.009 |  |  |

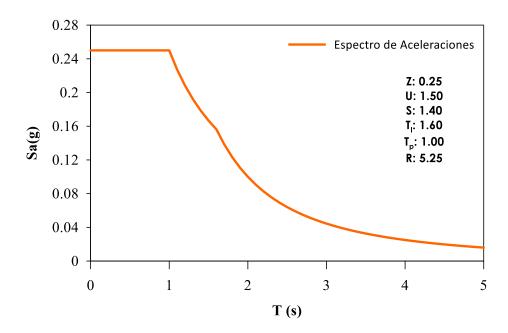


**Figura 35** *Ejemplificación de la incorporación de la Excentricidad Accidental en la Estructura Analizada.* 

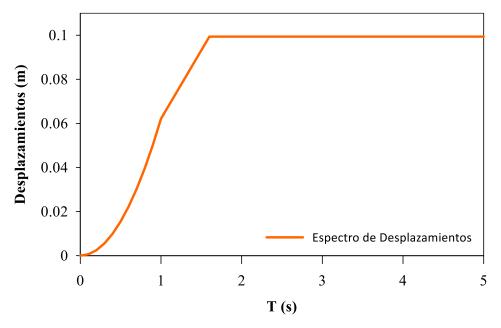


*Irregularidades de la Edificación:* El análisis espectral modal dinámico permitió determinar las anomalías tanto en planta como en altura de la estructura. Los resultados se presentan en el cuadro siguiente.

**Tabla 7** *Resumen de Irregularidades en la Estructura.* 


| Irregularidades En La Estructura                                 |             |
|------------------------------------------------------------------|-------------|
| Irregularidad De Rigidez O Piso Blando                           | No Presenta |
| Irregularidad Extrema De Rigidez                                 | No Presenta |
| Irregularidad De Piso Débil                                      | No Presenta |
| Irregularidad Extrema De Resistencia                             | No Presenta |
| Irregularidad De Masa O Peso                                     | No Presenta |
| Irregularidad Geométrica Vertical                                | No Presenta |
| Irregularidad Discontinuidad De Los Sistemas Resistentes         | No Presenta |
| Irregularidad Discontinuidad Extrema De Los Sistemas Resistentes | No Presenta |
| Irregularidad Torsional                                          | Presenta    |
| Irregularidad Torsional Extrema                                  | No Presenta |
| Irregularidad Esquina Entrante                                   | No Presenta |
| Irregularidad Por Discontinuidad De Diafragma                    | No Presenta |
| Irregularidad Por Sistemas No Paralelos                          | No Presenta |




Aceleración Espectral: Para continuar con el estudio en la dirección horizontal, se utiliza el espectro inelástico de pseudo aceleraciones. Este espectro es descrito por las normas peruanas con la expresión que se presenta a continuación.

$$S_a = \left(\frac{Z * U * C * S}{R}\right) * g \tag{33}$$

**Figura 36**Espectro de respuesta para Diseño de Edificación-E.030 - Pabellón Colegio San Francisco.



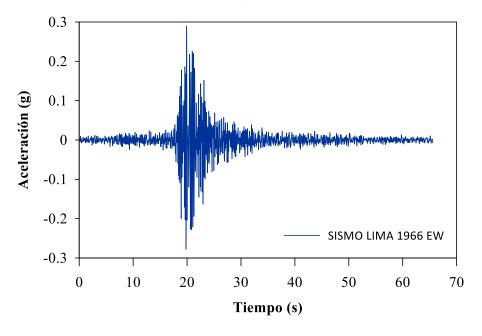
**Figura 37** *Espectro de desplazamientos para la zona de emplazamiento.* 





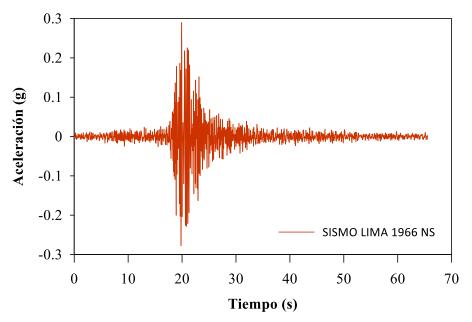
### 3.6.1.1.2 Análisis Dinámico Tiempo Historia

El análisis modal espectral puede complementarse utilizando esta forma de análisis. Para realizar el análisis sísmico dinámico, será necesario emplear un modelo matemático de la estructura. Este modelo deberá tener en cuenta directamente los movimientos histeréticos de los elementos para poder determinar cómo reaccionará la estructura ante un determinado conjunto de datos relativos a la aceleración del terreno.


**Registros de Aceleración:** En lo que se refiere a este modelo concreto, la norma E.030 exige un mínimo de tres pares diferentes de componentes horizontales de aceleración del suelo para realizar el análisis dinámico de la historia temporal. Estos pares deben pasar por un proceso de filtrado y escalado. Además, se trata de los eventos que más se han producido a lo largo de la historia.

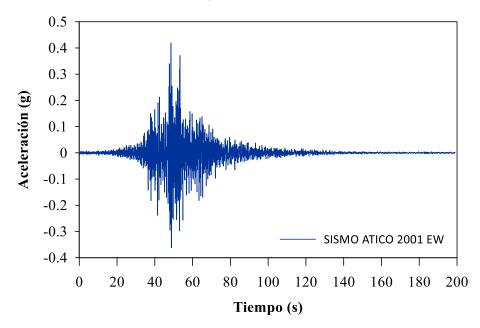
*Modelo de análisis:* Según la norma E.030, se recomienda restringir los grados de libertad en la base y pensar en utilizar un amortiguamiento viscoso máximo que no supere el 5% del amortiguamiento crítico.

Selección de los Registros Sísmicos: En esta investigación, utilizaremos los registros de aceleración que hemos recuperado de la base de datos CISMID-REDACIS:


Registro de Aceleración - Sismo Lima – 1966, Magnitud 8.1 Mw.
 Máxima Aceleración: 268.24 PGA

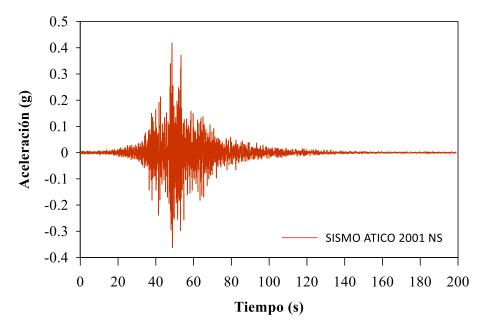
**Figura 38**Registro de aceleración del sismo de 1966, componente EW.





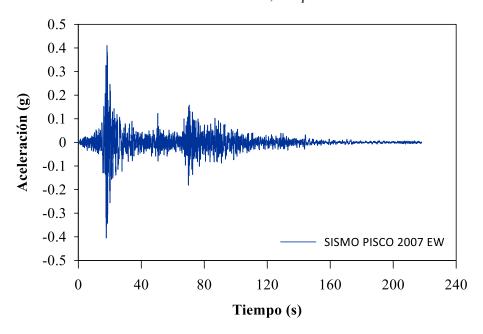

**Figura 39**Registro de aceleración del sismo de 1966, componente NS.




Registro de Aceleración - Sismo Arequipa - 2001, Magnitud 8.2 Mw.
 Máxima Aceleración: 295.15 PGA

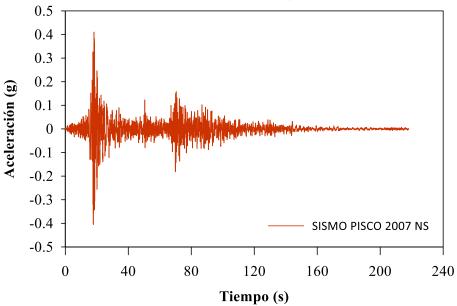
**Figura 40**Registro de aceleración del sismo de Arequipa, componente EW.






**Figura 41**Registro de aceleración del sismo de Arequipa, componente NS.

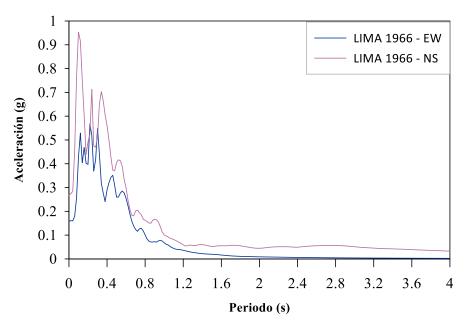



Registro de Aceleración - Sismo Pisco - 2007, Magnitud 8.0 Mw.
 Máxima Aceleración: 333.66 PGA

**Figura 42**Registro de aceleración del sismo de Pisco del 2007, componente EW.





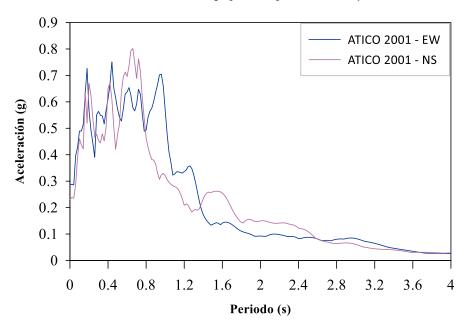

**Figura 43** *Registro de aceleración del sismo de Pisco del 2007, componente NS.* 



*Espectro de aceleraciones:* de los registros sísmicos seleccionados anteriormente, se obtuvieron los siguientes espectros de aceleraciones:

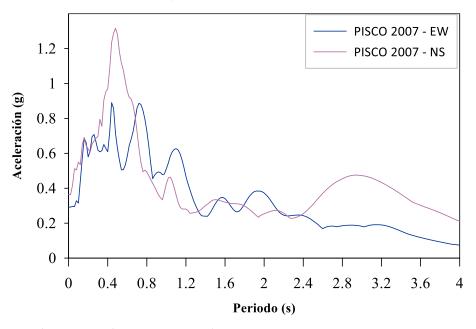
• Sismo Lima – 1966

**Figura 44**Espectros de aceleración de las componentes NS y EW sin escalar del sismo de 1966.




• Sismo Arequipa – 2001



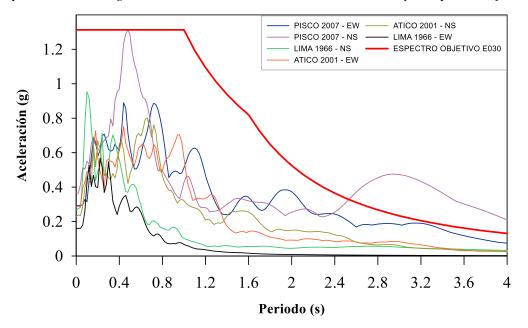

Figura 45

Espectro de aceleraciones del sismo de Arequipa, componentes EW y NS sin escalar.

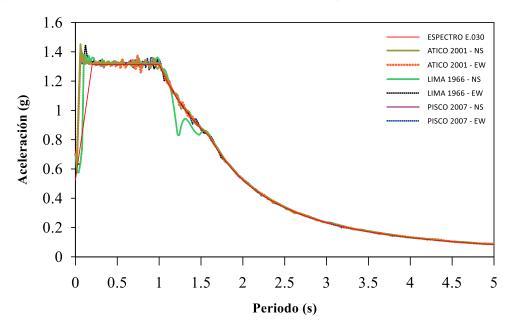


Sismo Pisco - 2007

**Figura 46**Espectros de aceleración de las componentes NS y EW sin escalar del sismo de Pisco del 2007.




Escalamiento de Registros Sísmicos: Los registros de aceleración fueron seleccionados porque contienen aceleraciones máximas ocurridos en los últimos 100 años, Estos se escalaron de acuerdo con el espectro de diseño de la norma E.030 para un tipo de suelo S3. El escalado de estos datos se realizó con la ayuda de los programas SeismoSignal y SeismoMatch, respectivamente. También se llevó a cabo la corrección




de la línea de base. Para el escalamiento de estos 3 pares de registros sísmicos, se consideró un factor R=1, también se realiza el escalamiento para el periodo de 0.2T y 1.5T.

**Figura 47**Comparativa de los registros de aceleración seleccionados sin escalar y el espectro objetivo.



**Figura 48**Comparativa de los registros de aceleración escalado y el espectro objetivo.

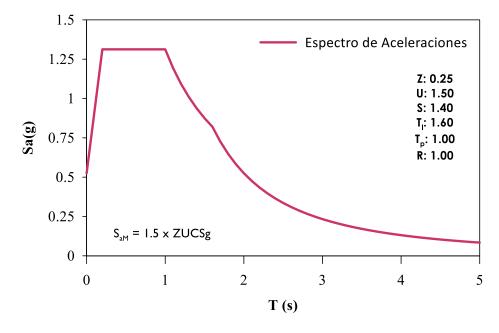




De acuerdo con la Norma E.030, para poder escalar estos tres conjuntos de registros sísmicos, la media de los valores espectrales de los registros sísmicos fijados mediante la técnica SRSS no debe ser inferior al espectro de diseño, que se calcula con un valor de R=1 para los periodos de 0,2T y 1,5T. Este requisito debe cumplirse para los tres conjuntos de registros sísmicos.

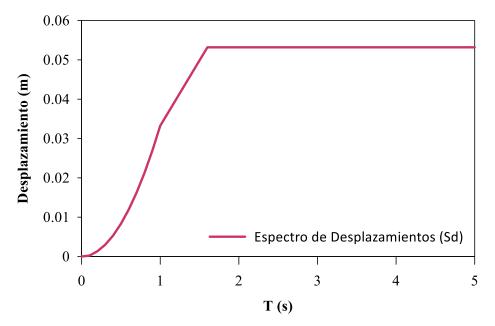
### 3.6.1.2 Modelo con Aisladores Sísmicos

### 3.6.1.2.1 Análisis Dinámico Modal Espectral

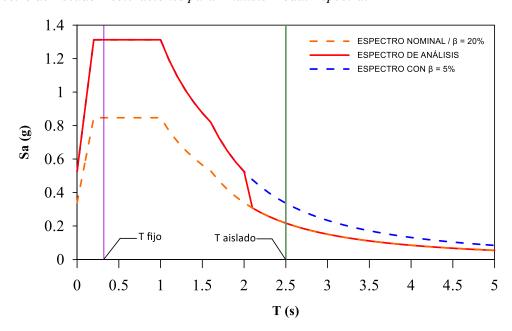

Dado que los movimientos rítmicos o las vibraciones pueden crear deformaciones en cada entrepiso, es necesario realizar un análisis del espectro modal dinámico para el diseño sísmico de una estructura. Se ha llevado a cabo un análisis de espectro para la construcción de estructuras con aisladores sísmicos para que la estructura pueda diseñarse de acuerdo con la norma E.031.

Como parte de la norma E.031, se nos ha proporcionado un conjunto de parámetros a utilizar durante el diseño del espectro, como los descritos anteriormente. Estos factores, el rango de parámetros C y el factor de reducción R, se han modificado para que sean aplicables a estructuras que dispongan de aisladores sísmicos.

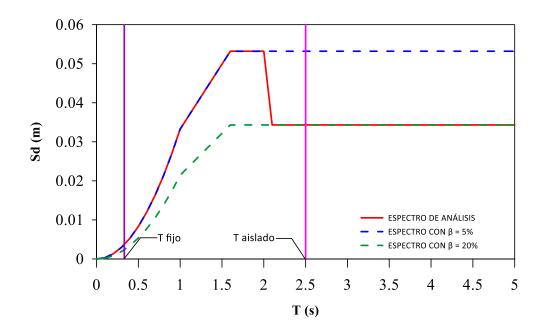
A continuación, se muestra una representación del espectro de diseño de acuerdo con E.031:


Figura 49

Espectro de Pseudo-Aceleraciones para Escalamiento de Espectros - E.031







**Figura 50**Espectro de Pseudo-Desplazamientos para Escalamiento de Espectros - E.031



**Figura 51**Espectro de Pseudo-Aceleraciones para Análisis Modal Espectral



**Figura 52**Espectro de Pseudo-Desplazamientos para Análisis Modal Espectral



# 3.6.1.2.2 Análisis Dinámico Tiempo Historia

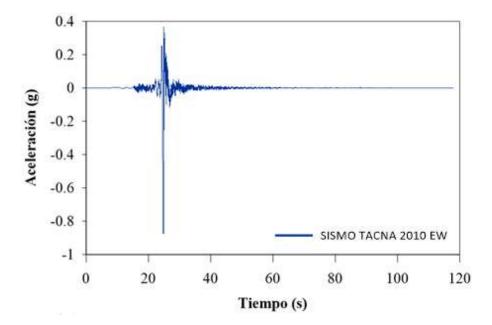
Para llevar a cabo este tipo de análisis dinámico, se utilizarán registros de las aceleraciones horizontales provocadas por terremotos significativos ocurridos en nuestro país. La norma E.031 estipula que debe haber siete pares de registros, que son los siguientes:

- Lima 1966
- Arequipa 2001
- Pisco 2007
- Tacna 2010
- Lima 1974
- Lomas 2018
- Turquía 2023

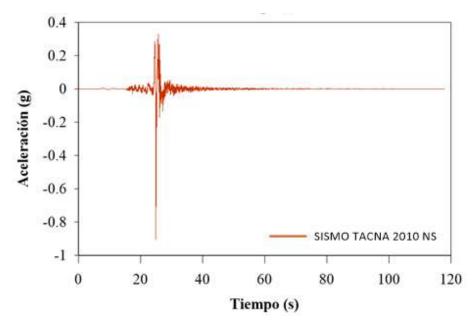
El Centro Peruano-Japonés de Investigación Sísmica y Mitigación de Desastres (CISMID) y la Autoridad de Gestión de Desastres y Emergencias (AFAD) de Turquía fueron las fuentes de las que se obtuvieron estos pares de registros sísmicos.

Los registros sísmicos se corrigieron por línea base por los diferentes defectos que tienen como, por ejemplo: ruidos, entre otros factores. Esto se hizo con el programa SeismoMatch. Posteriormente fueron escalados para compatibilizar con el espectro de



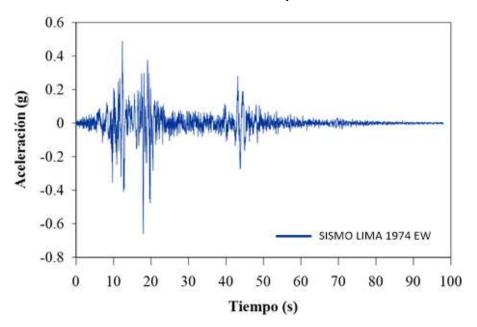

sismo máximo considerado en la Norma E.031, expuesto anteriormente en el análisis dinámico modal espectral.

De acuerdo con la Norma E.031, para escalar estos 7 pares de registros sísmicos, la media de los valores espectrales de los pares de registros sísmicos calculados mediante la técnica SRSS no debe ser inferior al espectro de diseño, que se obtiene con un valor de R=1 para los periodos de  $0.75T_M$  y  $1.25\ T_M$ .


Anteriormente, 3 pares de registros sísmicos fueron especificados, los cuales son: Lima 1966 (Figura 37 y Figura 38), Arequipa 2001 (Figura 39 y Figura 40) e Ica 2007 (Figura 41 y Figura 42). A continuación, se expone los registros sísmicos faltantes:

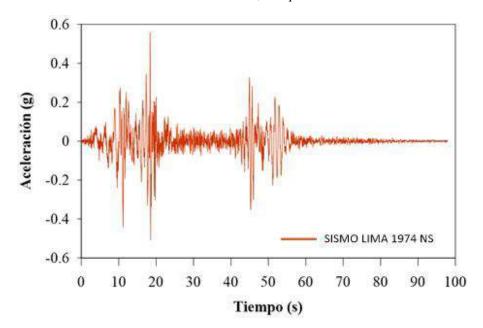
Registro de Aceleración - Sismo Tacna - 2010, Magnitud. 6.6 Mb
 Máxima Aceleración: 105.05 PGA

**Figura 53**Registro de aceleración del sismo de Tacna - 2010, componente EW.



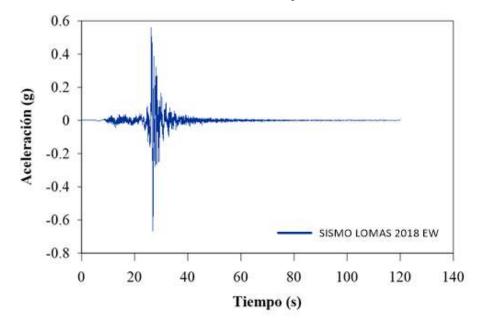

**Figura 54**Registro de aceleración del sismo de Tacna - 2010, componente NS.




Registro de Aceleración - Sismo Lima - 1974, Magnitud 6.6 Mb.
 Máxima Aceleración: 180.09 PGA

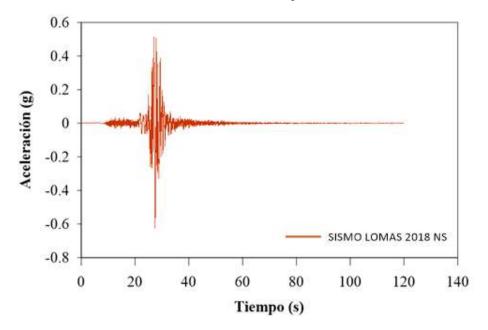
**Figura 55**Registro de aceleración del sismo de Lima - 1974, componente EW.






**Figura 56**Registro de aceleración del sismo de Lima - 1974, componente NS.

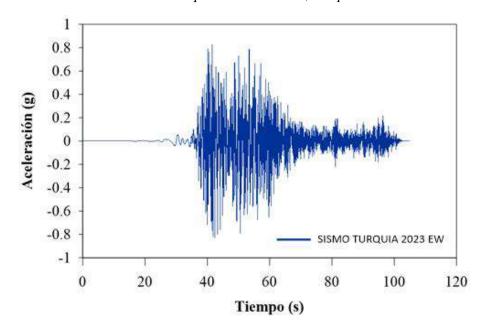



Registro de Aceleración - Sismo Lomas 2018, Magnitud. 8.0 Mw
 Máxima Aceleración: 79.8 PGA

**Figura 57**Registro de aceleración del sismo de Lomas 2018, componente EW.

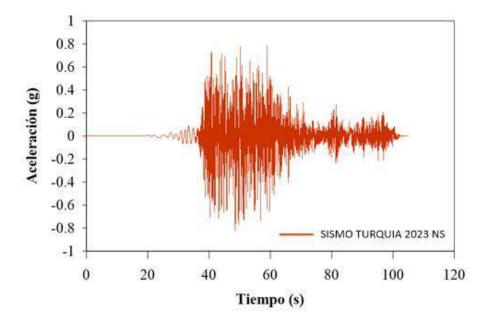





**Figura 58**Registro de aceleración del sismo de Lomas 2018, componente NS.

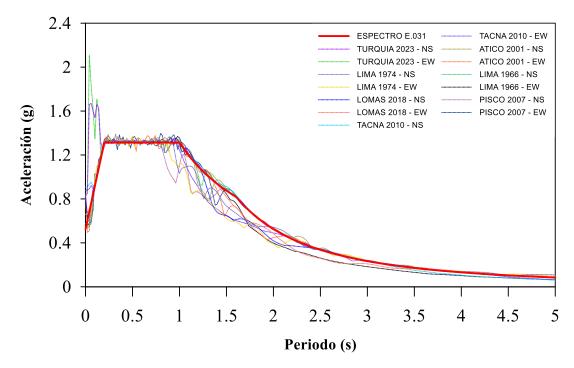


Registro de Aceleración - Sismo Turquía 2023, Magnitud. 7.8 Mw
 Máxima Aceleración: 1966.739 PGA


Figura 59

Registro de aceleración del sismo Turquía 2023 escalado, componente EW.






**Figura 60**Registro de aceleración del sismo Turquía 2023 escalado, componente NS.



Escalamiento de Registros Sísmicos: Los registros de aceleración fueron seleccionados porque contienen aceleraciones máximas ocurridos en los últimos 100 años, estos fueron escalados respecto al espectro de diseño, de la norma E.031 para un tipo de suelo S3. Para realizar el escalamiento y la corrección de línea base de estos registros, se usaron los programas de SeismoSignal y SeismoMatch. Para el escalamiento de estos 7 pares de registros sísmicos, se consideró un factor R = 1, también se realiza el escalamiento para el periodo de 0.05 s hasta 5 s como se observa continuación.

**Figura 61**Comparativa de los registros de aceleración escalado y el espectro objetivo E.031.



De acuerdo con la Norma E.031, para escalar estos 7 pares de registros sísmicos, la media de los valores espectrales de los pares de registros sísmicos calculados por el método SRSS no debe ser inferior al espectro de diseño, que se obtiene con un valor de R=1 para los periodos comprendidos entre 0,02 s y 5 s.

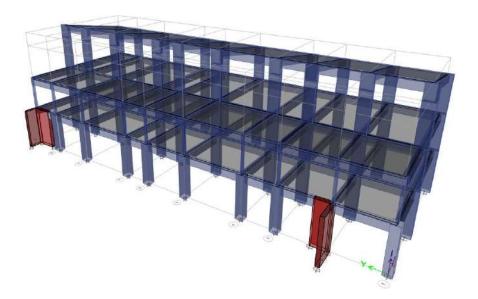
### 3.6.2 Modelamiento estructural

Para determinar la respuesta sísmica de la edificación sin aislamiento y con aislamiento, se utilizará el programa Etabs v18 para realizar el modelamiento usando los parámetros de las normas peruanas E.030 y E.031. Con los resultados obtenidos de fuerza cortante, derivas, factor de amortiguamiento y aceleraciones, para posteriormente hacer la comparación.

En esta fase, se controlarán los parámetros de rigidez lateral, capacidad de carga y desplazamiento máximos generados por los dos tipos de aisladores.

El Pabellón Inicial del Colegio San Francisco de Asís se diseñó con los siguientes elementos específicos para llevar a cabo la configuración estructural:




**Tabla 8**Características de la estructura.

| Características estructurales |           |  |  |  |  |
|-------------------------------|-----------|--|--|--|--|
| Nro. Pisos 3                  |           |  |  |  |  |
| Sistema estructural           | Dual      |  |  |  |  |
| Regularidad estructural       | Irregular |  |  |  |  |
| Sistema de protección sísmica | Ninguno   |  |  |  |  |
| Geometría                     |           |  |  |  |  |
| Largo                         | 24.00 m   |  |  |  |  |
| Ancho                         | 10.50 m   |  |  |  |  |
| Altura Primer Piso (1)        | 3.0 m     |  |  |  |  |
| Altura piso típico            | 2.5m      |  |  |  |  |

# 3.6.3 Configuración estructural

El sistema estructural considerado en este trabajo de investigación está formado por una sucesión de pórticos de hormigón armado conectados entre sí en secuencia mediante vigas sísmicas que discurren transversalmente. El sistema es tres niveles, con una altura de entrepiso de 3m, el primer nivel, y de 2.5m el segundo nivel; asimismo, el tercer tiene una cobertura ligera, como puede verse en el gráfico inferior.

**Figura 62** *Modelo estructural tridimensional de la estructura analizada.* 



Dentro del sistema estructural, se ha encontrado dos sistemas de muros de concreto armado, con sección transversal en forma de L, estos elementos se hallan adosados al sistema estructural principal. La sección transversal predominante de las



columnas de concreto armado fue de 30cmx70cm, apareciendo en menor medida una sección transversal de 50cmx50cm.

El sistema de piso se compone de una serie de losas aligeradas, tanto en el primer nivel, como en el segundo nivel, este sistema fue armado en la dirección longitudinal del sistema, debido a que en esta dirección se presentan las menores luces del sistema, esto ha permitido tener un espesor de losas aligeradas estándar de 20cm de espesor.

**Figura 63**Vista en planta del primer nivel de la estructura analizada.

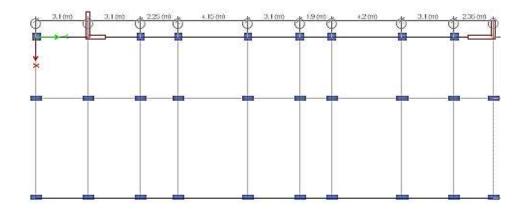
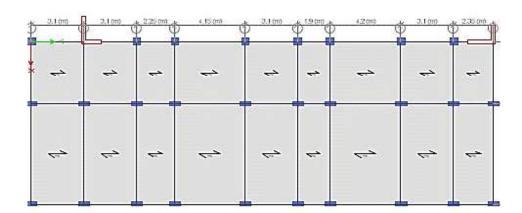




Figura 64

Vista en planta del primer y segundo nivel de la estructura analizada.



#### 3.6.4 Análisis Estructural

## 3.6.4.1 Asignación de propiedades mecánicas de los materiales

Las propiedades mecánicas de los materiales que se utilizaron para los modelos analíticos de la estructura figuran en la tabla siguiente. Estos modelos se obtuvieron a partir de la visita sobre el terreno.



**Tabla 9**Propiedades mecánicas de los materiales.

| Material                                   | Propiedades mecánicas      | Valor (kgf/cm2) |
|--------------------------------------------|----------------------------|-----------------|
| Concreto Resistencia a la compresión (f'c) |                            | 210             |
|                                            | Peso especifico            | 2400 (kgf/m3)   |
|                                            | Módulo de elasticidad (Ec) | 217370.1        |
| Acero                                      | Esfuerzo de fluencia (fy)  | 4200            |
|                                            | Esfuerzo último (fu)       | 7000            |
|                                            | Módulo de elasticidad (Es) | 2000000         |
| Madera                                     | Módulo de elasticidad      | 130000          |

# 3.6.4.2 Secciones transversales

**Figura 65**Sección transversal de la columna C50x50.



# Figura 66

Sección transversal de la viga V30x50.



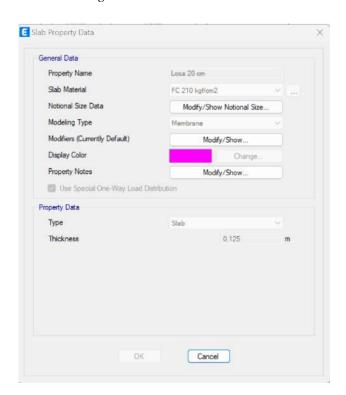




Figura 67
Sección transversal de la Losa Aligerada 20cm.



# 3.6.4.3 Cargas gravitacionales

## Tabla 10

Tabla de cargas muertas impuestas a la estructura analizada.

| Cargas muertas | Valor | Unidades          |
|----------------|-------|-------------------|
| Acabados       | 100   | Kg/m <sup>2</sup> |
| Tabiquería     | 150   | $Kg/m^2$          |
| Total          | 250   | $Kg/m^2$          |

**Tabla 11**Tabla de cargas vivas impuestas a la estructura analizada.

| Carga viva | Valor | Unidades          |
|------------|-------|-------------------|
| Colegio    | 350   | Kg/m <sup>2</sup> |
| Techo      | 65    | Kg/m <sup>2</sup> |
| Total      | 415   | $Kg/m^2$          |

#### 3.6.5 Análisis Estático de la Estructura Aislada

Los datos sobre la masa de la superestructura y el sistema de aislamiento serán necesarios para el análisis estático de la estructura aislada. Estos datos se recopilaron mediante medición de cargas y serán verificados con el programa de modelamiento.

Masa de la superestructura:

$$m_s = 89.934 tonf * \frac{s^2}{m}$$
 (34)

Masa del sistema de aislamiento

$$m_b = 47.146 ton f * \frac{s^2}{m}$$
 (35)

Por lo tanto, la masa total resultaría

$$M = m_s + m_b = 137.08 tonf * \frac{s^2}{m}$$
 (36)

Con los datos de masa total y definido el periodo objetivo del sistema en 2.5 segundos, Es posible calcular la rigidez lateral del sistema de aislamiento; la amortiguación efectiva, en cambio, dependerá del valor que se requiera.

$$k_b = \left(2 * \frac{\pi}{T_b}\right)^2 * M = 865.876 \frac{tonf}{m}$$
 (37)

$$\beta_M = 20\% \; ; B_M = 1.5 \tag{38}$$

Se definen los parámetros de sitio, determinados mediante la normativa correspondiente.

$$Z = 0.25$$
  $S = 1.4$   $T_P = 1s$   $T_L = 1.6s$ 

$$C_b = 2.5 * \left(\frac{T_p * T_L}{T_p^2}\right) = 0.64 \tag{39}$$

Factor de Zona Sísmica (E.031):

$$Z_M = 1.5 * Z = 0.375 \tag{40}$$

Pseudo-aceleración:

$$S_{aM} = Z_M * C_b * S * g = 0.336 g \tag{41}$$

Desplazamiento máximo

$$D_M = \frac{S_{aM} T_b^2}{\left(4 * \pi^2 * B_M\right)} = 34.77 \, cm \tag{42}$$

Desplazamiento máximo total:

$$D_{TM} = 1.15 * D_{M} = 39.99 \, cm \tag{43}$$

#### 3.6.6 Diseño de un sistema de aislación LRB

Para el diseño de un sistema de aislamiento de base usando dispositivos LRB con deslizador, se definieron las propiedades de la goma o caucho, como el Módulo de Corte, módulo volumétrico del caucho, factor f será igual a 4, y de donde se obtendrá el módulo elástico, estos datos dependerán de los ensayos de laboratorio realizados por el proveedor que para este caso usará las recomendaciones del catálogo de aisladores de la empresa Dynamic Isolation Systems.

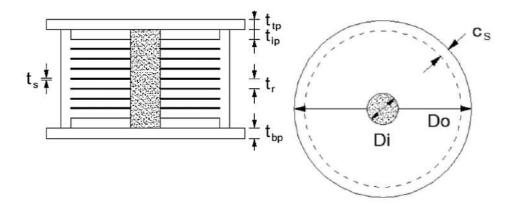
$$G = 38.67 tonf / m^2 (44)$$

$$K = 200000 tonf / m^2 (45)$$

$$E_0 = f *G = 156.676 tonf / m^2 (46)$$

Ahora se definirán las propiedades del núcleo de plomo, entre las cuales se tendrá el esfuerzo al corte máximo y esfuerzo de fluencia:

$$\alpha max = 1000 tonf / m^2$$


$$\tau_{mv} = 800 tonf / m^2$$

Entre algunas propiedades con respecto a las placas exteriores y placas Shim que tendrá el aislador, se definirán los valores de límite de fluencia de la placa exterior como  $2530tonf/m^2$  y un factor  $\alpha$  de 1.65 en el caso de la placa shim de acero sin orificios (Constantino, 2011).

Para el predimensionamiento del aislador, que se detallará más adelante, se obtendrá la carga axial que será 38.91 tonf y la Masa Sísmica Total del edificio igual a  $137.1 \, tonf * s^2 / m$ , datos que fueron obtenidos a partir del análisis estático. También, se debe determinar del periodo objetivo de aislación. Como se ha comentado en los apartados anteriores, un periodo objetivo es el tiempo que se desea que alcance el sistema estructural con la ayuda de un sistema de aislamiento de la base. Según autores como Constantino et al., 2018, el periodo objetivo del sistema de aislamiento debería ser de entre 2,5 y 4 segundos. Además, es recomendable establecer que el periodo objetivo sea por lo menos 3 veces el periodo de base fija, teniendo en cuenta la restricción anterior, se definirá el Periodo objetivo como 2.5s.

## Figura 68

Dispositivo de aislamiento sísmico LRB con deslizador.



Se establece o estima un amortiguamiento del sistema aislado. Como se sabe, el uso de un sistema de aislamiento como los LRB puede introducir un amortiguamiento equivalente adicional. Aunque este valor es desconocido a inicio del diseño pues depende de los aisladores usados, es conveniente hacer una estimación razonable de este valor para poder iniciar el diseño propiamente. El valor de amortiguamiento puede variar entre 2% y 40%, y se selecciona de acuerdo con la siguiente tabla, que también se incluye en la norma de diseño sísmico para Perú, E.031.

**Tabla 12**Formas de vibrar de la estructura analizada.

| Amortiguamiento efectivo, $\beta_M$ (en porcentaje del amortiguamiento crítico) $a,b$ | Factor<br>B <sub>M</sub> |
|---------------------------------------------------------------------------------------|--------------------------|
| ≤2                                                                                    | 0.8                      |
| 5                                                                                     | 1                        |
| 10                                                                                    | 1.2                      |
| 20                                                                                    | 1.5                      |
| 30                                                                                    | 1.7                      |
| ≥ 40                                                                                  | 1.9                      |

$$\beta_M = 20\% \; ; B_M = 1.5$$
 (47)

El siguiente paso consiste en determinar o hacer una estimación del desplazamiento máximo esperado en el sistema estructural, teniendo en cuenta el periodo objetivo y el amortiguamiento predicho en la sección anterior. Es importante notar que el desplazamiento máximo es proporcional al periodo al cuadrado e inversamente proporcional a un factor de reducción producido por el amortiguamiento.



La siguiente expresión puede utilizarse como punto de partida para el cálculo del desplazamiento máximo. Es habitual utilizar esta expresión.

$$D_M = \left(\frac{1}{4\pi^2}\right) \frac{S_a T_M^2}{B_M}$$

Para lo cual se definirá el valor de  $S_a$  a partir de los factores sísmicos correspondientes a la estructura en estudio:

$$S_a = 3.296 \, m \, / \, s^2 \tag{48}$$

$$D_{M} = 34.8 \, cm$$

Se considerará un desplazamiento máximo total  $D_{TM}$  amplificando en un 15% el desplazamiento  $D_M$ . Después, pasamos al siguiente paso, que consiste en calcular los parámetros geométricos del aislante. En este punto, el grosor de las capas de acero y caucho del aislante se ofrecerá como 0,3 centímetros y 0,8 centímetros, respectivamente. La altura total mínima del caucho  $(T_{rmin})$  se calcula a partir de la relación entre el desplazamiento máximo total y un factor de 2,5, lo que da como resultado 16 centímetros. Para calcular el número de capas de goma, el espesor de las placas de los extremos será considerados en 16 cm dividido entre el espesor de cada capa de caucho se obtuvo el número de capas igual a 20. Asimismo, se definirá el espesor de cobertura, espesor de planchas de montajes y el espesor de planchas internas de la siguiente manera: 1 cm, 2.5 cm, 0.25 cm. A partir de los cálculos anteriores se logró obtener la altura total de acero igual a 5.7 cm y del aislador igual a 31.7 cm.

Siguiendo con los cálculos se procedió a realizar el pre dimensionamiento del aislador, considerando un área pre dimensionada de 0.039 m2, de donde se obtuvo el diámetro mínimo de 22.3 cm, multiplicando el diámetro máximo total por 1.5 y tomando en cuanto bibliografía previa, se considerará un diámetro de 63 cm, la nueva área con diámetro total será de 0.312 m2. Para calcular el área del núcleo de plomo se sugerirá un diámetro de 10 cm, lo que dará como resultado 0,008 m2.

Posteriormente, se continuó con el cálculo de algunas dimensiones faltantes, entre las que se destacan el diámetro neto (no cuenta la cobertura de caucho exterior), área del diámetro neto, área de la goma sin recubrimiento, área de la goma con recubrimiento y factor de forma, de la siguiente manera:

$$D_{a} = D_{a} - 2*C_{s} = 61cm \tag{49}$$

$$A_e = \frac{\pi * D_e^2}{4} = 0.292 \, m^2 \tag{50}$$

$$A_n = A_e - A_p = 0.284 \, m^2 \tag{51}$$

$$A_g = A - A_p = 0.304 \, m^2 \tag{52}$$

$$S = \frac{A_n}{\pi * D_e * t_r} = 18.55 \tag{53}$$

Para determinar los valores del módulo de compresión y del módulo de rigidez vertical del aislante se utilizaron las siguientes fórmulas:

$$E_C = E_O + (1 + 2 * k * S^2) = 79993.037 \frac{tonf}{m^2}$$
 (54)

$$E_{V} = \frac{1}{\frac{1}{6*G*S^{2}} + \frac{4}{3*K}} = 52105.115 \frac{tonf}{m^{2}}$$
 (55)

Definiremos la rigidez a compresión del aislador y el coeficiente de amortiguamiento vertical:

$$K_V = E_V * \frac{A_n}{T_n} = 92614.456 \frac{tonf}{m}$$
 (56)

$$C_V = 2*5\% * \sqrt{K_V * \frac{Pu}{g}} = 60.609 \frac{tonf * s}{m}$$
 (57)

De acuerdo a los valores que se requirieron, se obtuvieron finalmente las propiedades de rigidez a corte:

Rigidez Post fluencia:

$$K_d = A_g * \frac{G}{K_d} = 73.44 \frac{tonf}{m}$$
 (58)

Rigidez elástica:

$$K_l = 10 * K_d = 734.4 \frac{tonf}{m} \tag{59}$$

Fuerza Histerética:

$$Q_{d} = A_{p} * \tau_{py} = 6.283 tonf$$
 (60)

Fuerza de fluencia

$$F_{y} = \frac{Q_{d} * K_{l}}{K_{l} - K_{d}} = 6.981 tonf$$
 (61)

Desplazamiento de fluencia:

$$D_{y} = \frac{F_{y}}{K_{l}} = 0.951cm \tag{62}$$

Rigidez efectiva:

$$K_{eff} = \frac{Q_d + K_d * D_M}{2 * \pi^2 * D_M^2} = 91.5 \frac{tonf}{m}$$
 (63)

Energía disipada por ciclo:

$$EDC = 4 * Q_d * (D_M - D_v) = 8.504 tonf * m$$
 (64)

Coeficiente de amortiguamiento horizontal:

$$C_h = \frac{EDC * T_M}{2 * \pi^2 * D_M^2} = 8.9 \frac{tonf * s}{m}$$
 (65)

Fuerza de restitución:

$$F_R = 0.5 * K_d * D_M = 12.77 tonf$$
 (66)



Además, se calculó el porcentaje de área reducida de la goma y la carga axial crítica de pandeo.

$$A_{r} = A * 2 * \frac{\left(D_{e}^{2} * \arcsin(\frac{\sqrt{D_{e}^{2} - D_{TM}^{2}}}{D_{e}}) - D_{TM} * \sqrt{D_{e}^{2} - D_{TM}^{2}}\right)}{\pi * D_{e}^{2}} = 0.072m^{2}$$
(67)

$$A_r = 22.94\% A$$

Carga Axial Crítica de Pandeo:

$$FS = 3$$

$$P_{crit} = \frac{\pi^2}{\sqrt{8}} *G *S * \frac{D_e}{T_r} * A_r = 217.246 tonf$$
 (68)

$$P_{crit} = \frac{1}{FS} * \frac{\pi^2}{\sqrt{8}} * G * S * \frac{D_e}{T_r} * A_r = 72.415 tonf$$
 (69)

$$F_{max} = K_{eff} * D_M = 31.832 tonf (70)$$

$$\frac{K_d}{K_t} = 0.1$$

Deformación por corte:

$$\gamma_{\Delta} = \frac{D_{TM}}{T} = 2.5 \tag{71}$$

Deformación angular:

$$\gamma_{\theta} = \frac{0.375 * D_e^2 * \theta_{serv}}{t_{\pi} * T_{\pi}} = 0.327$$
 (72)

Deformación por compresión:

$$\gamma_c = \frac{6*P_{crit}*S}{E_c*A_r} = 1.409 \tag{73}$$



$$P_{c\_adm} = \frac{\gamma_c * E_c * A_r}{6*S} = 72.415 tonf$$
 (74)

$$\gamma_{\Delta} + 0.5 * \gamma_{\theta} + \gamma_{c} < 6 \tag{75}$$

$$\gamma_{\Delta} + 0.5 * \gamma_{\theta} + \gamma_{c} = 4.073$$

# Figura 69

Definición del modelo de comportamiento del aislador LRB.



# Figura 70

Definición de las propiedades no lineales del aislador para la dirección X e Y.



**Tabla 13**Propiedades del Aislador Tipo 1 en las direcciones X-Y.

| Aislador  | Kef (tonf/m) | K1(tonf/m) | Fy (tonf) |
|-----------|--------------|------------|-----------|
| U2        | 91.50        | 734.4      | 6.98      |
| <b>U3</b> | 91.50        | 734.4      | 6.98      |

#### 3.6.7 Diseño de un sistema de aislación con Deslizador

EL uso de un deslizador de fricción es un complemento solo al sistema de aislamiento con LRB, el diseño de los deslizadores resulta menos complejo que el diseño de un aislador tipo LRB, aun así, Dado que los deslizadores no tienen una fuerza de restitución, ayudarán a minimizar la rigidez lateral del sistema de aislamiento. Además, como los deslizadores tienen una rigidez lateral baja, colocarlos estratégicamente ayudará a reducir las excentricidades de la estructura que se está evaluando.

Para lograrlo, se consideran las cargas axiales de servicio y máxima obtenidas del análisis estático de la edificación, resultando 57.7 tonf y 145.82 tonf

respectivamente. Además, se tienen los valores de desplazamiento máximo de 34.8 cm, factor de fricción (μ) de 3.5%, espesor de capa (t<sub>r</sub>) de 2.5 cm y como Módulo volumétrico (K) igual a 210920.7 tonf/m<sup>2</sup>.

El periodo objetivo de la estructura será el mismo definido anteriormente de 2.5 segundos. A partir de estos valores se pudo determinar lo siguiente:

$$F_{v} = \mu * P_{serv} = 2.02 tonf$$
 (76)

$$Q_d = \mu * P_{serv} = 2.02 tonf \tag{77}$$

$$K_{ef} = \frac{F_{y}}{D_{M}} = 5.803 tonf$$
 (78)

$$E_D = 4 * F_y * D_M = 2.81 1 tonf * m$$
(79)

$$E_E = K_{ef} * (D_M)^2 = 0.703 tonf * m$$
 (80)

$$\beta = \frac{2}{\pi} - \frac{F_{y}}{\pi * (100 * K_{ef}) * D_{M}} = 63.3\%$$
 (81)

$$\beta = \frac{E_D}{2 * \pi * E_E} = 63.7\% \tag{82}$$

Siguiendo con los cálculos se ahora se determinará el coeficiente de amortiguamiento horizontal con la siguiente expresión,

$$C_h = \frac{E_D * T_M}{2 * \pi * D_M^2} \tag{83}$$

Resultando 2.9 tonf\*s/m, e igualmente se necesitará determinar el esfuerzo axial permisible en servicio y en combinación del teflón, dichos valores son definidos por el fabricante:

$$\sigma_s = 22MPa$$

$$\sigma_{u} = 45MPa$$

Para realizar el predimensionamiento del área de teflón, se determinará el valor máximo de las relaciones entre la Carga Axial y Esfuerzo Axial de servicio y la relación entre Carga axial máxima y Esfuerzo Axial en combinación:

$$A = \max\left(\frac{P_{serv}}{\sigma_s}; \frac{P_{serv}}{\sigma_u}\right) = 0.032m^2$$

Teniendo el área de teflón se puede determinar el diámetro total mínimo del teflón ( $D_{t.min}$ ) que resulta 20.11 cm, a partir de este dato se considerará un diámetro total del teflón ( $D_t$ ) de 25 cm. Por lo tanto, el diámetro total:

$$D_r = D_t + 2 * 2.5cm = 30cm \tag{84}$$

Con estos últimos valores Con ayuda de las fórmulas siguientes, podemos calcular el coeficiente de amortiguación vertical, así como la rigidez vertical.

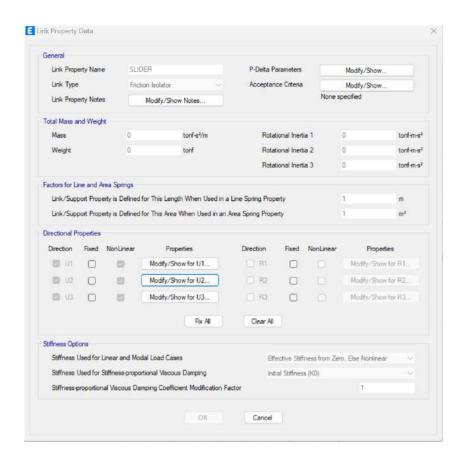
$$K_{v} = \frac{K^{*}\pi^{*}D_{r}^{2}}{12^{*}t_{r}} = 198788tonf / m$$

$$(85)$$

$$C_{v} = 2^{*}5\% \sqrt{K_{v}^{*}\frac{P_{serv}}{g}} = 108.13tonf * s / m$$

$$(86)$$

 Tabla 14

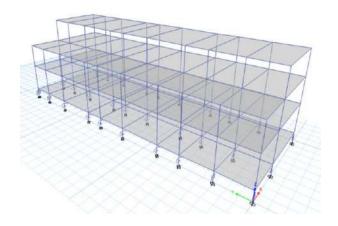

 Propiedades del Deslizador en las direcciones X-Y.

| Slider | Kef (tonf/m) | μ    | Rad. Péndulo (m) |
|--------|--------------|------|------------------|
| U2     | 5.8          | 0.04 | 1000             |
| U3     | 5.8          | 0.04 | 1000             |

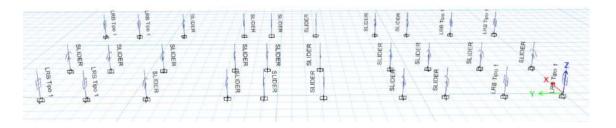
#### Figura 71

Definición del modelo de comportamiento del Slider.






**Figura 72**Definición de las propiedades no lineales del Slider para la dirección X e Y.






**Figura 73**Modelo tridimensional con aisladores LRB y Deslizadores.



**Figura 74**Modelo tridimensional de distribución de aisladores LRB y Deslizadores.



**Tabla 15**Propiedades de aisladores LRB y Deslizadores.

| Tipo de<br>aislador | Keff<br>(tonf/m) | EDC (tonf-m) | FR (tonf) | Qd<br>(tonf) |
|---------------------|------------------|--------------|-----------|--------------|
| Slider              | 5.805            | 2.810        | 0.000     | 2.020        |
| LRB                 | 96.360           | 8.519        | 13.620    | 6.283        |

## 3.6.8 Diseño de un sistema de aislación TFP

Diseñar un aislador TFP significa determinar las características geométricas y mecánicas que definen este tipo de dispositivos. Entre las propiedades geométricas que la definen están, los radios de curvatura de las superficies cóncavas que se unen para formar el disipador de energía, tanto externos como internos, además, como los radios de curvatura externos e internos son iguales entre sí, solo se tienen dos variables por



determinar aquí. Otra de las características geométricas por determinar son los anchos de las superficies cóncavas, tanto externas (Dc) como internas (Ds).

**Figura 75**Características geométricas de los aisladores TFP.

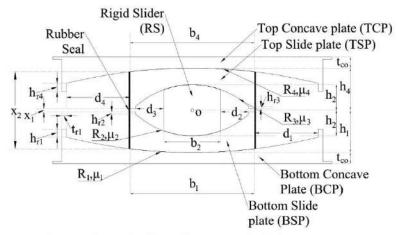



Figure 1-1: Schematic of Triple FP bearing and definition of parameters

Nota. Constantinou & Sarlis. (2016)

Además de las propiedades geométricas, consisten en las propiedades mecánicas del disipador, que consisten esencialmente en los coeficientes de fricción entre las distintas superficies del disipador. Llegados a este punto, debe quedar muy claro que los coeficientes de fricción de las distintas superficies exteriores no son idénticos entre sí, encontrando que:

$$\mu_1 = \mu_4 \tag{87}$$

Sin embargo, los coeficientes de fricción de las superficies cóncavas internas son de la misma magnitud en toda la estructura, es decir:

$$\mu_3 = \mu_2 \tag{88}$$

#### Diseño geométrico de los dispositivos

Establecer el período objetivo buscado para la estructura investigada es la primera etapa en el diseño de sistemas estructurales aislados de la base mediante aisladores de fricción de triple péndulo. Esta fase se realiza una vez determinado el periodo objetivo. A este respecto, es esencial tener una sólida comprensión del comportamiento estructural de un edificio, así como de la conexión que dicho

comportamiento tiene con los diferentes periodos que componen la estructura. Es esencial tener en cuenta que existe una relación inversa entre la respuesta estructural en términos de aceleración y el periodo fundamental de la estructura. Esto significa que cuanto menor sea la aceleración lateral provocada por una circunstancia externa, mayor será el periodo fundamental de la estructura.

De acuerdo con el estudio de espectros de aceleración característicos medidos en territorio peruano, es posible observar que la aceleración lateral máxima disminuye de manera considerable (alrededor del 10%) entre los dos segundos y más, por lo que conviene establecer como periodo objetivo del sistema aislado el intervalo siguiente:

$$2.5 < T_0 < 4$$

$$T_0 = 3 * T_{bf}$$

$$T_{bf} = 0.321s$$

$$T_0 = 3 * T_{bf} = 0.963s$$

entonces usaremos un valor de  $T_0 = 2.5s$ 

La segunda etapa consiste en estimar el porcentaje de amortiguación crucial que el sistema de aislamiento aporta al sistema. Para esto nos valdremos de un conjunto de tablas establecidas en la literatura científica y, de manera más práctica, establecida en la norma peruana E031. A continuación, se presenta la tabla.

**Tabla 16**Formas de vibrar de la estructura analizada.

| Amortiguamiento efectivo, $\beta_M$ (en porcentaje del amortiguamiento crítico) $a,b$ | Factor<br>B <sub>M</sub> |
|---------------------------------------------------------------------------------------|--------------------------|
| ≤2                                                                                    | 0.8                      |
| 5                                                                                     | 1                        |
| 10                                                                                    | 1.2                      |
| 20                                                                                    | 1.5                      |
| 30                                                                                    | 1.7                      |
| ≥ 40                                                                                  | 1.9                      |

$$\beta_M = 20\% ; B_M = 1.5$$

Una vez establecido el paso anterior, debemos hacer una estimación razonable del desplazamiento máximo esperado del sistema. Para ello, se pueden elaborar estimaciones basadas en el espectro de aceleración característico de la norma peruana. Una forma más práctica es seguir los lineamientos recomendados en la Norma de Diseño Sísmico E-031, mediante la expresión siguiente:

$$D_M = \left(\frac{1}{4\pi^2}\right) \frac{S_a T_M^2}{B_M}$$

En esta expresión,  $D_M$  representa el desplazamiento máximo esperado;  $T_M$  representa el periodo fundamental de la estructura;  $B_M$  representa un coeficiente de reducción asociado al porcentaje de amortiguamiento crítico de la estructura; y  $S_a$  es la aceleración espectral esperada. Además, que definiremos la masa sísmica total del edificio.

$$M_{t} = 137.08tonf * s^{2} / m$$
 $W_{t} = 1344.3tonf$ 
 $S_{a} = 3.295 m / s^{2}$ 
 $D_{M} = 34.8cm$ 

El desplazamiento máximo total se determinará incrementando en un 15% el desplazamiento máximo, obteniendo 39.99 cm.

El siguiente paso consiste en calcular la rigidez lateral del sistema que incluye los dispositivos de aislación TFP. Una vez calculada la rigidez total del sistema, se puede estimar la rigidez de cada aislador considerando que todos tienen el mismo valor. Para ello, basta con dividir la rigidez global por el número total de dispositivos que se están teniendo en cuenta.

$$K_{M} = \left(\frac{2 * \pi}{T_{M}}\right)^{2} * M_{t} = 865.876 tonf / m$$

La rigidez del sistema puede calcularse como el cociente entre los factores indicados a continuación, entre ellos la masa de la estructura, el cuadrado del periodo



fundamental y la desigualdad de la estructura. Conociendo la cantidad de aisladores que se necesitarán, se puede determinar la rigidez lateral en cada aislador.

$$na = 30$$

$$K_{hi} = \frac{K_M}{na} = 28.86 tonf / m$$
 (89)

Como siguiente paso se deberá calcular el área de un deslizador rígido denotado en la siguiente ecuación como A<sub>R</sub> y a partir del área requerida se podrá deducir su diámetro. Es importante notar que en esta consideración la sección transversal del deslizador rígido es una circunferencia. Además, el área requerida de esta sección transversal puede ser estimada en función de la carga última que actúa en el deslizador entre el esfuerzo máximo tolerado. Al diseñar los sistemas de aislamiento, se supone que la tensión máxima a la que estará sometido el acero será de 60ksi.

$$A_d = \frac{P_u}{\sigma \max} \tag{90}$$

$$A_d = \frac{63.70tonf}{60ksi} = 15.1cm^2$$

Con los últimos datos obtenidos, pasamos al siguiente paso, que consiste en calcular el coeficiente de fricción entre las superficies del aislante.

$$\mu_3 = \mu_2$$

$$\mu_1 = \mu_4$$

$$\mu_1 = 6\%$$
;  $\mu_2 = 3\%$ 

De igual forma definiremos la fuerza de fricción, considerando la carga axial

$$F_{f1} = \mu_1 * P_\mu = 3.82 tonf \tag{91}$$

$$F_{f2} = \mu_2 * P_u = 1.911 tonf \tag{92}$$

$$F_{f1} = F_{f4}$$

$$F_{f2} = F_{f3}$$

Después, pasaremos al siguiente paso, que es el cálculo de los radios de curvatura efectivos que definen cada una de estas superficies cóncavas. En este contexto, es importante tener en cuenta que el aislador pendular de triple fricción está construido a partir de cuatro superficies cóncavas deslizantes, cada una de las cuales, por supuesto, tiene un radio de curvatura relacionado con ella. El radio de curvatura efectivo mínimo y máximo pueden ser calculados directamente en función del periodo objetivo establecido, mediante la siguiente expresión.

$$R_{eff-min} = \frac{g}{2} * \left(\frac{T_M}{2\pi}\right)^2 = 0.78m$$
 (93)

$$R_{eff-min} = \frac{20*D_M}{2} = 3.48m \tag{94}$$

$$R_{eff1} = 1.5m$$

$$R_{eff 2} = \frac{R_{eff 1}}{8} = 18.75cm \tag{95}$$

$$R_{eff 1} = R_{eff 4}$$

$$R_{eff 2} = R_{eff 3}$$

Para determinar las capacidades de desplazamiento nominal se empleará las siguientes expresiones:

$$d'_{1-\min} = \frac{D_M}{4} = 8.69cm \tag{96}$$

$$d'_{1-\text{max}} = \frac{D_M}{4} - (\mu_4 - \mu_1) * R_{eff1} = 17.39cm$$
 (97)

$$d'_{1} = 17cm$$

$$d'_{2-\min} = \frac{D_M}{2} - d'_{1} = 0.39cm \tag{98}$$

$$d'_2 = 0.39cm$$



Se calcularon los 3 primeros regímenes que demanda el diseño de aislador de triple péndulo.

1° régimen:

**Tabla 17**Propiedades del aislador TFP para el análisis de la Estructura.

| • | $D'_{u1}$ | $F_{m1}$ | $K_{eff1}$ | $E_{D1}$ | $E_{E1}$ | $\beta_{r1}$ |
|---|-----------|----------|------------|----------|----------|--------------|
| ٠ | cm        | tonf     | tonf/m     | tonf-m   | tonf-m   |              |
|   | 1.14      | 3.82     | 335.26     | 0.087    | 0.022    | 0.318        |

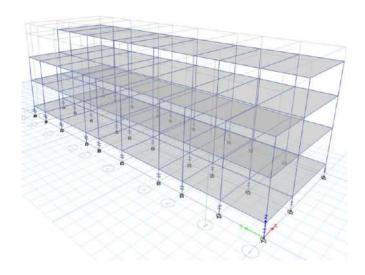
2° régimen:

**Tabla 18**Propiedades del aislador TFP para el análisis de la Estructura.

| D | )' <sub>u2</sub> | $F_{m2}$ | $K_{eff2}$ | $E_{D2}$ | $E_{E2}$ | $\beta_{r2}$ | $K_{d2}$ | $Q_{d2}$ |
|---|------------------|----------|------------|----------|----------|--------------|----------|----------|
|   | cm               | tonf     | tonf/m     | tonf-m   | tonf-m   |              | tonf/m   | tonf     |
| 3 | 5.14             | 11.04    | 31.42      | 4.956    | 1.94     | 0.203        | 37.692   | 3.392    |

3° régimen:

**Tabla 19**Propiedades del aislador TFP para el análisis de la Estructura.


| $D'_{u3}$ | $F_{m3}$ | $K_{eff3}$ | $E_{D3}$ | $E_{E3}$ | $\beta_{r3}$ | $K_d$  | $Q_{ds}$ |
|-----------|----------|------------|----------|----------|--------------|--------|----------|
| cm        | tonf     | tonf/m     | tonf-m   | tonf-m   |              | tonf/m | tonf     |
| 34.78     | 10.438   | 30.01      | 5.13     | 1.815    | 0.22         | 21.23  | 3.58     |

**Tabla 20**Propiedades del aislador TFP para el análisis de la Estructura.

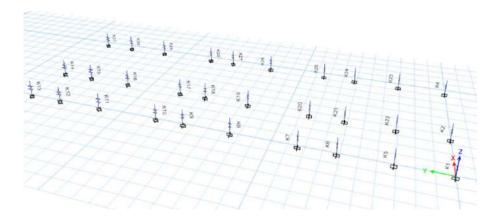

| K <sub>efs</sub> | $V_{\rm b}$  | R <sub>a</sub> | $V_s$               |
|------------------|--------------|----------------|---------------------|
| tonf/m           | tonf         |                | tonf                |
| 900.33           | 313.11       | 2              | 156.55              |
|                  | 23.29% $W_t$ |                | $11.65\%~\pmb{W_t}$ |

Figura 76

Modelo tridimensional con aislamiento TFP.



**Figura 77** *Modelo tridimensional de distribución de aisladores TFP.* 



**Tabla 21**Propiedades de aisladores TFP.

| (tonf/m) | (tonf-m) | (tonf)     | (tonf) |
|----------|----------|------------|--------|
| 31.43    | 4.96     | 3.73       | 3.40   |
| 20.57    | 3.25     | 2.44       | 2.22   |
|          | 31.43    | 31.43 4.96 |        |

Para esta investigación se usó 2 tipos de aisladores de triple péndulo de fricción determinadas según la cargar de servicio promedio de las columnas del sistema estructural.



# 4. Resultados

#### 4.1 Resultados de la estructura de base fija

# 4.1.1 Respuesta Estructural

Para realizar un predimensionamiento de los aisladores, necesitamos tener una idea de los periodos de la estructura de base fija para hacer una estimación de los periodos de la estructura de base aislada para los dos tipos diferentes de aisladores. Los parámetros usados para este análisis dinámico Modal Espectral fueron los siguientes:

 Tabla 22

 Parámetros Sísmicos Análisis Dinámico Modal Espectral.

| $\mathbf{Z}$ | 0.25 | Factor de zona                 | Cusco, Cusco, Perú               |
|--------------|------|--------------------------------|----------------------------------|
| S            | 1.40 | Factor de suelo                | Suelo Tipo 3                     |
| Tp           | 1.00 | Periodo corto                  |                                  |
| Tl           | 1.60 | Periodo largo                  |                                  |
| U            | 1.50 | Factor de uso                  | Categoría: Esencial A2 - Colegio |
| Ro           | 7.00 | Factor de reducción básico     | Sistema Dual                     |
| Ia           | 1.00 | Irregularidad en altura        | Regular                          |
| Ip           | 0.75 | Irregularidad en planta        | Irregularidad Torsional          |
| R            | 5.25 | Factor de reducción R=Ro.Ia.Ib |                                  |

Para realizar este Análisis Dinámico, usamos 3 pares de Registros sísmicos, Ático 2001, Lima 1966 y Pisco 2007, Estos pares fueron tratados y escalados según la normativa peruana.

#### 4.1.1.1 Deriva

Los criterios de la norma E.030-2019 estipulan que los resultados de las derivas de los forjados no serán iguales o superiores a 0,007 para estructuras de hormigón. La deriva se calculará como el desplazamiento lateral de cada forjado dividido por la altura del forjado. La siguiente tabla muestra los desplazamientos en las direcciones X e Y.

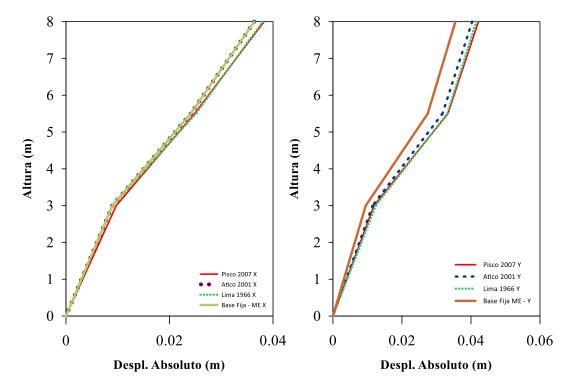
Tabla 23

Desplazamientos Absolutos del Análisis Modal Espectral en X e Y.



| Piso  | Elevación | X-Dir | Y-Dir |
|-------|-----------|-------|-------|
|       | m         | m     | m     |
| Piso3 | 8         | 0.048 | 0.036 |
| Piso2 | 5.5       | 0.031 | 0.027 |
| Piso1 | 3         | 0.011 | 0.010 |
| Base  | 0         | 0.000 | 0.000 |

**Tabla 24**Desplazamientos Absolutos del Análisis Tiempo Historia para la dirección X.


| Piso  | Elev. | Atico 2001 | Lima 1966 | Pisco 2007 |
|-------|-------|------------|-----------|------------|
|       |       | SRSS       | SRSS      | SRSS       |
|       | m     | m          | m         | m          |
| Piso3 | 8     | 0,036      | 0,038     | 0,038      |
| Piso2 | 5.5   | 0,024      | 0,025     | 0,025      |
| Piso1 | 3     | 0,009      | 0,009     | 0,010      |
| Base  | 0     | 0,000      | 0,000     | 0,000      |

**Tabla 25**Desplazamientos Absolutos del Análisis Tiempo Historia para la dirección Y.

| Piso  | Elev. | Atico 2001 | <b>Lima 1966</b> | Pisco 2007 |
|-------|-------|------------|------------------|------------|
|       |       | SRSS       | SRSS             | SRSS       |
|       | m     | m          | m                | m          |
| Piso3 | 8     | 0,040      | 0,042            | 0,042      |
| Piso2 | 5.5   | 0,032      | 0,033            | 0,033      |
| Piso1 | 3     | 0,011      | 0,012            | 0,012      |
| Base  | 0     | 0,000      | 0,000            | 0,000      |

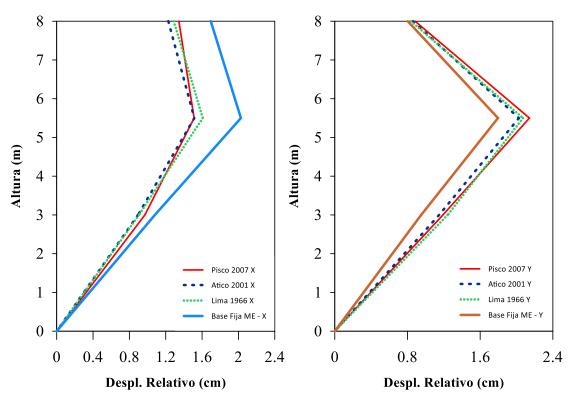


**Figura 78**Desplazamiento Absoluto del Análisis Modal Espectral y Tiempo Historia en base fija.



**Tabla 26**Desplazamientos Relativos en Dirección X e Y del Análisis Modal Espectral en Base Fija.

| Piso  | Elevación | X-Dir | Y-Dir |
|-------|-----------|-------|-------|
|       | m         | cm    | cm    |
| Piso3 | 8         | 1.696 | 0.803 |
| Piso2 | 5.5       | 2.027 | 1.796 |
| Piso1 | 3         | 1.080 | 0.951 |
| Base  | 0         | 0.000 | 0.000 |


**Tabla 27**Desplazamientos Relativos del Análisis Tiempo Historia para la dirección X.

| Piso  | Elev. | Atico 2001 | Lima 1966 | Pisco 2007 |
|-------|-------|------------|-----------|------------|
|       |       | SRSS       | SRSS      | SRSS       |
|       | m     | cm         | cm        | cm         |
| Piso3 | 8     | 1,229      | 1,289     | 1,344      |
| Piso2 | 5.5   | 1,515      | 1,607     | 1,513      |
| Piso1 | 3     | 0,895      | 0,905     | 0,970      |
| Base  | 0     | 0,000      | 0,000     | 0,000      |

**Tabla 28**Desplazamientos Relativos del Análisis Tiempo Historia para la dirección Y.

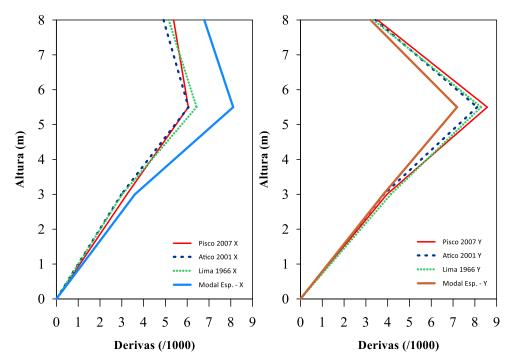
| Piso  | Elev. | Atico 2001 | Lima 1966 | Pisco 2007 |
|-------|-------|------------|-----------|------------|
|       |       | SRSS       | SRSS      | SRSS       |
|       | m     | cm         | cm        | cm         |
| Piso3 | 8     | 0,860      | 0,840     | 0,884      |
| Piso2 | 5.5   | 2,027      | 2,071     | 2,142      |
| Piso1 | 3     | 1,148      | 1,242     | 1,190      |
| Base  | 0     | 0,000      | 0,000     | 0,000      |

**Figura 79**Desplazamientos Relativos del Análisis Modal Espectral y Tiempo Historia en base fija.



**Tabla 29**Derivas del Análisis Modal Espectral de la estructura analizada en Dirección X e Y.

| Piso  | Elevación | X-Dir | Y-Dir |
|-------|-----------|-------|-------|
|       | m         | /1000 | /1000 |
| Piso3 | 8         | 6.783 | 3.213 |
| Piso2 | 5.5       | 8.109 | 7.184 |
| Piso1 | 3         | 3.601 | 3.803 |


**Tabla 30**Derivas del Análisis Tiempo Historia para la dirección X.

| Piso  | Elev. | Ático 2001 | Lima 1966 | Pisco 2007 |
|-------|-------|------------|-----------|------------|
|       |       | SRSS       | SRSS      | SRSS       |
|       | m     | /1000      | /1000     | /1000      |
| Piso3 | 8     | 4,915      | 5,154     | 5,377      |
| Piso2 | 5.5   | 6,058      | 6,429     | 6,050      |
| Piso1 | 3     | 2,983      | 3,017     | 3,235      |
| Base  | 0     | 0,000      | 0,000     | 0,000      |

**Tabla 31**Derivas del Análisis Tiempo Historia para la dirección Y.

| Piso  | Elev. | Ático 2001 | Lima 1966 | Pisco 2007 |
|-------|-------|------------|-----------|------------|
|       |       | SRSS       | SRSS      | SRSS       |
|       | m     | /1000      | /1000     | /1000      |
| Piso3 | 8     | 3,441      | 3,358     | 3,536      |
| Piso2 | 5.5   | 8,106      | 8,286     | 8,569      |
| Piso1 | 3     | 3,827      | 4,141     | 3,968      |
| Base  | 0     | 0,000      | 0,000     | 0,000      |

**Figura 80**Derivas del Análisis Modal Espectral y Tiempo Historia en base fija.





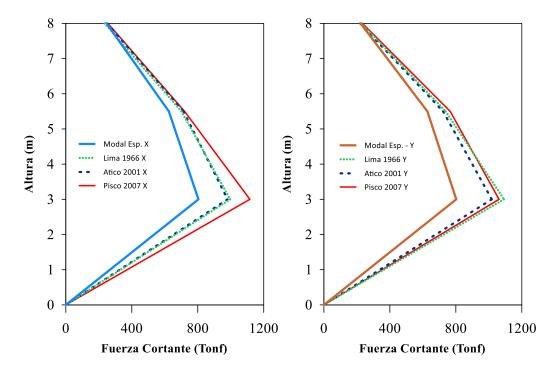
## 4.1.1.2 Fuerza cortante

Los esfuerzos cortantes que se determinaron para cada entrepiso de la estructura con base fija son los siguientes. Como puede verse abajo:

**Tabla 32** *Máximas fuerzas cortantes laterales en Dirección X e Y en Base Fija.* 

| Piso  | Elevación | Elevación Localización |         | Y-Dir   |  |
|-------|-----------|------------------------|---------|---------|--|
|       | m         |                        | tonf    | tonf    |  |
| Piso3 | 8         | Abajo                  | 247.127 | 222.467 |  |
| Piso2 | 5.5       | Abajo                  | 624.703 | 627.282 |  |
| Piso1 | 3         | Abajo                  | 804.097 | 802.600 |  |
| Base  | 0         | Abajo                  | 0.000   | 0.000   |  |

**Tabla 33**Fuerza cortante del Análisis Tiempo Historia para la dirección X.


| Piso  | Elev. | Ático 2001 | Lima 1966 | Pisco 2007 |
|-------|-------|------------|-----------|------------|
|       |       | SRSS       | SRSS      | SRSS       |
|       | m     | tonf       | tonf      | tonf       |
| Piso3 | 8     | 250,273    | 235,614   | 255,262    |
| Piso2 | 5.5   | 713,476    | 700,996   | 720,167    |
| Piso1 | 3     | 980,749    | 996,483   | 1115,788   |
| Base  | 0     | 0,000      | 0,000     | 0,000      |

**Tabla 34**Fuerza cortante del Análisis Tiempo Historia para la dirección Y.

| Piso  | Elev. | Ático 2001 | Lima 1966 | Pisco 2007 |
|-------|-------|------------|-----------|------------|
|       |       | SRSS       | SRSS      | SRSS       |
|       | m     | tonf       | tonf      | tonf       |
| Piso3 | 8     | 220,109    | 227,740   | 234,089    |
| Piso2 | 5.5   | 722,706    | 738,370   | 765,748    |
| Piso1 | 3     | 1017,815   | 1091,596  | 1061,918   |
| Base  | 0     | 0,000      | 0,000     | 0,000      |



**Figura 81** *Máximas fuerzas cortantes laterales del Análisis Modal Espectral y Tiempo Historia en base fija.* 



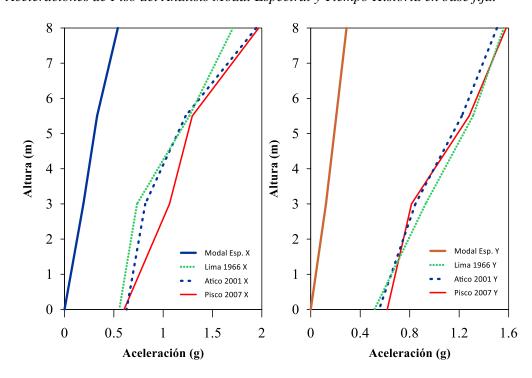
## 4.1.1.3 Aceleraciones

Los estudios dinámicos de la estructura con base fijan se presentan en la tabla adjunta, que muestra las aceleraciones del suelo. Los análisis dinámicos se ajustan a la norma E.030.

**Tabla 35**Aceleraciones de Piso del Análisis Modal Espectral en dirección X e Y.

| Piso  | Elevación | UX      | UX    | UY      | UY    |
|-------|-----------|---------|-------|---------|-------|
|       | m         | $m/s^2$ | g     | $m/s^2$ | g     |
| Piso3 | 8         | 5.304   | 0.541 | 2.839   | 0.289 |
| Piso2 | 5.5       | 3.237   | 0.330 | 2.025   | 0.206 |
| Piso1 | 3         | 1.878   | 0.191 | 1.208   | 0.123 |
| Base  | 0         | 0.000   | 0.000 | 0.000   | 0.000 |

**Tabla 36**Aceleraciones de Piso del Análisis Tiempo Historia para la dirección X.


| Piso | Elev. | Atico 2001 | <b>Lima 1966</b> | Pisco 2007 |  |
|------|-------|------------|------------------|------------|--|
|      |       | SRSS       | SRSS             | SRSS       |  |

|       | m   | g     | g     | g     |
|-------|-----|-------|-------|-------|
| Piso3 | 8   | 1.943 | 1.707 | 1.969 |
| Piso2 | 5.5 | 1.228 | 1.265 | 1.295 |
| Piso1 | 3   | 0.818 | 0.735 | 1.064 |
| Base  | 0   | 0.629 | 0.555 | 0.604 |

**Tabla 37**Aceleraciones de Piso del Análisis Tiempo Historia para la dirección Y.

| Piso  | Elev. | Atico 2001 | Lima 1966 | Pisco 2007 |
|-------|-------|------------|-----------|------------|
|       |       | SRSS       | SRSS      | SRSS       |
|       | m     | g          | g         | g          |
| Piso3 | 8     | 1.505      | 1.560     | 1.580      |
| Piso2 | 5.5   | 1.222      | 1.312     | 1.280      |
| Piso1 | 3     | 0.846      | 0.928     | 0.814      |
| Base  | 0     | 0.553      | 0.515     | 0.619      |

**Figura 82**Aceleraciones de Piso del Análisis Modal Espectral y Tiempo Historia en base fija.



# 4.1.1.4 Forma Modales, Periodo y Frecuencia de Vibración

Para realizar este análisis dinámico, se determinaron las formas de vibración y los periodos de la estructura utilizando una base fija, como se ilustra en la tabla siguiente:



**Tabla 38**Formas de vibrar de la estructura analizada.

| Modo          | Periodo | UX     | UY     | Sum UX | Sum UY | RZ     | Sum RZ |
|---------------|---------|--------|--------|--------|--------|--------|--------|
| 1             | 0.321   | 0.08%  | 78.17% | 0.08%  | 78.17% | 0.26%  | 0.26%  |
| 2             | 0.28    | 74.94% | 0.06%  | 75.02% | 78.23% | 1.92%  | 2.18%  |
| 3             | 0.255   | 1.83%  | 0.00%  | 76.85% | 78.23% | 71.78% | 73.97% |
| 4             | 0.119   | 0.00%  | 17.92% | 76.85% | 96.15% | 0.18%  | 74.15% |
| 5             | 0.094   | 17.81% | 0.04%  | 94.66% | 96.20% | 0.61%  | 74.75% |
| 6             | 0.092   | 0.65%  | 3.56%  | 95.31% | 99.76% | 0.00%  | 74.76% |
| 7             | 0.087   | 0.69%  | 0.16%  | 96.00% | 99.92% | 20.29% | 95.05% |
| 8             | 0.062   | 0.25%  | 0.00%  | 96.25% | 99.92% | 0.01%  | 95.06% |
| 9             | 0.059   | 0.00%  | 0.00%  | 96.25% | 99.92% | 0.00%  | 95.06% |
| 10            | 0.059   | 0.00%  | 0.00%  | 96.25% | 99.92% | 0.00%  | 95.06% |
| 11            | 0.056   | 0.00%  | 0.00%  | 96.25% | 99.92% | 0.00%  | 95.06% |
| 12            | 0.055   | 0.11%  | 0.01%  | 96.36% | 99.93% | 0.09%  | 95.15% |
| Sumato<br>ria |         | 96.36% | 99.92% |        |        | 95.14% |        |

## 4.2 Resultados de la estructura con aisladores tipo LRB con deslizador

# 4.2.1 Respuesta Estructural

Para obtener la Respuesta estructural del edificio usaremos los siguientes parámetros, según los criterios establecidos por la norma E.031.

Para el análisis no lineal Tiempo- Historia se consideró el 100% del sismo en dirección N-S y 100% en E-O, (Wilson, 2000) sugiere que para un mayor enfoque exacto es utilizar el método SRSS para combinar 100% de los resultados en las dos direcciones ortogonales donde los resultados direccionales individuales han sido combinados por SRSS con el objetivo de tener resultados más reales.

**Tabla 39**Parámetros Sísmicos -Análisis Dinámico Modal Espectral con aisladores LRB y deslizador.

| Z  | 0.25 | Factor de zona  | Cusco, Cusco, Perú |
|----|------|-----------------|--------------------|
| S  | 1.40 | Factor de suelo | Suelo Tipo 3       |
| Tp | 1.00 | Periodo corto   |                    |

| Tl | 1.60 | Periodo largo                  |                                             |
|----|------|--------------------------------|---------------------------------------------|
| U  | 1.50 | Factor de uso                  | Categoría: Esencial A2 -<br>Colegio         |
| Ro | 1.00 | Factor de reducción básico     |                                             |
| Ia | 1.00 | Irregularidad en altura        | Irregular                                   |
| Ip | 1.00 | Irregularidad en planta        | Irregular                                   |
| R  | 1.00 | Factor de reducción R=Ro.Ia.Ib | Aislamiento Sísmico con LRB<br>y deslizador |

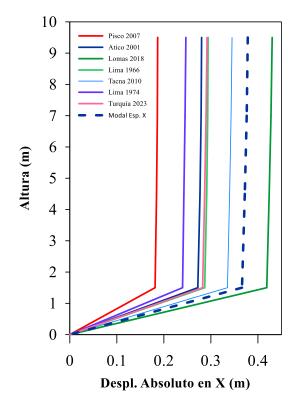
## 4.2.1.1 Deriva

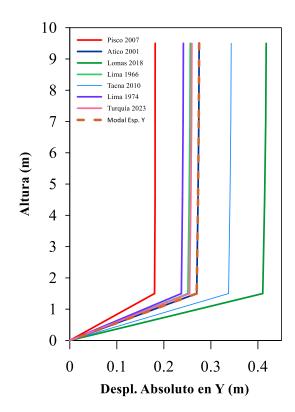
Los Resultados de derivas de entrepiso máximas permisibles según los parámetros de la norma E.031 no deben ser iguales o superiores a 0.0035 para estructuras de concreto. Los resultados de derivas de entrepiso máximas permisibles según los parámetros de la norma E.031 no deben ser iguales o superiores a 0.005 para estructuras de concreto usando un Análisis Dinámico Tiempo-Historia, La deriva será calculada como desplazamiento lateral de cada entrepiso dividido entre la altura de este. La siguiente tabla muestra los desplazamientos en las direcciones X e Y.

**Tabla 40**Desplazamientos Absolutos del Análisis Modal Espectral en X e Y.

| Piso        | Elevación | X-Dir | Y-Dir |
|-------------|-----------|-------|-------|
|             | m         | m     | m     |
| Piso3       | 9.5       | 0.378 | 0.349 |
| Piso2       | 7         | 0.376 | 0.348 |
| Piso1       | 4.5       | 0.372 | 0.346 |
| Aislamiento | 1.5       | 0.366 | 0.342 |
| Base        | 0         | 0.000 | 0.000 |

**Tabla 41**Desplazamientos Absolutos del Análisis Tiempo Historia para la dirección X.


| Piso  | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|       |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|       | m     | m             | m             | m             | m            | m            | m             | m               |
| Piso3 | 9.5   | 0.280         | 0.345         | 0.430         | 0.294        | 0.247        | 0.187         | 0.292           |


| Piso2       | 7   | 0.279 | 0.343 | 0.428 | 0.293 | 0.245 | 0.186 | 0.290 |
|-------------|-----|-------|-------|-------|-------|-------|-------|-------|
| Piso1       | 4.5 | 0.277 | 0.340 | 0.424 | 0.291 | 0.243 | 0.184 | 0.287 |
| Aislamiento | 1.5 | 0.272 | 0.335 | 0.419 | 0.287 | 0.240 | 0.181 | 0.282 |
| Base        | 0   | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |

**Tabla 42**Desplazamientos Absolutos del Análisis Tiempo Historia para la dirección Y.

| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | m             | m             | m             | m            | m            | m             | m               |
| Piso3       | 9.5   | 0.275         | 0.343         | 0.418         | 0.256        | 0.242        | 0.182         | 0.260           |
| Piso2       | 7     | 0.274         | 0.342         | 0.417         | 0.255        | 0.241        | 0.181         | 0.259           |
| Piso1       | 4.5   | 0.273         | 0.341         | 0.414         | 0.254        | 0.240        | 0.181         | 0.257           |
| Aislamiento | 1.5   | 0.270         | 0.338         | 0.410         | 0.251        | 0.237        | 0.180         | 0.255           |
| Base        | 0     | 0.000         | 0.000         | 0.000         | 0.000        | 0.000        | 0.000         | 0.000           |

**Figura 83**Desplazamientos absolutos del Análisis Modal Espectral y Tiempo Historia con Aislador LRB y deslizador.

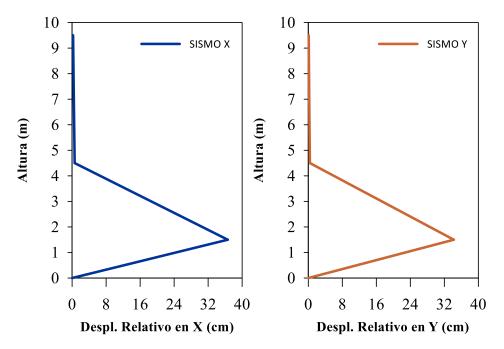


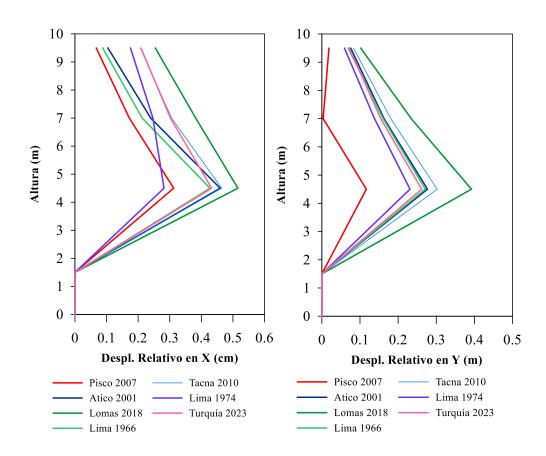


**Tabla 43**Desplazamientos Relativos del Análisis Modal Espectral en X e Y.

| Piso        | Elevación | X-Dir  | Y-Dir  |
|-------------|-----------|--------|--------|
|             | m         | cm     | cm     |
| Piso3       | 9.5       | 0.224  | 0.096  |
| Piso2       | 7         | 0.405  | 0.215  |
| Piso1       | 4.5       | 0.598  | 0.366  |
| Aislamiento | 1.5       | 36.617 | 34.230 |
| Base        | 0         | 0.000  | 0.000  |

**Tabla 44**Desplazamientos Relativos del Análisis Tiempo Historia para la dirección X.


| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | cm            | cm            | cm            | cm           | cm           | cm            | cm              |
| Piso3       | 9.5   | 0.104         | 0.207         | 0.254         | 0.088        | 0.176        | 0.067         | 0.209           |
| Piso2       | 7     | 0.240         | 0.306         | 0.382         | 0.213        | 0.247        | 0.172         | 0.302           |
| Piso1       | 4.5   | 0.460         | 0.464         | 0.516         | 0.427        | 0.282        | 0.312         | 0.433           |
| Aislamiento | 1.5   | 0.000         | 0.000         | 0.000         | 0.000        | 0.000        | 0.000         | 0.000           |
| Base        | 0     | 0.000         | 0.000         | 0.000         | 0.000        | 0.000        | 0.000         | 0.000           |




**Tabla 45**Desplazamientos Relativos del Análisis Tiempo Historia para la dirección Y.

| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | cm            | cm            | cm            | cm           | cm           | cm            | cm              |
| Piso3       | 9.5   | 0.076         | 0.083         | 0.102         | 0.069        | 0.059        | 0.019         | 0.072           |
| Piso2       | 7     | 0.163         | 0.181         | 0.234         | 0.161        | 0.138        | 0.003         | 0.155           |
| Piso1       | 4.5   | 0.277         | 0.302         | 0.392         | 0.271        | 0.231        | 0.117         | 0.262           |
| Aislamiento | 1.5   | 0.000         | 0.000         | 0.000         | 0.000        | 0.000        | 0.000         | 0.000           |
| Base        | 0     | 0.000         | 0.000         | 0.000         | 0.000        | 0.000        | 0.000         | 0.000           |

**Figura 84**Desplazamientos relativos del Análisis Modal Espectral y Tiempo Historia con Aislador LRB y deslizador.

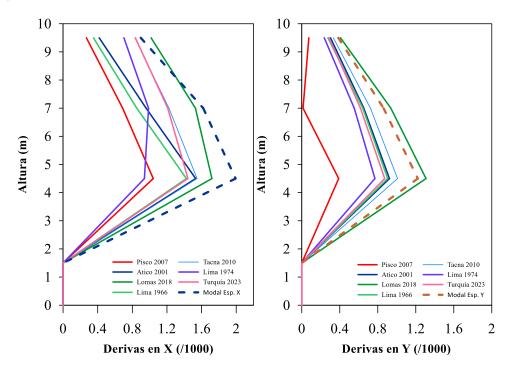




**Tabla 46**Derivas del Análisis Modal Espectral de la estructura analizada en X e Y.

| Piso  | Elevación | X-Dir | Y-Dir |  |
|-------|-----------|-------|-------|--|
|       | m         | /1000 | /1000 |  |
| Piso3 | 9.5       | 0.897 | 0.384 |  |
| Piso2 | 7         | 1.619 | 0.861 |  |
| Piso1 | 4.5       | 1.993 | 1.221 |  |

**Tabla 47**Derivas del Análisis Tiempo Historia para la dirección X.


| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | /1000         | /1000         | /1000         | /1000        | /1000        | /1000         | /1000           |
| Piso3       | 9.5   | 0.417         | 0.830         | 1.017         | 0.351        | 0.703        | 0.269         | 0.835           |
| Piso2       | 7     | 0.959         | 1.223         | 1.529         | 0.851        | 0.987        | 0.688         | 1.209           |
| Piso1       | 4.5   | 1.532         | 1.548         | 1.719         | 1.425        | 0.940        | 1.042         | 1.442           |
| Aislamiento | 1.5   | 0.000         | 0.000         | 0.000         | 0.000        | 0.000        | 0.000         | 0.000           |
| Base        | 0     | 0.000         | 0.000         | 0.000         | 0.000        | 0.000        | 0.000         | 0.000           |

**Tabla 48**Derivas del Análisis Tiempo Historia para la dirección Y.

| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | /1000         | /1000         | /1000         | /1000        | /1000        | /1000         | /1000           |
| Piso3       | 9.5   | 0.302         | 0.332         | 0.408         | 0.275        | 0.237        | 0.074         | 0.287           |
| Piso2       | 7     | 0.653         | 0.723         | 0.938         | 0.642        | 0.552        | 0.014         | 0.618           |
| Piso1       | 4.5   | 0.923         | 1.008         | 1.308         | 0.904        | 0.770        | 0.389         | 0.873           |
| Aislamiento | 1.5   | 0.000         | 0.000         | 0.000         | 0.000        | 0.000        | 0.000         | 0.000           |
| Base        | 0     | 0.000         | 0.000         | 0.000         | 0.000        | 0.000        | 0.000         | 0.000           |

Figura 85

Distorsiones laterales del Análisis Modal Espectral y Tiempo Historia con Aislador LRB y deslizador.



### 4.2.1.2 Fuerza cortante

Esta es una lista de los esfuerzos cortantes dinámicos que se calcularon para cada nivel de la estructura de base aislada empleando análisis modal espectral y análisis de historia temporal en siete pares diferentes de datos sísmicos. Como puede verse a continuación:

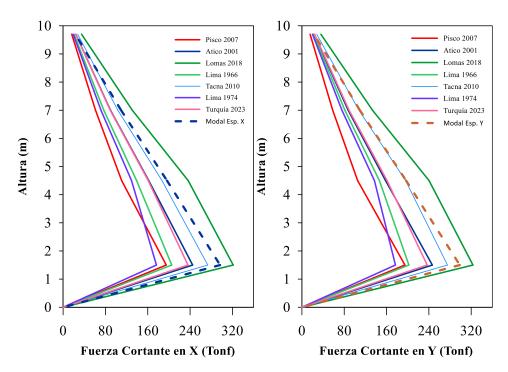
#### Tabla 49



Fuerza cortante del análisis modal espectral para la dirección X e Y.

| Piso        | Elevación | Localización | X-Dir   | Y-Dir   |
|-------------|-----------|--------------|---------|---------|
|             | m         |              | tonf    | tonf    |
| Piso3       | 9.5       | Abajo        | 29.493  | 29.391  |
| Piso2       | 7         | Abajo        | 109.589 | 109.574 |
| Piso1       | 4.5       | Abajo        | 196.361 | 196.948 |
| Aislamiento | 1.5       | Abajo        | 296.756 | 298.458 |
| Base        | 0         | Abajo        | 0.000   | 0.000   |

**Tabla 50**Fuerza cortante del Análisis Tiempo Historia para la dirección X.


| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | tonf          | tonf          | tonf          | tonf         | tonf         | tonf          | tonf            |
| Piso3       | 9.5   | 23,872        | 27,568        | 34,864        | 20,490       | 19,074       | 16,321        | 23,720          |
| Piso2       | 7     | 89,591        | 103,456       | 130,835       | 76,893       | 71,576       | 61,258        | 89,022          |
| Piso1       | 4.5   | 161,885       | 186,937       | 236,410       | 138,941      | 129,332      | 110,690       | 160,858         |
| Aislamiento | 1.5   | 244,844       | 273,409       | 321,513       | 205,408      | 176,426      | 195,008       | 236,037         |
| Base        | 0     | 0,000         | 0,000         | 0,000         | 0,000        | 0,000        | 0,000         | 0,000           |

**Tabla 51**Fuerza cortante del Análisis Tiempo Historia para la dirección Y.

| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | tonf          | tonf          | tonf          | tonf         | tonf         | tonf          | tonf            |
| Piso3       | 9.5   | 23,218        | 28,057        | 35,859        | 21,779       | 20,012       | 15,458        | 23,895          |
| Piso2       | 7     | 87,426        | 107,664       | 133,401       | 81,236       | 75,677       | 58,220        | 89,222          |
| Piso1       | 4.5   | 158,160       | 195,991       | 240,339       | 146,486      | 137,091      | 105,327       | 160,958         |
| Aislamiento | 1.5   | 246,489       | 275,138       | 323,319       | 202,225      | 176,801      | 194,769       | 236,793         |
| Base        | 0     | 0,000         | 0,000         | 0,000         | 0,000        | 0,000        | 0,000         | 0,000           |

Figura 86

Fuerzas cortantes del Análisis Modal Espectral y Tiempo Historia con Aislador LRB y deslizador.



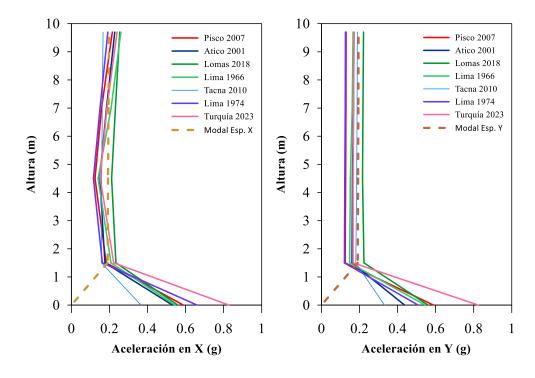
#### 4.2.1.3 Aceleraciones

Los resultados de un análisis modal espectral se han recopilado en la tabla adjunta, que muestra las aceleraciones de suelo de la estructura con base aislada utilizando LRB con deslizador. De acuerdo con los parámetros del análisis modal espectral que se establecieron según la norma E.031. También se realizó un análisis dinámico tiempo-historia de los datos utilizando los siete pares diferentes de registros sísmicos.

**Tabla 52**Aceleraciones de Piso del Análisis Modal Espectral.

| Piso        | Elevación | UX      | UX    | UY      | UY    |
|-------------|-----------|---------|-------|---------|-------|
|             | m         | $m/s^2$ | g     | $m/s^2$ | g     |
| Piso3       | 9.5       | 1.939   | 0.198 | 1.911   | 0.195 |
| Piso2       | 7         | 1.914   | 0.195 | 1.902   | 0.194 |
| Piso1       | 4.5       | 1.889   | 0.193 | 1.888   | 0.193 |
| Aislamiento | 1.5       | 1.868   | 0.190 | 1.872   | 0.191 |
| Base        | 0         | 0.000   | 0.000 | 0       | 0.000 |

**Tabla 53**Aceleraciones de Piso del Análisis Tiempo Historia para la dirección X.


| Piso  | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|       |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|       | m     | g             | g             | g             | g            | g            | g             | g               |
| Piso3 | 9.5   | 0,228         | 0,167         | 0,254         | 0,260        | 0,192        | 0,215         | 0,240           |

| Piso2       | 7   | 0,184 | 0,162 | 0,231 | 0,209 | 0,150 | 0,159 | 0,187 |
|-------------|-----|-------|-------|-------|-------|-------|-------|-------|
| Piso1       | 4.5 | 0,149 | 0,159 | 0,211 | 0,140 | 0,116 | 0,124 | 0,152 |
| Aislamiento | 1.5 | 0,176 | 0,158 | 0,234 | 0,208 | 0,163 | 0,183 | 0,222 |
| Base        | 0   | 0,531 | 0,366 | 0,560 | 0,545 | 0,660 | 0,588 | 0,827 |

**Tabla 54**Aceleraciones de Piso del Análisis Tiempo Historia para la dirección Y.

| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | g             | g             | g             | g            | g            | g             | g               |
| Piso3       | 9.5   | 0,171         | 0,188         | 0,221         | 0,166        | 0,126        | 0,129         | 0,171           |
| Piso2       | 7     | 0,168         | 0,187         | 0,218         | 0,162        | 0,125        | 0,129         | 0,169           |
| Piso1       | 4.5   | 0,163         | 0,185         | 0,216         | 0,152        | 0,123        | 0,127         | 0,166           |
| Aislamiento | 1.5   | 0,160         | 0,180         | 0,223         | 0,148        | 0,121        | 0,124         | 0,166           |
| Base        | 0     | 0,437         | 0,331         | 0,560         | 0,545        | 0,508        | 0,588         | 0,824           |

**Figura 87**Aceleraciones de Piso del Análisis Modal Espectral y Tiempo Historia con Aislador LRB y deslizador.





## 4.2.1.4 Amortiguamiento Efectivo

Se obtuvieron los siguientes amortiguamientos efectivos para cada entrepiso de la estructura con base aislada de tipo LRB con deslizador sometido a un análisis modal espectral según los 7 pares de registros sísmicos. Como se muestra a continuación:

**Tabla 55**Amortiguamiento efectivo del sistema con control de vibraciones - LRB con deslizador.

| Evento              | Internal Hysteretic Damping | β eff-glb |
|---------------------|-----------------------------|-----------|
|                     | tonf-m                      | %         |
| Atico - case 1      | 779.836                     | 15.000%   |
| Atico - case 2      | 781.004                     | 15.000%   |
| Tacna case 1        | 292.650                     | 23.700%   |
| Tacna case 2        | 292.739                     | 24.100%   |
| Lomas case 1        | 279.175                     | 20.900%   |
| Lomas case 2        | 280.576                     | 20.800%   |
| Lima 1966 - case 1  | 424.849                     | 17.900%   |
| Lima 1966 - case 2  | 543.374                     | 15.200%   |
| Lima 1974 case 1    | 669.518                     | 13.000%   |
| Lima 1974 case 2    | 668.542                     | 13.200%   |
| Pisco 2007 case 1   | 787.226                     | 12.400%   |
| Pisco 2007 case 2   | 788.299                     | 12.300%   |
| Turquía 2023 case 1 | 918.984                     | 16.200%   |
| Turquía 2023 case 2 | 919.369                     | 16.100%   |

**Figura 88**Amortiguamiento y Energía disipada del Sistema Estructural con LRB con deslizador para Atico.

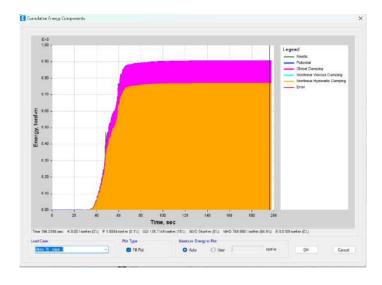
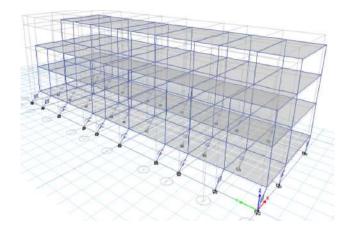
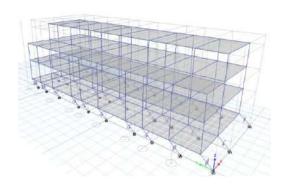





Figura 89

Amortiguamiento y Energía disipada del Sistema Estructural con LRB con deslizador para Turquía.





### 4.2.1.5 Periodo

El periodo de la estructura con base aislada con tipo LRB con deslizador ha aumentado más de 3 veces el periodo de la base fija, el periodo con la Norma E.031 es de 2.683 segundos. A continuación, se muestra la tabla de los periodos según los modos de la estructura.

Figura 90

Primera y segunda formas de modo de la estructura con aislamiento LRB con deslizador.





**Tabla 56**Periodo y porcentajes de Participación de Masa de la Estructura Aislada con LRB y deslizador.

| Modo | Periodo | UX UY |       | Sum UX | Sum UY |  |
|------|---------|-------|-------|--------|--------|--|
|      | 2 (92   | 0.001 | 0.000 | 0.001  | 0.000  |  |
| 1    | 2.683   | 0.991 | 0.008 | 0.991  | 0.008  |  |
| 2    | 2.675   | 0.008 | 0.990 | 1.000  | 0.999  |  |
| 3    | 1.897   | 0.000 | 0.001 | 1.000  | 1.000  |  |
| 4    | 0.252   | 0.000 | 0.000 | 1.000  | 1.000  |  |
| 5    | 0.222   | 0.000 | 0.000 | 1.000  | 1.000  |  |
| 6    | 0.199   | 0.000 | 0.000 | 1.000  | 1.000  |  |
| 7    | 0.114   | 0.000 | 0.000 | 1.000  | 1.000  |  |
| 8    | 0.103   | 0.000 | 0.000 | 1.000  | 1.000  |  |
| 9    | 0.096   | 0.000 | 0.000 | 1.000  | 1.000  |  |

## 4.3 Resultados de la estructura con aisladores tipo TFP

### 4.3.1 Respuesta Estructural

Para obtener la Respuesta estructural del edificio usaremos los siguientes parámetros, según los criterios establecidos por la norma E.031.

Para el análisis no lineal Tiempo- Historia se consideró el 100% del sismo en dirección N-S y 100% en E-O, (Wilson, 2000) sugiere que para un mayor enfoque exacto es utilizar el método SRSS para combinar 100% de los resultados en las dos direcciones ortogonales donde los resultados direccionales individuales han sido combinados por SRSS con el objetivo de tener resultados más reales.



**Tabla 57**Parámetros Sísmicos -Análisis Dinámico Modal Espectral con aisladores TFP.

| 0.25 | Factor de zona                               | Cusco, Cusco, Perú                                                                                                                                                      |  |  |  |
|------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1.40 | Factor de suelo                              | Suelo Tipo 3                                                                                                                                                            |  |  |  |
| 1.00 | Periodo corto                                |                                                                                                                                                                         |  |  |  |
| 1.60 | Periodo largo                                |                                                                                                                                                                         |  |  |  |
| 1.50 | Factor de uso                                | Categoría: Esencial A2 - Colegio                                                                                                                                        |  |  |  |
| 1.00 | Factor de reducción básico                   |                                                                                                                                                                         |  |  |  |
| 1.00 | Irregularidad en altura                      | Irregular                                                                                                                                                               |  |  |  |
| 1.00 | Irregularidad en planta                      | Irregular                                                                                                                                                               |  |  |  |
| 1.00 | Factor de reducción R=Ro.Ia.Ib               | Aislamiento Sísmico con TFP                                                                                                                                             |  |  |  |
|      | 1.40<br>1.00<br>1.60<br>1.50<br>1.00<br>1.00 | 1.40 Factor de suelo 1.00 Periodo corto 1.60 Periodo largo 1.50 Factor de uso 1.00 Factor de reducción básico 1.00 Irregularidad en altura 1.00 Irregularidad en planta |  |  |  |

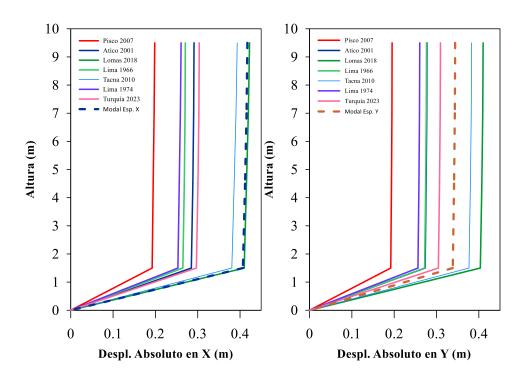
#### 4.3.1.1 Deriva

Los Resultados de derivas de entrepiso máximas permisibles según los parámetros de la norma E.031 no deben ser iguales o superiores a 0.0035 para estructuras de concreto. Los resultados de derivas de entrepiso máximas permisibles según los parámetros de la norma E.031 no deben ser iguales o superiores a 0.005 para estructuras de concreto usando un Análisis Dinámico Tiempo-Historia, La deriva será calculada como desplazamiento lateral de cada entrepiso dividido entre la altura de este. A continuación, se muestran los desplazamientos en dirección X y en dirección Y.

**Tabla 58**Desplazamientos Absolutos del Análisis Modal Espectral en X e Y.

| Piso        | Elevación | X-Dir | Y-Dir |
|-------------|-----------|-------|-------|
|             | m         | m     | m     |
| Piso3       | 9.5       | 0.417 | 0.344 |
| Piso2       | 7         | 0.415 | 0.343 |
| Piso1       | 4.5       | 0.412 | 0.342 |
| Aislamiento | 1.5       | 0.407 | 0.338 |
| Base        | 0         | 0.000 | 0.000 |

**Tabla 59**Desplazamientos Absolutos del Análisis Tiempo Historia para la dirección X.




| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | m             | m             | m             | m            | m            | m             | m               |
| Piso3       | 9.5   | 0,291         | 0,393         | 0.427         | 0.287        | 0.261        | 0.212         | 0.304           |
| Piso2       | 7     | 0,290         | 0,390         | 0.424         | 0.286        | 0.259        | 0.212         | 0.303           |
| Piso1       | 4.5   | 0,288         | 0,386         | 0.419         | 0.283        | 0.256        | 0.210         | 0.301           |
| Aislamiento | 1.5   | 0,285         | 0,381         | 0.414         | 0.279        | 0.253        | 0.208         | 0.297           |
| Base        | 0     | 0,000         | 0,000         | 0.000         | 0.000        | 0.000        | 0.000         | 0.000           |

**Tabla 60**Desplazamientos Absolutos del Análisis Tiempo Historia para la dirección Y.

| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | m             | m             | m             | m            | m            | m             | m               |
| Piso3       | 9.5   | 0,277         | 0.381         | 0.427         | 0.276        | 0,260        | 0.216         | 0.309           |
| Piso2       | 7     | 0,277         | 0.380         | 0.427         | 0.276        | 0,260        | 0.216         | 0.309           |
| Piso1       | 4.5   | 0,275         | 0.378         | 0.424         | 0.274        | 0,258        | 0.215         | 0.307           |
| Aislamiento | 1.5   | 0,273         | 0.374         | 0.421         | 0.272        | 0,256        | 0.213         | 0.304           |
| Base        | 0     | 0,000         | 0.000         | 0.000         | 0.000        | 0,000        | 0.000         | 0.000           |

**Figura 91**Desplazamientos absolutos del Análisis Modal Espectral y Tiempo Historia con Aislador TFP.

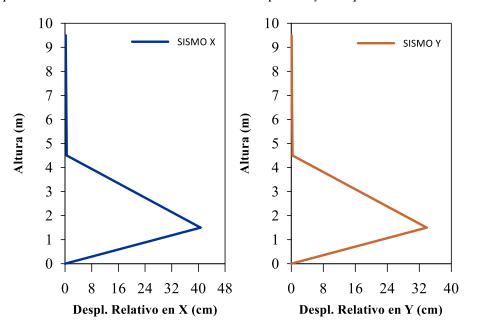


**Tabla 61**Desplazamientos Relativos del Análisis Modal Espectral en X e Y.

| Piso        | Elevación | X-Dir  | Y-Dir  |  |
|-------------|-----------|--------|--------|--|
|             | m         | cm     | cm     |  |
| Piso3       | 9.5       | 0.195  | 0.078  |  |
| Piso2       | 7         | 0.351  | 0.180  |  |
| Piso1       | 4.5       | 0.516  | 0.306  |  |
| Aislamiento | 1.5       | 40.668 | 33.844 |  |
| Base        | 0         | 0.000  | 0.000  |  |

**Tabla 62**Desplazamientos Relativos del Análisis Tiempo Historia para la dirección X.

| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | cm            | cm            | cm            | cm           | cm           | cm            | cm              |
| Piso3       | 9.5   | 0,089         | 0,292         | 0.304         | 0.178        | 0.171        | 0.064         | 0,103           |
| Piso2       | 7     | 0,192         | 0,432         | 0.459         | 0.276        | 0.264        | 0.142         | 0,210           |
| Piso1       | 4.5   | 0,357         | 0,552         | 0.547         | 0.392        | 0.318        | 0.223         | 0,380           |
| Aislamiento | 1.5   | 0,000         | 0,000         | 0.000         | 0.000        | 0.000        | 0.000         | 0,000           |
| Base        | 0     | 0.000         | 0.000         | 0.000         | 0.000        | 0.000        | 0.000         | 0.000           |




**Tabla 63**Desplazamientos Relativos del Análisis Tiempo Historia para la dirección Y.

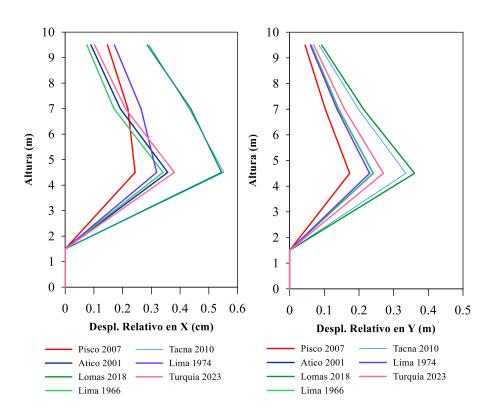

| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | cm            | cm            | cm            | cm           | cm           | cm            | cm              |
| Piso3       | 9.5   | 0,062         | 0.089         | 0.097         | 0,062        | 0,060        | 0.050         | 0,069           |
| Piso2       | 7     | 0,141         | 0.205         | 0.222         | 0,141        | 0,137        | 0.111         | 0,158           |
| Piso1       | 4.5   | 0,241         | 0.363         | 0.377         | 0,241        | 0,231        | 0.191         | 0,270           |
| Aislamiento | 1.5   | 0,000         | 0.000         | 0.000         | 0,000        | 0,000        | 0.000         | 0,000           |
| Base        | 0     | 0.000         | 0.000         | 0.000         | 0.000        | 0.000        | 0.000         | 0.000           |

Figura 92

Desplazamientos relativos del Análisis Modal Espectral y Tiempo Historia con Aislador TFP.



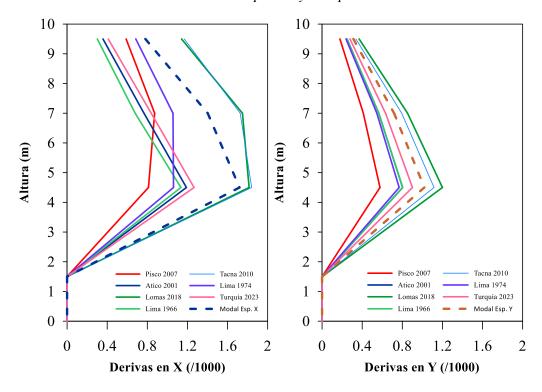
**Figura 93**Desplazamientos Relativos del Análisis Tiempo Historia en X e Y.



**Tabla 64**Derivas del Análisis Modal Espectral de la estructura analizada en X e Y.

| Piso  | Elevación | X-Dir | Y-Dir |  |
|-------|-----------|-------|-------|--|
|       | m         | /1000 | /1000 |  |
| Piso3 | 9.5       | 0.780 | 0.312 |  |
| Piso2 | 7         | 1.402 | 0.718 |  |
| Piso1 | 4.5       | 1.719 | 1.020 |  |
|       |           |       |       |  |

**Tabla 65**Derivas del Análisis Tiempo Historia para la dirección X.


| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | /1000         | /1000         | /1000         | /1000        | /1000        | /1000         | /1000           |
| Piso3       | 9.5   | 0,358         | 1,168         | 1.215         | 0.710        | 0,685        | 0.254         | 0.410           |
| Piso2       | 7     | 0,767         | 1,726         | 1.836         | 1.104        | 1,056        | 0.568         | 0.838           |
| Piso1       | 4.5   | 1,190         | 1,840         | 1.824         | 1.307        | 1,061        | 0.745         | 1.266           |
| Aislamiento | 1.5   | 0,000         | 0,000         | 0.000         | 0.000        | 0,000        | 0.000         | 0.000           |
| Base        | 0     | 0,000         | 0,000         | 0.000         | 0.000        | 0,000        | 0.000         | 0.000           |

**Tabla 66**Derivas del Análisis Tiempo Historia para la dirección Y.

| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | /1000         | /1000         | /1000         | /1000        | /1000        | /1000         | /1000           |
| Piso3       | 9.5   | 0,248         | 0,337         | 0.389         | 0.248        | 0,238        | 0.201         | 0.278           |
| Piso2       | 7     | 0,565         | 0,794         | 0.890         | 0.564        | 0,546        | 0.446         | 0.633           |
| Piso1       | 4.5   | 0,803         | 1,116         | 1.255         | 0.804        | 0,769        | 0.637         | 0.901           |
| Aislamiento | 1.5   | 0,000         | 0,000         | 0.000         | 0.000        | 0,000        | 0.000         | 0.000           |
| Base        | 0     | 0,000         | 0,000         | 0.000         | 0.000        | 0,000        | 0.000         | 0.000           |

Figura 94

Distorsiones laterales del Análisis Modal Espectral y Tiempo Historia con Aislador TFP.



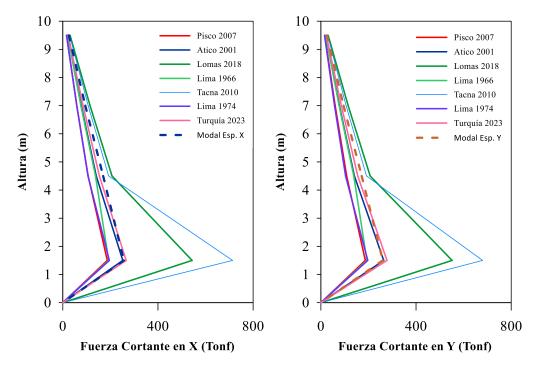
### 4.3.1.2 Fuerza cortante

Se obtuvieron las siguientes fuerzas cortante dinámico para cada entrepiso de la estructura con base aislada tipo TFP sometido a un análisis modal espectral y a un análisis Tiempo-Historia según los 7 pares de registros sísmicos. Como se muestra a continuación:



**Tabla 67**Fuerza cortante del análisis modal espectral para la dirección X e Y.

| Piso        | Elevación Localización |       | X-Dir   | Y-Dir   |
|-------------|------------------------|-------|---------|---------|
|             | m                      |       | tonf    | tonf    |
| Piso3       | 9.5                    | Abajo | 25.433  | 25.458  |
| Piso2       | 7                      | Abajo | 94.584  | 95.285  |
| Piso1       | 4.5                    | Abajo | 169.627 | 171.553 |
| Aislamiento | 1.5                    | Abajo | 256.660 | 260.328 |
| Base        | 0                      | Abajo | 0       | 0       |


**Tabla 68**Fuerza cortante del Análisis Tiempo Historia para la dirección X.

| Piso        | Elev. | Atico<br>2001 | Tacna<br>2010 | Lomas<br>2018 | Lima<br>1966 | Lima<br>1974 | Pisco<br>2007 | Turquía<br>2023 |
|-------------|-------|---------------|---------------|---------------|--------------|--------------|---------------|-----------------|
|             |       | SRSS          | SRSS          | SRSS          | SRSS         | SRSS         | SRSS          | SRSS            |
|             | m     | tonf          | tonf          | tonf          | tonf         | tonf         | tonf          | tonf            |
| Piso3       | 9.5   | 18.514        | 28,425        | 31.539        | 20.591       | 19.370       | 15.699        | 22.704          |
| Piso2       | 7     | 69.480        | 106,673       | 118.356       | 77.275       | 72.691       | 58.915        | 85.201          |
| Piso1       | 4.5   | 125.546       | 192,752       | 213.861       | 139.630      | 131.347      | 106.455       | 153.952         |
| Aislamiento | 1.5   | 226.206       | 713,652       | 606.652       | 185.237      | 161.832      | 187.089       | 266.265         |
| Base        | 0     | 0.000         | 0,000         | 0.000         | 0.000        | 0.000        | 0.000         | 0.000           |

**Tabla 69**Fuerza cortante del Análisis Tiempo Historia para la dirección Y.

| Piso        | Flow       | Atico   | Tacna   | Lomas   | Lima    | Lima    | Pisco   | Turquía |
|-------------|------------|---------|---------|---------|---------|---------|---------|---------|
| F 180       | Piso Elev. |         | 2010    | 2018    | 1966    | 1974    | 2007    | 2023    |
|             |            | SRSS    |
|             | m          | tonf    |
| Piso3       | 9.5        | 20.683  | 28.411  | 31.682  | 20.392  | 19.305  | 16.056  | 22.873  |
| Piso2       | 7          | 77.861  | 106.867 | 118.748 | 76.545  | 72.232  | 60.066  | 85.872  |
| Piso1       | 4.5        | 140.834 | 193.249 | 214.479 | 138.321 | 130.387 | 108.420 | 155.184 |
| Aislamiento | 1.5        | 264.087 | 710.721 | 611.563 | 193.550 | 161.752 | 186.751 | 277.885 |
| Base        | 0          | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |

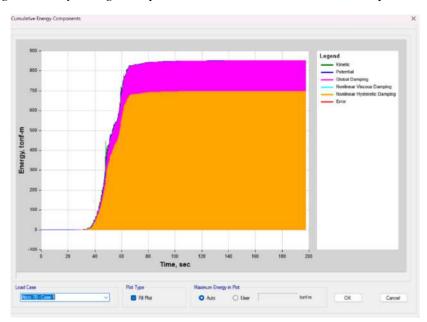
**Figura 95**Fuerzas cortantes del Análisis Modal Espectral y Tiempo Historia con Aislador TFP.



## 4.3.1.3 Amortiguamiento Efectivo

Se obtuvieron los siguientes amortiguamientos efectivos para cada entrepiso de la estructura con base aislada de tipo TFP sometido a un análisis modal espectral según los 7 pares de registros sísmicos. Como se muestra a continuación:

Tabla 70


Amortiguamiento efectivo del sistema con control de vibraciones - TFP.

| Evento             | Internal Hysteretic Damping | β eff-glb |
|--------------------|-----------------------------|-----------|
|                    | tonf-m                      | %         |
| Atico 70 - Case 1  | 697.609                     | 18.100    |
| Atico 70 - case 2  | 699.397                     | 18.100    |
| Tacna case 1       | 321.375                     | 28.000    |
| Tacna case 2       | 320.785                     | 28.000    |
| Lomas case 1       | 302.564                     | 24.100    |
| Lomas case 2       | 303.599                     | 24.200    |
| Lima 1966 - case 1 | 363.557                     | 21.200    |
| Lima 1966 - case 2 | 363.037                     | 21.200    |
| Lima 1974 case 1   | 608.125                     | 16.500    |
| Lima 1974 case 2   | 607.929                     | 16.600    |
| Pisco 2007 case 1  | 811.579                     | 16.300    |
| Pisco 2007 case 2  | 812.509                     | 16.300    |



| Turquía 2023 case 1 | 905.830 | 18.800 |
|---------------------|---------|--------|
| Turquía 2023 case 2 | 907.421 | 18.800 |

**Figura 96**Amortiguamiento y Energía disipada del Sistema Estructural con TFP para Atico.



**Figura 97**Amortiguamiento y Energía disipada del Sistema Estructural con TFP para Turquía.





### 4.3.1.4 Aceleraciones

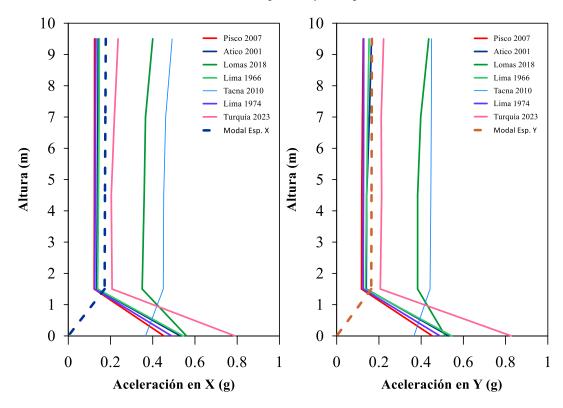
En la siguiente tabla se muestran las aceleraciones de piso de la estructura con base aislada usando TFP sometido a un análisis modal espectral y a un análisis dinámico tiempo-historia según la norma E.031 usando los 7 pares de registros sísmicos.

**Tabla 71**Aceleraciones de Piso del Análisis Modal Espectral.

| Piso        | Elevación | UX                     | UX    | UY      | UY    |
|-------------|-----------|------------------------|-------|---------|-------|
|             | m         | $m/s^{\boldsymbol{2}}$ | g     | $m/s^2$ | g     |
| Piso3       | 9.5       | 1.742                  | 0.178 | 1.635   | 0.167 |
| Piso2       | 7         | 1.723                  | 0.176 | 1.628   | 0.166 |
| Piso1       | 4.5       | 1.704                  | 0.174 | 1.618   | 0.165 |
| Aislamiento | 1.5       | 1.689                  | 0.172 | 1.606   | 0.164 |
| Base        | 0         | 0.000                  | 0.000 | 0.000   | 0.000 |

**Tabla 72**Aceleraciones de Piso del Análisis Tiempo Historia para la dirección X.

| Piso        | Elev. | Atico | Tacna | Lomas | Lima  | Lima  | Pisco | Turquía |
|-------------|-------|-------|-------|-------|-------|-------|-------|---------|
| 1 150       | Liev. | 2001  | 2010  | 2018  | 1966  | 1974  | 2007  | 2023    |
|             |       | SRSS    |
|             | m     | g     | g     | g     | g     | g     | g     | g       |
| Piso3       | 9.5   | 0.177 | 0.492 | 0.436 | 0.153 | 0.131 | 0.126 | 0.236   |
| Piso2       | 7     | 0.165 | 0.461 | 0.398 | 0.147 | 0.129 | 0.122 | 0.218   |
| Piso1       | 4.5   | 0.153 | 0.452 | 0.383 | 0.142 | 0.128 | 0.119 | 0.204   |
| Aislamiento | 1.5   | 0.151 | 0.450 | 0.383 | 0.136 | 0.125 | 0.118 | 0.208   |
| Base        | 0     | 0.437 | 0.366 | 0.515 | 0.545 | 0.489 | 0.453 | 0.789   |

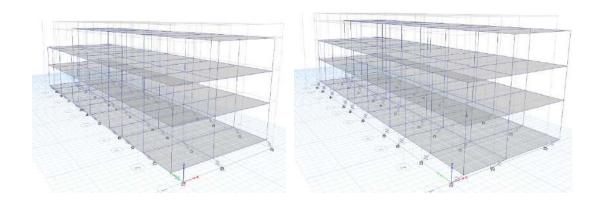

**Tabla 73**Aceleraciones de Piso del Análisis Tiempo Historia para la dirección Y.

| Piso  | Elev. | Atico<br>2001 |       | Lomas<br>2018 |       |       |       | Turquía<br>2023 |
|-------|-------|---------------|-------|---------------|-------|-------|-------|-----------------|
|       |       | SRSS          | SRSS  | SRSS          | SRSS  | SRSS  | SRSS  | SRSS            |
|       | m     | g             | g     | g             | g     | g     | g     | g               |
| Piso3 | 9.5   | 0.172         | 0,449 | 0.393         | 0.147 | 0.128 | 0.125 | 0.220           |



| Piso2       | 7   | 0.171 | 0,448 | 0.391 | 0.146 | 0.128 | 0.124 | 0.220 |
|-------------|-----|-------|-------|-------|-------|-------|-------|-------|
| Piso1       | 4.5 | 0.168 | 0,446 | 0.388 | 0.143 | 0.127 | 0.123 | 0.218 |
| Aislamiento | 1.5 | 0.166 | 0,442 | 0.383 | 0.139 | 0.125 | 0.121 | 0.215 |
| Base        | 0   | 0.437 | 0,366 | 0.515 | 0.545 | 0.489 | 0.588 | 0.789 |

**Figura 98**Aceleraciones de Piso del Análisis Modal Espectral y Tiempo Historia con Aislador TFP.




## 4.3.1.5 Periodo

El periodo de la estructura con base aislada con tipo TFP ha aumentado más de 3 veces el periodo de la base fija. El periodo con la E.031 es de 2.87 segundos. A continuación, se muestra la tabla de los periodos según los modos de la estructura.

# Figura 99

Primera y segunda formas de modo de la estructura con aislamiento TFP.



**Tabla 74**Periodo de la Estructura Aislada con TFP y porcentajes de Participación de Masa.

| Modo | Periodo | UX    | UY    | Sum UX | Sum UY |
|------|---------|-------|-------|--------|--------|
|      | S       |       |       |        |        |
| 1    | 2.878   | 0.971 | 0.004 | 0.971  | 0.004  |
| 2    | 2.865   | 0.004 | 0.996 | 0.975  | 0.999  |
| 3    | 2.690   | 0.025 | 0.001 | 1.000  | 1.000  |
| 4    | 0.251   | 0.000 | 0.000 | 1.000  | 1.000  |
| 5    | 0.222   | 0.000 | 0.000 | 1.000  | 1.000  |
| 6    | 0.198   | 0.000 | 0.000 | 1.000  | 1.000  |
| 7    | 0.113   | 0.000 | 0.000 | 1.000  | 1.000  |
| 8    | 0.103   | 0.000 | 0.000 | 1.000  | 1.000  |
| 9    | 0.092   | 0.000 | 0.000 | 1.000  | 1.000  |



# 5. Análisis comparativo

Enseguida, se mostrarán tablas comparativas de la Respuesta Estructural con base fija según la norma E.030 y con Base Aislada con LRB con deslizador y TFP según la norma E.031.

## 5.1 Derivas

**Tabla 75**Comparación de derivas según los análisis dinámicos en Base Fija en X.

| Base Fija - X |                 |           |            |            |  |  |  |  |
|---------------|-----------------|-----------|------------|------------|--|--|--|--|
| Altura        | Espectral       | Lima 1966 | Atico 2001 | Pisco 2007 |  |  |  |  |
| m             | /1000           | /1000     | /1000      | /1000      |  |  |  |  |
| 8.00          | 6.783           | 5.154     | 4.915      | 5.377      |  |  |  |  |
| 5.50          | 8.109           | 6.429     | 6.058      | 6.050      |  |  |  |  |
| 3.00          | 3.601           | 3.017     | 2.983      | 3.235      |  |  |  |  |
| 0.00          | 0.000           | 0.000     | 0.000      | 0.000      |  |  |  |  |
|               | Valores Máximos |           |            |            |  |  |  |  |
|               | 8.109           | 6.429     | 6.058      | 6.050      |  |  |  |  |

**Tabla 76**Comparación de derivas según los análisis dinámicos en Base Fija en Y.

|        | Base Fija – Y   |           |            |            |  |  |  |  |  |
|--------|-----------------|-----------|------------|------------|--|--|--|--|--|
| Altura | Espectral       | Lima 1966 | Atico 2001 | Pisco 2007 |  |  |  |  |  |
| m      | /1000           | /1000     | /1000      | /1000      |  |  |  |  |  |
| 8.00   | 3.213           | 3.358     | 3.441      | 3.536      |  |  |  |  |  |
| 5.50   | 7.184           | 8.286     | 8.106      | 8.569      |  |  |  |  |  |
| 3.00   | 3.803           | 4.141     | 3.827      | 3.968      |  |  |  |  |  |
| 0.00   | 0.000           | 0.000     | 0.000      | 0.000      |  |  |  |  |  |
|        | Valores Máximos |           |            |            |  |  |  |  |  |
|        | 7.184           | 8.286     | 8.106      | 8.569      |  |  |  |  |  |



Figura 100

Comparación de derivas según los análisis dinámicos en Base Fija en X.

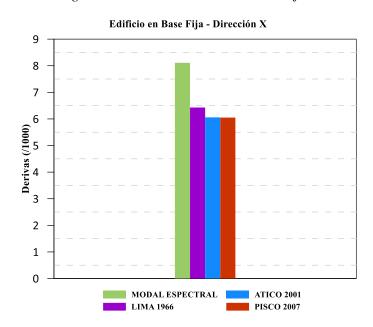
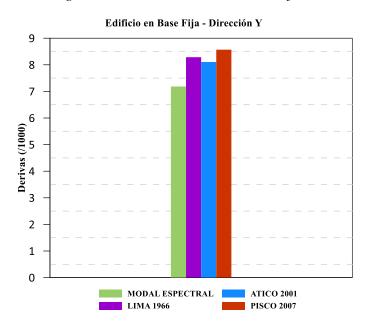




Figura 101

Comparación de derivas según los análisis dinámicos en Base Fija en Y.



**Tabla 77**Comparación de derivas según los análisis dinámicos en Base Aislada con LRB con deslizador en X.

Aislador LRB con deslizador - X



| Altuno | Altura Espectral | Lima  | Atico | Pisco | Tacna | Lima  | Lomas | Turquía |  |
|--------|------------------|-------|-------|-------|-------|-------|-------|---------|--|
| Altura | Espectrai        | 1966  | 2001  | 2007  | 2010  | 1974  | 2018  | 2023    |  |
| m      | /1000            | /1000 | /1000 | /1000 | /1000 | /1000 | /1000 | /1000   |  |
| 9.5    | 0.897            | 0,351 | 0,417 | 0,269 | 0,830 | 0,703 | 1,017 | 0,835   |  |
| 7      | 1.619            | 0,851 | 0,959 | 0,688 | 1,223 | 0,987 | 1,529 | 1,209   |  |
| 4.5    | 1.993            | 1,425 | 1,532 | 1,042 | 1,548 | 0,940 | 1,719 | 1,442   |  |
| 1.5    | 0.000            | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000   |  |
| 0      | 0.000            | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000   |  |
|        | Valores Máximos  |       |       |       |       |       |       |         |  |
|        | 1.993            | 1,425 | 1,532 | 1,042 | 1,548 | 0,987 | 1,719 | 1,442   |  |

**Tabla 78**Comparación de derivas según los análisis dinámicos en Base Aislada con LRB con deslizador en Y.

|        | Aislador LRB con deslizador – Y |       |       |       |       |       |       |         |  |  |
|--------|---------------------------------|-------|-------|-------|-------|-------|-------|---------|--|--|
| Altura | Egnactral                       | Lima  | Atico | Pisco | Tacna | Lima  | Lomas | Turquía |  |  |
| Altura | Espectral                       | 1966  | 2001  | 2007  | 2010  | 1974  | 2018  | 2023    |  |  |
| m      | /1000                           | /1000 | /1000 | /1000 | /1000 | /1000 | /1000 | /1000   |  |  |
| 9.5    | 0.384                           | 0,275 | 0,302 | 0,074 | 0,332 | 0,237 | 0,408 | 0,287   |  |  |
| 7      | 0.861                           | 0,642 | 0,653 | 0,014 | 0,723 | 0,552 | 0,938 | 0,618   |  |  |
| 4.5    | 1.221                           | 0,904 | 0,923 | 0,389 | 1,008 | 0,770 | 1,308 | 0,873   |  |  |
| 1.5    | 0.000                           | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000   |  |  |
| 0      | 0.000                           | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000 | 0,000   |  |  |
|        | Valores Máximos                 |       |       |       |       |       |       |         |  |  |
|        | 1.221                           | 0,904 | 0,923 | 0,389 | 1,008 | 0,770 | 1,308 | 0,873   |  |  |

## Figura 102

Comparación de derivas según los análisis dinámicos en Base Aislada con LRB con deslizador en X.

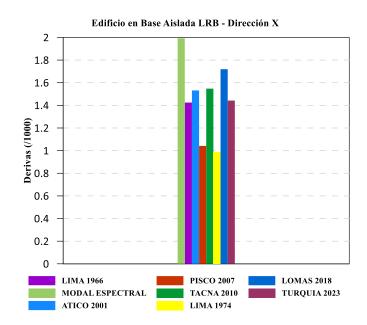
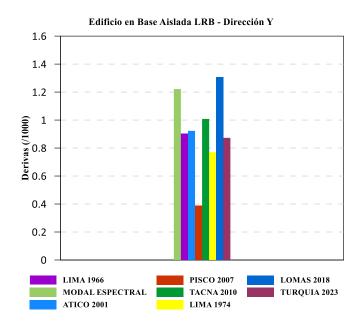




Figura 103

Comparación de derivas según los análisis dinámicos en Base Aislada con LRB con deslizador en Y.



**Tabla 79**Comparación de derivas según los análisis dinámicos en Base Aislada con TFP en X.

|        | Aislador TFP - X |       |       |       |       |       |       |         |  |  |
|--------|------------------|-------|-------|-------|-------|-------|-------|---------|--|--|
| Altura | Espectral        | Lima  | Atico | Pisco | Tacna | Lima  | Lomas | Turquía |  |  |
| Aitura | Espectrai        | 1966  | 2001  | 2007  | 2010  | 1974  | 2018  | 2023    |  |  |
| m      | /1000            | /1000 | /1000 | /1000 | /1000 | /1000 | /1000 | /1000   |  |  |
| 9.5    | 0.780            | 0.710 | 0.358 | 0.254 | 1.168 | 0.685 | 1.215 | 0.410   |  |  |
| 7      | 1.402            | 1.104 | 0.767 | 0.568 | 1.726 | 1.056 | 1.836 | 0.838   |  |  |

| 4.5 | 1.719           | 1.307 | 1.190 | 0.745 | 1.840 | 1.061 | 1.824 | 1.266 |  |  |  |
|-----|-----------------|-------|-------|-------|-------|-------|-------|-------|--|--|--|
| 1.5 | 0.000           | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |  |  |  |
| 0   | 0.000           | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |  |  |  |
|     | Valores Máximos |       |       |       |       |       |       |       |  |  |  |
|     | 1.719           | 1.307 | 1.190 | 0.745 | 1.840 | 1.061 | 1.836 | 1.266 |  |  |  |

**Tabla 80**Comparación de derivas según los análisis dinámicos en Base Aislada con TFP en Y.

|        | Aislador TFP - Y |       |       |       |       |       |       |         |  |  |  |
|--------|------------------|-------|-------|-------|-------|-------|-------|---------|--|--|--|
| A 14   | Egwagtwal        | Lima  | Atico | Pisco | Tacna | Lima  | Lomas | Turquía |  |  |  |
| Altura | Espectral        | 1966  | 2001  | 2007  | 2010  | 1974  | 2018  | 2023    |  |  |  |
| m      | /1000            | /1000 | /1000 | /1000 | /1000 | /1000 | /1000 | /1000   |  |  |  |
| 9.5    | 0.312            | 0.248 | 0.248 | 0.201 | 0.356 | 0.238 | 0.389 | 0.278   |  |  |  |
| 7      | 0.718            | 0.564 | 0.565 | 0.446 | 0.822 | 0.546 | 0.890 | 0.633   |  |  |  |
| 4.5    | 1.020            | 0.804 | 0.803 | 0.637 | 1.210 | 0.769 | 1.255 | 0.901   |  |  |  |
| 1.5    | 0.000            | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000   |  |  |  |
| 0      | 0.000            | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000   |  |  |  |
|        | Valores Máximos  |       |       |       |       |       |       |         |  |  |  |
|        | 1.020            | 0.804 | 0.803 | 0.637 | 1.210 | 0.769 | 1.255 | 0.901   |  |  |  |

Figura 104

Comparación de derivas según los análisis dinámicos en Base Aislada con TFP en X.

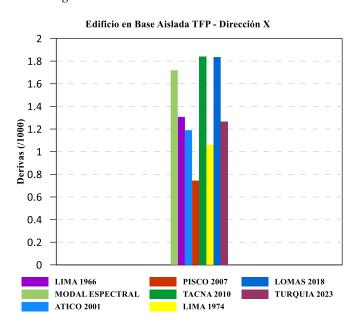
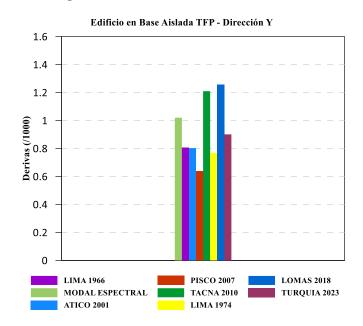
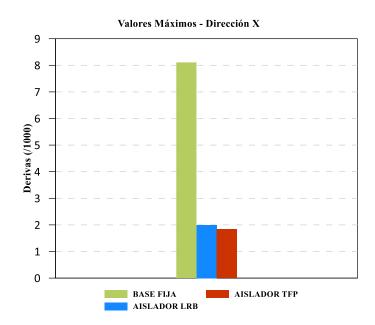





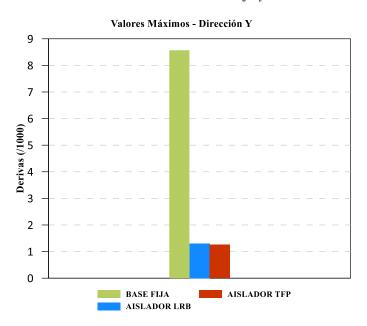

Figura 105

Comparación de derivas según los análisis dinámicos en Base Aislada con TFP en Y.




**Tabla 81**Comparación de Valores Máximos de Derivas en Base Fija y Base Aislada en X.

| Valores Máximos en X |              |       |  |  |  |  |  |  |
|----------------------|--------------|-------|--|--|--|--|--|--|
| Base Fija            | Aislador TFP |       |  |  |  |  |  |  |
| /1000                | /1000        | /1000 |  |  |  |  |  |  |
| 8.109                | 1.993        | 1.840 |  |  |  |  |  |  |


**Tabla 82**Comparación de Valores Máximos de Derivas en Base Fija y Base Aislada en Y.

| Valores Máximos en Y                              |             |       |  |  |  |  |  |  |
|---------------------------------------------------|-------------|-------|--|--|--|--|--|--|
| Base Fija Aislador LRB con deslizador Aislador TF |             |       |  |  |  |  |  |  |
| /1000                                             | /1000 /1000 |       |  |  |  |  |  |  |
| 8.569                                             | 1.308       | 1.255 |  |  |  |  |  |  |

**Figura 106**Comparación de Valores Máximos de Derivas en Base Fija y Base Aislada en X.

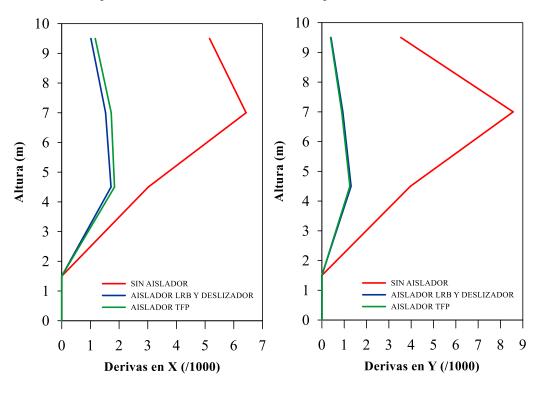


**Figura 107**Comparación de Valores Máximos de Derivas en Base Fija y Base Aislada en Y.



## 5.1.1 Resultados Comparativos de Derivas del Análisis Tiempo Historia

**Tabla 83**Resultado Comparativo de Derivas del Análisis Tiempo Historia en X.


| Dirección de Análisis en X |                |                    |              |  |  |  |  |  |
|----------------------------|----------------|--------------------|--------------|--|--|--|--|--|
| Nivel                      | Sin Aisladores | Con Aislador LRB y | Con Aislador |  |  |  |  |  |
| Nivei                      | Sin Aisiadores | Deslizador         | TFP          |  |  |  |  |  |
|                            | /1000          | /1000              | /1000        |  |  |  |  |  |

| 3            | 5.154 | 1.017 | 1.168 |
|--------------|-------|-------|-------|
| 2            | 6.429 | 1.529 | 1.726 |
| 1            | 3.017 | 1.719 | 1.840 |
| <b>B.</b> A. | 0.000 | 0.000 | 0.000 |
| BASE         | 0.000 | 0.000 | 0.000 |

**Tabla 84**Resultado Comparativo de Derivas del Análisis Tiempo Historia en Y.

|              | Dirección de Análisis en Y |                                  |                     |  |  |  |  |  |  |
|--------------|----------------------------|----------------------------------|---------------------|--|--|--|--|--|--|
| Nivel        | Sin Aisladores             | Con Aislador LRB y<br>Deslizador | Con Aislador<br>TFP |  |  |  |  |  |  |
|              | /1000                      | /1000                            | /1000               |  |  |  |  |  |  |
| 3            | 3.536                      | 0.408                            | 0.389               |  |  |  |  |  |  |
| 2            | 8.569                      | 0.938                            | 0.890               |  |  |  |  |  |  |
| 1            | 3.968                      | 1.308                            | 1.255               |  |  |  |  |  |  |
| <b>B.</b> A. | 0.000                      | 0.000                            | 0.000               |  |  |  |  |  |  |
| BASE         | 0.000                      | 0.000                            | 0.000               |  |  |  |  |  |  |

**Figura 108**Resultado Comparativo de Derivas del Análisis Tiempo Historia en X e Y.





## **5.2** Fuerzas Cortantes

**Tabla 85**Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Fija en X.

|        | Base Fija - X   |           |            |            |  |  |  |  |  |  |
|--------|-----------------|-----------|------------|------------|--|--|--|--|--|--|
| Altura | Espectral       | Lima 1966 | Atico 2001 | Pisco 2007 |  |  |  |  |  |  |
| m      | Tonf            | Tonf      | Tonf       | Tonf       |  |  |  |  |  |  |
| 8.00   | 247.127         | 235.614   | 250.273    | 255.262    |  |  |  |  |  |  |
| 5.50   | 624.703         | 700.996   | 713.476    | 720.167    |  |  |  |  |  |  |
| 3.00   | 804.097         | 996.483   | 980.749    | 1115.788   |  |  |  |  |  |  |
| 0.00   | 0.000           | 0.000     | 0.000      | 0.000      |  |  |  |  |  |  |
|        | Valores Máximos |           |            |            |  |  |  |  |  |  |
|        | 804.097         | 996.483   | 980.749    | 1115.788   |  |  |  |  |  |  |

**Tabla 86**Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Fija en Y.

|        | Base Fija - Y   |           |            |            |  |  |  |  |  |
|--------|-----------------|-----------|------------|------------|--|--|--|--|--|
| Altura | Espectral       | Lima 1966 | Atico 2001 | Pisco 2007 |  |  |  |  |  |
| m      | Tonf            | Tonf      | Tonf       | Tonf       |  |  |  |  |  |
| 8.00   | 222.467         | 227.740   | 220.109    | 234.089    |  |  |  |  |  |
| 5.50   | 627.282         | 738.370   | 722.706    | 765.748    |  |  |  |  |  |
| 3.00   | 802.600         | 1091.596  | 1017.815   | 1061.918   |  |  |  |  |  |
| 0.00   | 0.000           | 0.000     | 0.000      | 0.000      |  |  |  |  |  |
|        | Valores Máximos |           |            |            |  |  |  |  |  |
|        | 802.600         | 1091.596  | 1017.815   | 1061.918   |  |  |  |  |  |

Figura 109

Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Fija en X.

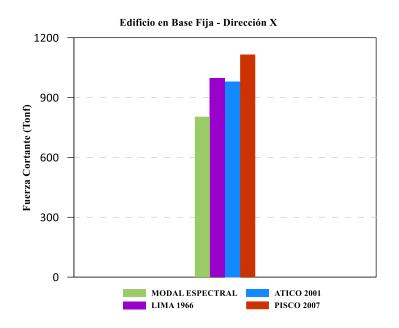



Figura 110

Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Fija en Y.



**Tabla 87**Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada con LRB con deslizador en X.

|        | Aislador LRB con deslizador - X |      |       |       |       |      |       |         |
|--------|---------------------------------|------|-------|-------|-------|------|-------|---------|
| Altumo | Egnostval                       | Lima | Atico | Pisco | Tacna | Lima | Lomas | Turquía |
| Altura | Espectral                       | 1966 | 2001  | 2007  | 2010  | 1974 | 2018  | 2023    |
| m      | Tonf                            | Tonf | Tonf  | Tonf  | Tonf  | Tonf | Tonf  | Tonf    |



| 9.5 | 29.493  | 20.490  | 23.872  | 16.321  | 27.568  | 19.074  | 34.864  | 23.720  |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|
| 7   | 109.589 | 76.893  | 89.591  | 61.258  | 103.456 | 71.576  | 130.835 | 89.022  |
| 4.5 | 196.361 | 138.941 | 161.885 | 110.690 | 186.937 | 129.332 | 236.410 | 160.858 |
| 1.5 | 296.756 | 205.408 | 244.844 | 195.008 | 273.409 | 176.426 | 321.513 | 236.037 |
| 0   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
|     |         |         |         | Valores | Máximos |         |         |         |
|     | 296.756 | 205.408 | 244.844 | 195.008 | 273.409 | 176.426 | 321.513 | 236.037 |

**Tabla 88**Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada con LRB con deslizador en Y.

|                 | Aislador LRB con deslizador - Y |         |         |         |         |         |         |         |
|-----------------|---------------------------------|---------|---------|---------|---------|---------|---------|---------|
| Altura          | Espectral                       | Lima    | Atico   | Pisco   | Tacna   | Lima    | Lomas   | Turquía |
|                 |                                 | 1966    | 2001    | 2007    | 2010    | 1974    | 2018    | 2023    |
| m               | Tonf                            | Tonf    | Tonf    | Tonf    | Tonf    | Tonf    | Tonf    | Tonf    |
| 9.5             | 29.391                          | 21.779  | 23.218  | 15.458  | 28.057  | 20.012  | 35.859  | 23.895  |
| 7               | 109.574                         | 81.236  | 87.426  | 58.220  | 107.664 | 75.677  | 133.401 | 89.222  |
| 4.5             | 196.948                         | 146.486 | 158.160 | 105.327 | 195.991 | 137.091 | 240.339 | 160.958 |
| 1.5             | 298.458                         | 202.225 | 246.489 | 194.769 | 275.138 | 176.801 | 323.319 | 236.793 |
| 0               | 0.000                           | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| Valores Máximos |                                 |         |         |         |         |         |         |         |
|                 | 298.458                         | 202.225 | 246.489 | 194.769 | 275.138 | 176.801 | 323.319 | 236.793 |

Figura 111

Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada con LRB con deslizador en X.

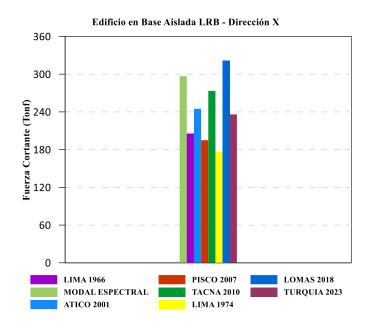



Figura 112

Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada con LRB con deslizador en Y.

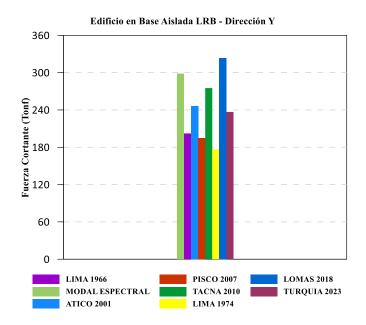



Tabla 89

Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada con TFP en X.

Aislador TFP - X



| Altura | Espectral       | Lima    | Atico   | Pisco   | Tacna   | Lima    | Lomas   | Turquía |
|--------|-----------------|---------|---------|---------|---------|---------|---------|---------|
|        |                 | 1966    | 2001    | 2007    | 2010    | 1974    | 2018    | 2023    |
| m      | Tonf            | Tonf    | Tonf    | Tonf    | Tonf    | Tonf    | Tonf    | Tonf    |
| 9.5    | 25.433          | 20.591  | 18.514  | 15.699  | 28.425  | 19.370  | 31.539  | 22.704  |
| 7      | 94.584          | 77.275  | 69.480  | 58.915  | 106.674 | 72.691  | 118.356 | 85.201  |
| 4.5    | 169.627         | 139.630 | 125.546 | 106.455 | 192.752 | 131.347 | 213.861 | 153.952 |
| 1.5    | 256.660         | 185.237 | 226.206 | 187.089 | 713.652 | 161.832 | 606.652 | 266.265 |
| 0      | 0.000           | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
|        | Valores Máximos |         |         |         |         |         |         |         |
|        | 256.660         | 185.237 | 226.206 | 187.089 | 713.652 | 161.832 | 606.652 | 266.265 |

**Tabla 90**Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada con TFP en y

|                 | Aislador TFP - Y |         |         |         |         |         |         |         |
|-----------------|------------------|---------|---------|---------|---------|---------|---------|---------|
| A 14            | Egwaatual        | Lima    | Atico   | Pisco   | Tacna   | Lima    | Lomas   | Turquía |
| Altura          | Espectral        | 1966    | 2001    | 2007    | 2010    | 1974    | 2018    | 2023    |
| m               | Tonf             | Tonf    | Tonf    | Tonf    | Tonf    | Tonf    | Tonf    | Tonf    |
| 9.5             | 25.458           | 20.392  | 20.683  | 16.056  | 28.411  | 19.305  | 31.682  | 22.873  |
| 7               | 95.285           | 76.545  | 77.861  | 60.066  | 106.867 | 72.232  | 118.748 | 85.872  |
| 4.5             | 171.553          | 138.321 | 140.834 | 108.420 | 193.249 | 130.387 | 214.479 | 155.184 |
| 1.5             | 260.328          | 193.550 | 264.087 | 186.751 | 710.721 | 161.752 | 611.563 | 277.885 |
| 0               | 0.000            | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |
| Valores Máximos |                  |         |         |         |         |         |         |         |
|                 | 260.328          | 193.550 | 264.087 | 186.751 | 710.721 | 161.752 | 611.563 | 277.885 |

Figura 113

Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada con TFP en X.

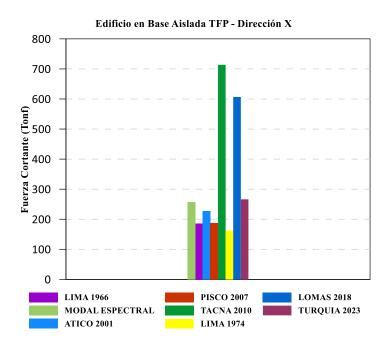
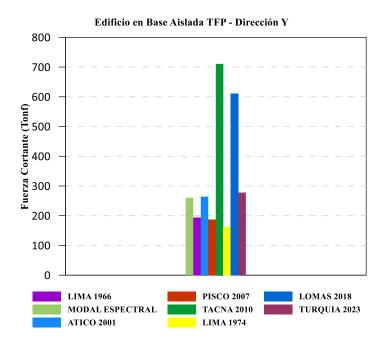
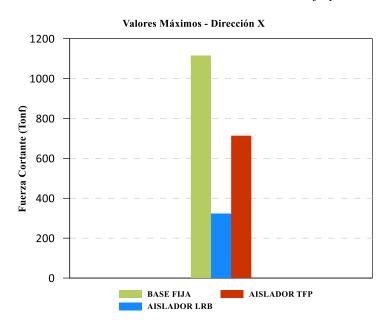




Figura 114

Comparación de Fuerzas Cortantes según los análisis dinámicos en Base Aislada con TFP en Y

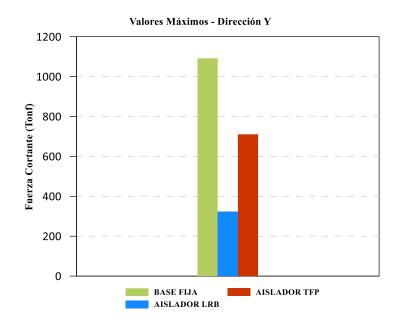


**Tabla 91**Comparación de Valores Máximos de Fuerzas Cortantes en Base Fija y Base Aislada en X.


| Valores Máximos en X |                             |              |  |  |  |  |
|----------------------|-----------------------------|--------------|--|--|--|--|
| Base Fija            | Aislador LRB con deslizador | Aislador TFP |  |  |  |  |
| <b>T</b> onf         | Tonf                        | Tonf         |  |  |  |  |
| 1115.788             | 321.513                     | 713.652      |  |  |  |  |



**Tabla 92**Comparación de Valores Máximos de Fuerzas Cortantes en Base Fija y Base Aislada en Y.


| Valores Máximos en Y                               |           |         |  |  |  |  |  |  |  |
|----------------------------------------------------|-----------|---------|--|--|--|--|--|--|--|
| Base Fija Aislador LRB con deslizador Aislador TFF |           |         |  |  |  |  |  |  |  |
| <b>T</b> onf                                       | Tonf Tonf |         |  |  |  |  |  |  |  |
| 1091.596                                           | 323.319   | 710.721 |  |  |  |  |  |  |  |

**Figura 115**Comparación de Valores Máximos de Fuerzas Cortantes en Base Fija y Base Aislada en X.



**Figura 116**Comparación de Valores Máximos de Fuerzas Cortantes en Base Fija y Base Aislada en Y.

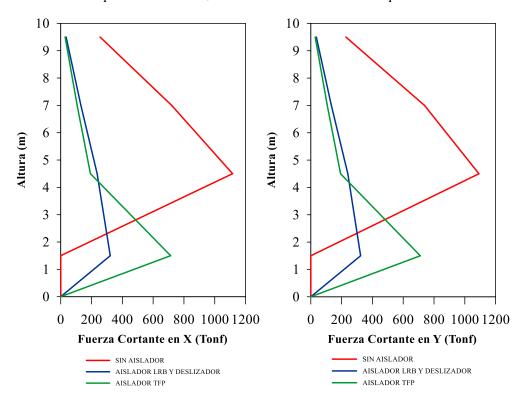




## 5.2.1 Resultados Comparativos de Fuerzas Cortantes del Análisis Tiempo Historia

**Tabla 93**Resultado Comparativo de Fuerzas Cortantes del Análisis Tiempo Historia en X.

| Dirección de Análisis en X |                |                                  |                     |  |  |  |  |  |
|----------------------------|----------------|----------------------------------|---------------------|--|--|--|--|--|
| Nivel                      | Sin Aisladores | Con Aislador LRB y<br>Deslizador | Con Aislador<br>TFP |  |  |  |  |  |
|                            | Tonf           | Tonf                             | Tonf                |  |  |  |  |  |
| 3                          | 255.262        | 34.864                           | 28.425              |  |  |  |  |  |
| 2                          | 720.167        | 130.835                          | 106.674             |  |  |  |  |  |
| 1                          | 1115.788       | 236.410                          | 192.752             |  |  |  |  |  |
| <b>B. A.</b> 0.000         |                | 321.513                          | 713.652             |  |  |  |  |  |
| BASE                       | 0.000          | 0.000                            | 0.000               |  |  |  |  |  |


**Tabla 94**Resultado Comparativo de Fuerzas Cortantes del Análisis Tiempo Historia en Y.

|                                                 | Dirección de Análisis en Y |            |         |  |  |  |  |  |  |
|-------------------------------------------------|----------------------------|------------|---------|--|--|--|--|--|--|
| Nivel Sin Aisladores Con Aislador LRB y Con Ais |                            |            |         |  |  |  |  |  |  |
| MIVEI                                           | SIII Aisiauoi es           | Deslizador | TFP     |  |  |  |  |  |  |
|                                                 | Tonf Tonf Tonf             |            |         |  |  |  |  |  |  |
| 3                                               | 227.740                    | 35.859     | 28.411  |  |  |  |  |  |  |
| 2                                               | 738.370                    | 133.401    | 106.867 |  |  |  |  |  |  |



| 1            | 1091.596 | 240.339 | 193.249 |
|--------------|----------|---------|---------|
| <b>B. A.</b> | 0.000    | 323.319 | 710.721 |
| BASE         | 0.000    | 0.000   | 0.000   |

**Figura 117**Resultado Comparativo de Fuerzas Cortantes del Análisis Tiempo Historia en X e Y.



### 5.3 Aceleraciones

**Tabla 95**Comparación de Aceleraciones según los análisis dinámicos en Base Fija en X.

|        | Base Fija - X |           |            |            |  |  |  |  |  |
|--------|---------------|-----------|------------|------------|--|--|--|--|--|
| Altura | Espectral     | Lima 1966 | Atico 2001 | Pisco 2007 |  |  |  |  |  |
| m      | g             | g         | g          | g          |  |  |  |  |  |
| 8.00   | 0.541         | 1.707     | 1.943      | 1.969      |  |  |  |  |  |
| 5.50   | 0.330         | 1.265     | 1.228      | 1.295      |  |  |  |  |  |
| 3.00   | 0.191         | 0.735     | 0.818      | 1.064      |  |  |  |  |  |
| 0.00   | 0.000         | 0.555     | 0.629      | 0.604      |  |  |  |  |  |
|        |               | Valores   | Máximos    |            |  |  |  |  |  |
|        | 0.541         | 1.707     | 1.943      | 1.969      |  |  |  |  |  |



**Tabla 96**Comparación de Aceleraciones según los análisis dinámicos en Base Fija en Y.

|        | Base Fija - Y |           |            |            |  |  |  |  |  |
|--------|---------------|-----------|------------|------------|--|--|--|--|--|
| Altura | Espectral     | Lima 1966 | Atico 2001 | Pisco 2007 |  |  |  |  |  |
| m      | g             | g         | g          | g          |  |  |  |  |  |
| 8.00   | 0.289         | 1.560     | 1.505      | 1.580      |  |  |  |  |  |
| 5.50   | 0.206         | 1.312     | 1.222      | 1.280      |  |  |  |  |  |
| 3.00   | 0.123         | 0.928     | 0.846      | 0.814      |  |  |  |  |  |
| 0.00   | 0.000         | 0.515     | 0.553      | 0.619      |  |  |  |  |  |
|        |               | Valores   | Máximos    |            |  |  |  |  |  |
|        | 0.289         | 1.560     | 1.505      | 1.580      |  |  |  |  |  |

Figura 118

Comparación de Aceleraciones según los análisis dinámicos en Base Fija en X.

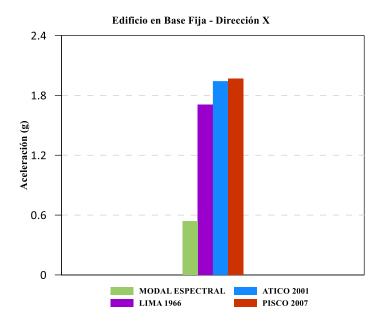
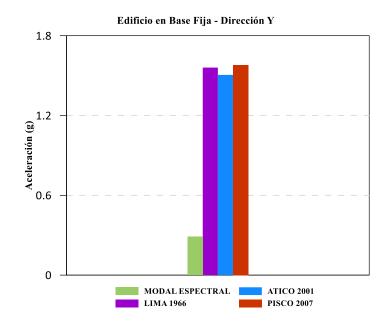




Figura 119

Comparación de Aceleraciones según los análisis dinámicos en Base Fija en Y.



**Tabla 97**Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con LRB con deslizador en X.

|        | Aislador LRB con deslizador - X |       |       |       |       |       |       |         |  |  |
|--------|---------------------------------|-------|-------|-------|-------|-------|-------|---------|--|--|
| Altura | Espectral                       | Lima  | Atico | Pisco | Tacna | Lima  | Lomas | Turquía |  |  |
|        |                                 | 1966  | 2001  | 2007  | 2010  | 1974  | 2018  | 2023    |  |  |
| m      | g                               | g     | g     | g     | g     | g     | g     | g       |  |  |
| 9.5    | 0,198                           | 0.198 | 0.260 | 0.228 | 0.215 | 0.167 | 0.192 | 0.254   |  |  |
| 7      | 0,195                           | 0.195 | 0.209 | 0.184 | 0.159 | 0.162 | 0.150 | 0.231   |  |  |
| 4.5    | 0,193                           | 0.193 | 0.140 | 0.149 | 0.124 | 0.159 | 0.116 | 0.211   |  |  |
| 1.5    | 0,190                           | 0.190 | 0.208 | 0.176 | 0.183 | 0.158 | 0.163 | 0.234   |  |  |
| 0      | 0,000                           | 0.000 | 0.545 | 0.531 | 0.588 | 0.366 | 0.660 | 0.560   |  |  |
|        | Valores Máximos                 |       |       |       |       |       |       |         |  |  |
|        | 0,195                           | 0,545 | 0,531 | 0,588 | 0,366 | 0,660 | 0,560 | 0,827   |  |  |

**Tabla 98**Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con LRB con deslizador en Y.

|        | Aislador LRB con deslizador - Y |      |       |       |       |      |       |         |
|--------|---------------------------------|------|-------|-------|-------|------|-------|---------|
| Altura | Espectral                       | Lima | Atico | Pisco | Tacna | Lima | Lomas | Turquía |
|        |                                 | 1966 | 2001  | 2007  | 2010  | 1974 | 2018  | 2023    |
| m      | g                               | g    | g     | g     | g     | g    | g     | g       |

| 9.5 | 0.195 | 0.166 | 0.171 | 0.129  | 0.188    | 0.126 | 0.221 | 0.171 |
|-----|-------|-------|-------|--------|----------|-------|-------|-------|
| 7   | 0.194 | 0.162 | 0.168 | 0.129  | 0.187    | 0.125 | 0.218 | 0.169 |
| 4.5 | 0.193 | 0.152 | 0.163 | 0.127  | 0.185    | 0.123 | 0.216 | 0.166 |
| 1.5 | 0.191 | 0.148 | 0.160 | 0.124  | 0.180    | 0.121 | 0.223 | 0.166 |
| 0   | 0.000 | 0.545 | 0.437 | 0.588  | 0.331    | 0.508 | 0.560 | 0.824 |
|     |       |       |       | Valore | s Máximo | S     |       |       |
|     | 0.195 | 0.545 | 0.437 | 0.588  | 0.331    | 0.508 | 0.560 | 0.824 |

Figura 120

Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con LRB con deslizador en X.

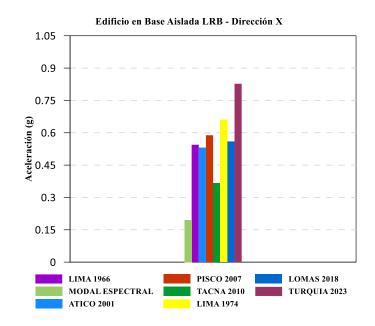
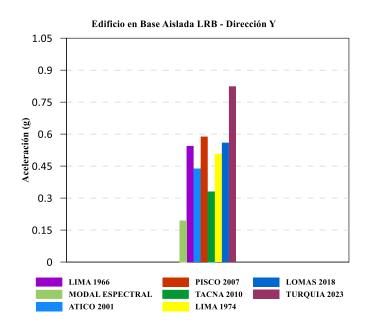




Figura 121

Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con LRB con deslizador en Y.



**Tabla 99**Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con TFP en X.

|                 |           |       | Ai    | islador T | FP - X |       |       |         |
|-----------------|-----------|-------|-------|-----------|--------|-------|-------|---------|
| Altura          | Espectral | Lima  | Atico | Pisco     | Tacna  | Lima  | Lomas | Turquía |
|                 |           | 1966  | 2001  | 2007      | 2010   | 1974  | 2018  | 2023    |
| m               | g         | g     | g     | g         | g      | g     | g     | g       |
| 9.5             | 0.178     | 0.153 | 0.177 | 0.126     | 0.492  | 0.131 | 0.436 | 0.236   |
| 7               | 0.176     | 0.147 | 0.165 | 0.122     | 0.461  | 0.129 | 0.398 | 0.218   |
| 4.5             | 0.174     | 0.142 | 0.153 | 0.119     | 0.452  | 0.128 | 0.383 | 0.204   |
| 1.5             | 0.172     | 0.136 | 0.151 | 0.118     | 0.450  | 0.125 | 0.383 | 0.208   |
| 0               | 0.000     | 0.545 | 0.437 | 0.453     | 0.366  | 0.489 | 0.515 | 0.789   |
| Valores Máximos |           |       |       |           |        |       |       |         |
|                 | 0.176     | 0.545 | 0.437 | 0.453     | 0.461  | 0.489 | 0.515 | 0.789   |

**Tabla 100**Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con TFP en Y.

|        | Aislador TFP - Y |       |       |       |       |       |       |         |  |
|--------|------------------|-------|-------|-------|-------|-------|-------|---------|--|
| Altura | Espectral        | Lima  | Atico | Pisco | Tacna | Lima  | Lomas | Turquía |  |
|        |                  | 1966  | 2001  | 2007  | 2010  | 1974  | 2018  | 2023    |  |
| m      | g                | g     | g     | g     | g     | g     | g     | g       |  |
| 9.5    | 0.167            | 0.147 | 0.172 | 0.125 | 0.449 | 0.128 | 0.393 | 0.220   |  |

| 7   | 0.166 | 0.146 | 0.171 | 0.124  | 0.448    | 0.128 | 0.391 | 0.220 |
|-----|-------|-------|-------|--------|----------|-------|-------|-------|
| 4.5 | 0.165 | 0.143 | 0.168 | 0.123  | 0.446    | 0.127 | 0.388 | 0.218 |
| 1.5 | 0.164 | 0.139 | 0.166 | 0.121  | 0.442    | 0.125 | 0.383 | 0.215 |
| 0   | 0.000 | 0.545 | 0.437 | 0.588  | 0.366    | 0.489 | 0.515 | 0.789 |
|     |       |       |       | Valore | s Máximo | S     |       |       |
|     | 0.167 | 0.545 | 0.437 | 0.588  | 0.449    | 0.489 | 0.515 | 0.789 |

Figura 122

Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con TFP en X.

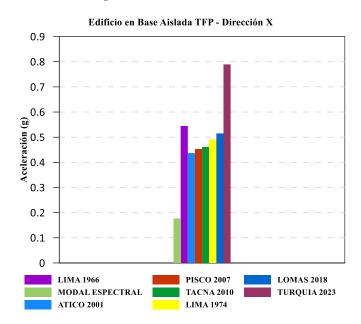
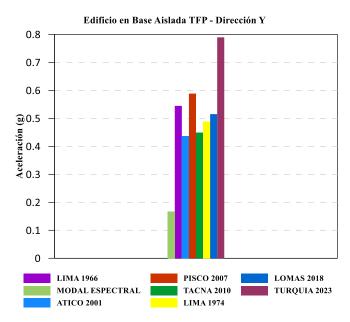
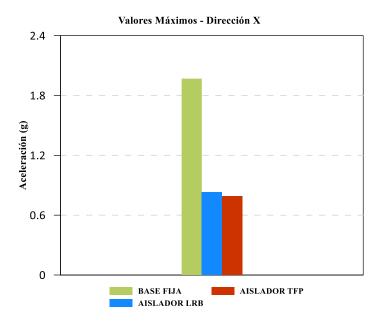




Figura 123

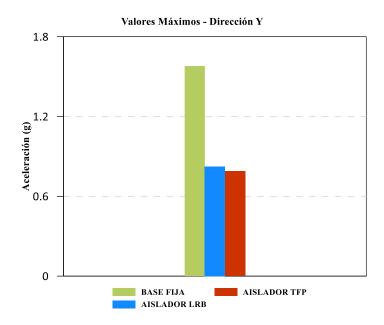
Comparación de Aceleraciones según los análisis dinámicos en Base Aislada con TFP en Y.






**Tabla 101**Comparación de Valores Máximos de Aceleraciones en Base Fija y Base Aislada en X.

| Valores Máximos en X                               |       |       |  |  |  |  |  |
|----------------------------------------------------|-------|-------|--|--|--|--|--|
| Base Fija Aislador LRB con deslizador Aislador TFP |       |       |  |  |  |  |  |
| g                                                  | g     | g     |  |  |  |  |  |
| 1.969                                              | 0.827 | 0.789 |  |  |  |  |  |


**Tabla 102**Comparación de Valores Máximos de Aceleraciones en Base Fija y Base Aislada en Y.

| Valores Máximos en Y                               |       |       |  |  |  |  |  |
|----------------------------------------------------|-------|-------|--|--|--|--|--|
| Base Fija Aislador LRB con deslizador Aislador TFI |       |       |  |  |  |  |  |
| g                                                  | g     | g     |  |  |  |  |  |
| 1.580                                              | 0.824 | 0.789 |  |  |  |  |  |

**Figura 124**Comparación de Valores Máximos de Aceleraciones en Base Fija y Base Aislada en X.



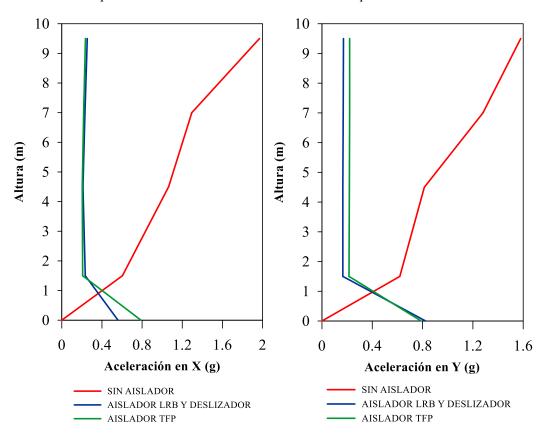
**Figura 125**Comparación de Valores Máximos de Aceleraciones en Base Fija y Base Aislada en Y.



# 5.3.1 Resultados Comparativos de Aceleraciones del Análisis Tiempo Historia

**Tabla 103**Resultado Comparativo de Aceleraciones del Análisis Tiempo Historia en X.

| Dirección de Análisis en X |                |                                  |                     |  |  |  |
|----------------------------|----------------|----------------------------------|---------------------|--|--|--|
| Nivel                      | Sin Aisladores | Con Aislador LRB y<br>Deslizador | Con Aislador<br>TFP |  |  |  |
|                            | Tonf           | Tonf                             | Tonf                |  |  |  |
| 3                          | 1.969          | 0.254                            | 0.236               |  |  |  |
| 2                          | 1.295          | 0.231                            | 0.218               |  |  |  |
| 1                          | 1.064          | 0.211                            | 0.204               |  |  |  |
| <b>B.</b> A.               | 0.604          | 0.234                            | 0.208               |  |  |  |
| BASE                       | 0.000          | 0.560                            | 0.789               |  |  |  |


**Tabla 104**Resultado Comparativo de Aceleraciones del Análisis Tiempo Historia en Y.

| Dirección de Análisis en Y                        |       |            |       |  |  |  |  |
|---------------------------------------------------|-------|------------|-------|--|--|--|--|
| Con Aislador LRB y Con Aisla Nivel Sin Aisladores |       |            |       |  |  |  |  |
| Niver Sin Aisiauores                              |       | Deslizador | TFP   |  |  |  |  |
| Tonf                                              |       | Tonf       | Tonf  |  |  |  |  |
| 3                                                 | 1.580 | 0.171      | 0.220 |  |  |  |  |
| 2                                                 | 1.280 | 0.169      | 0.220 |  |  |  |  |



| 1            | 0.814 | 0.166 | 0.218 |
|--------------|-------|-------|-------|
| <b>B. A.</b> | 0.619 | 0.166 | 0.215 |
| BASE         | 0.000 | 0.824 | 0.789 |

**Figura 126**Resultado Comparativo de Aceleraciones del Análisis Tiempo Historia en X e Y.



#### 5.4 Porcentajes de Reducción de Resultados en Base Fija y en Base Aislada

A partir del Análisis Comparativo, se obtuvieron los porcentajes de reducción donde se contrastan los resultados obtenidos del análisis dinámico Tiempo Historia de Base Fija con respecto a los resultados del análisis de la estructura incorporando aisladores LRB con deslizador y TFP.

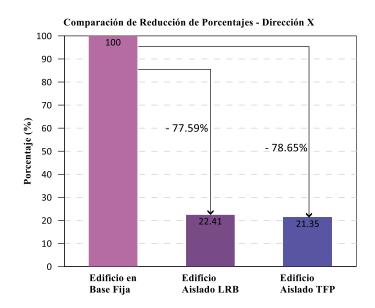
### 5.4.1 Porcentaje de Reducción en Derivas

**Tabla 105**Porcentaje de Reducción de Derivas en Base Fija y Base Aislada en X e Y.

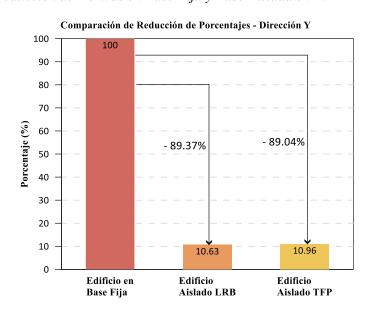
| Registro de |           | Edifico             | Edificio Ais       | lado con:        |
|-------------|-----------|---------------------|--------------------|------------------|
| terremoto   | Dirección | Dirección Base Fija | Edificio Aislado   | Edificio Aislado |
| terremoto   |           | Dasc Fija           | LRB con deslizador | TFP              |



|   |               |   | Derivas | Derivas | %<br>Reducción | Derivas | %<br>Reducción |
|---|---------------|---|---------|---------|----------------|---------|----------------|
|   |               |   | /1000   | /1000   |                | /1000   |                |
| 1 | Lima 1966     | X | 6.429   | 1.425   | 77.841%        | 1.307   | 79.671%        |
| 2 | Arequipa 2001 | X | 6.058   | 1.532   | 74.718%        | 1.190   | 80.358%        |
| 3 | Pisco 2007    | X | 6.050   | 1.042   | 82.782%        | 0.745   | 87.691%        |
| 4 | Tacna 2010    | X | 6.179   | 1.548   | 74.954%        | 1.840   | 70.217%        |
| 5 | Lima 1974     | X | 6.179   | 0.987   | 84.024%        | 1.061   | 82.824%        |
| 6 | Lomas 2018    | X | 6.179   | 1.719   | 72.175%        | 1.836   | 70.287%        |
| 7 | Turquía 2023  | X | 6.179   | 1.442   | 76.658%        | 1.266   | 79.507%        |
| 1 | Lima 1966     | Y | 8.286   | 0.904   | 89.094%        | 0.804   | 90.292%        |
| 2 | Arequipa 2001 | Y | 8.106   | 0.923   | 88.614%        | 0.803   | 90.094%        |
| 3 | Pisco 2007    | Y | 8.569   | 0.389   | 95.464%        | 0.637   | 92.566%        |
| 4 | Tacna 2010    | Y | 8.320   | 1.008   | 87.885%        | 1.210   | 85.461%        |
| 5 | Lima 1974     | Y | 8.320   | 0.770   | 90.741%        | 0.769   | 90.762%        |
| 6 | Lomas 2018    | Y | 8.320   | 1.308   | 84.283%        | 1.255   | 84.912%        |
| 7 | Turquía 2023  | Y | 8.320   | 0.873   | 89.508%        | 0.901   | 89.171%        |


**Tabla 106**Promedio de porcentaje de Reducción de Derivas en Base Fija y Base Aislada en X.

|            | Edifico Base<br>Fija                      | 100%    |         |
|------------|-------------------------------------------|---------|---------|
| Promedio X | Edificio<br>Aislado LRB<br>con deslizador | 77.593% | 22.407% |
| Promedio X | Edificio<br>Aislado TFP                   | 78.651% | 21.349% |


**Tabla 107**Promedio de porcentaje de Reducción de Derivas en Base Fija y Base Aislada en Y.

|            | Edifico Base<br>Fija                      | 100%    |         |
|------------|-------------------------------------------|---------|---------|
| Promedio Y | Edificio<br>Aislado LRB<br>con deslizador | 89.370% | 10.630% |
| Promedio Y | Edificio<br>Aislado TFP                   | 89.037% | 10.963% |

**Figura 127**Porcentaje de Reducción de Derivas en Base Fija y Base Aislada en X.



**Figura 128**Porcentaje de Reducción de Derivas en Base Fija y Base Aislada en Y.



## 5.4.2 Porcentaje de Reducción en Fuerzas Cortantes

**Tabla 108**Porcentaje de Reducción de Fuerzas Cortantes en Base Fija y Base Aislada en X e Y.

|   |               |           | Edifico            |                                     | islado con:    |                      |                |
|---|---------------|-----------|--------------------|-------------------------------------|----------------|----------------------|----------------|
|   | Registro de   | D: 1/     | Base Fija          | Edificio Aislado LRB con deslizador |                | Edificio Aislado TFP |                |
|   | terremoto     | Dirección | Fuerza<br>Cortante | Fuerza<br>Cortante                  | %<br>Reducción | Fuerza<br>Cortante   | %<br>Reducción |
|   |               |           | tonf               | tonf                                |                | tonf                 |                |
| 1 | Lima 1966     | X         | 996.483            | 205.408                             | 79.387%        | 185.237              | 81.411%        |
| 2 | Arequipa 2001 | X         | 980.749            | 244.844                             | 75.035%        | 226.206              | 76.935%        |



| 3 | Pisco 2007    | X | 1115.788 | 195.008 | 82.523% | 187.089 | 83.233% |
|---|---------------|---|----------|---------|---------|---------|---------|
| 4 | Tacna 2010    | X | 1031.007 | 273.409 | 73.481% | 713.652 | 30.781% |
| 5 | Lima 1974     | X | 1031.007 | 176.426 | 82.888% | 161.832 | 84.303% |
| 6 | Lomas 2018    | X | 1031.007 | 321.513 | 68.816% | 606.652 | 41.159% |
| 7 | Turquía 2023  | X | 1031.007 | 236.037 | 77.106% | 266.265 | 74.174% |
| 1 | Lima 1966     | Y | 1091.596 | 202.225 | 81.474% | 193.550 | 82.269% |
| 2 | Arequipa 2001 | Y | 1017.815 | 246.489 | 75.783% | 264.087 | 74.054% |
| 3 | Pisco 2007    | Y | 1061.918 | 194.769 | 81.659% | 186.751 | 82.414% |
| 4 | Tacna 2010    | Y | 1057.110 | 275.138 | 73.973% | 710.721 | 32.768% |
| 5 | Lima 1974     | Y | 1057.110 | 176.801 | 83.275% | 161.752 | 84.699% |
| 6 | Lomas 2018    | Y | 1057.110 | 323.319 | 69.415% | 611.563 | 42.148% |
| 7 | Turquía 2023  | Y | 1057.110 | 236.793 | 77.600% | 277.885 | 73.713% |

**Tabla 109**Promedio de porcentaje de Reducción de Fuerzas Cortantes en Base Fija y Base Aislada en X.

|            | Edifico Base Fija                   | 100%    |         |
|------------|-------------------------------------|---------|---------|
| Promedio X | Edificio Aislado LRB con deslizador | 77.034% | 22.966% |
| Promedio X | Edificio Aislado TFP                | 67.428% | 32.572% |

**Tabla 110**Promedio de porcentaje de Reducción de Fuerzas Cortantes en Base Fija y Base Aislada en Y.

|            | Edifico Base Fija                   | 100%    |         |
|------------|-------------------------------------|---------|---------|
| Promedio Y | Edificio Aislado LRB con deslizador | 77.597% | 22.403% |
| Promedio Y | Edificio Aislado TFP                | 67.438% | 32.562% |

**Figura 129**Porcentaje de Reducción de Fuerzas Cortantes en Base Fija y Base Aislada en X.

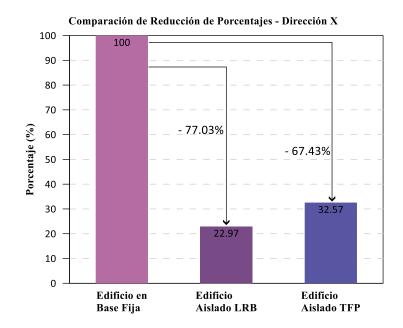
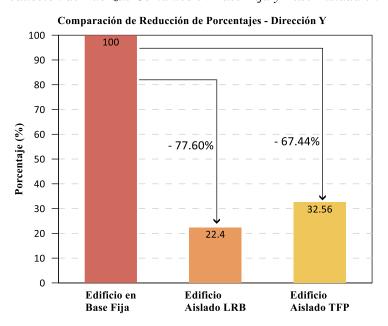




Figura 130

Porcentaje de Reducción de Fuerzas Cortantes en Base Fija y Base Aislada en Y.



## 5.4.3 Porcentaje de Reducción en Aceleraciones

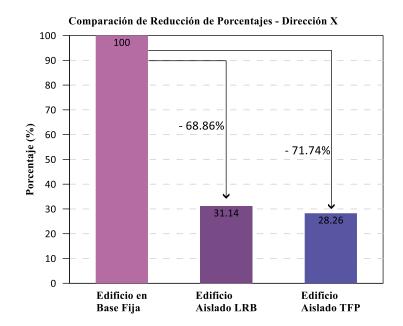
**Tabla 111**Porcentaje de Reducción de Aceleraciones en Base Fija y Base Aislada en X e Y.

| Registro de |           | Edifico   | Edificio Aislado con:                  |                      |  |
|-------------|-----------|-----------|----------------------------------------|----------------------|--|
| terremoto   | Dirección | Base Fija | Edificio Aislado LRB<br>con deslizador | Edificio Aislado TFP |  |



|   |                  |   | Aceleración | Aceleración | %<br>Reducción | Aceleración | %<br>Reducción |
|---|------------------|---|-------------|-------------|----------------|-------------|----------------|
|   |                  |   | g           | g           |                | g           |                |
| 1 | Lima 1966        | X | 1.707       | 0.545       | 68.101%        | 0.545       | 68.101%        |
| 2 | Arequipa<br>2001 | X | 1.943       | 0.531       | 72.657%        | 0.437       | 77.514%        |
| 3 | Pisco 2007       | X | 1.969       | 0.588       | 70.108%        | 0.453       | 76.982%        |
| 4 | Tacna 2010       | X | 1.873       | 0.366       | 80.461%        | 0.461       | 75.372%        |
| 5 | Lima 1974        | X | 1.873       | 0.660       | 64.760%        | 0.489       | 73.876%        |
| 6 | Lomas 2018       | X | 1.873       | 0.560       | 70.106%        | 0.515       | 72.502%        |
| 7 | Turquía<br>2023  | X | 1.873       | 0.827       | 55.823%        | 0.789       | 57.852%        |
| 1 | Lima 1966        | Y | 1.560       | 0.545       | 65.098%        | 0.545       | 65.098%        |
| 2 | Arequipa<br>2001 | Y | 1.505       | 0.437       | 70.979%        | 0.437       | 70.979%        |
| 3 | Pisco 2007       | Y | 1.580       | 0.588       | 62.744%        | 0.588       | 62.744%        |
| 4 | Tacna 2010       | Y | 1.548       | 0.331       | 78.625%        | 0.449       | 70.988%        |
| 5 | Lima 1974        | Y | 1.548       | 0.508       | 67.196%        | 0.489       | 68.402%        |
| 6 | Lomas 2018       | Y | 1.548       | 0.560       | 63.841%        | 0.515       | 66.739%        |
| 7 | Turquía<br>2023  | Y | 1.548       | 0.824       | 46.766%        | 0.789       | 49.019%        |

**Tabla 112**Promedio de porcentaje de Reducción de Aceleraciones en Base Fija y Base Aislada en X.


|            | Edifico Base Fija                   | 100%    |         |
|------------|-------------------------------------|---------|---------|
| Promedio X | Edificio Aislado LRB con deslizador | 68.859% | 31.141% |
| Promedio X | Edificio Aislado TFP                | 71.743% | 28.257% |

**Tabla 113**Promedio de porcentaje de Reducción de Aceleraciones en Base Fija y Base Aislada en la Dirección de Análisis Y.

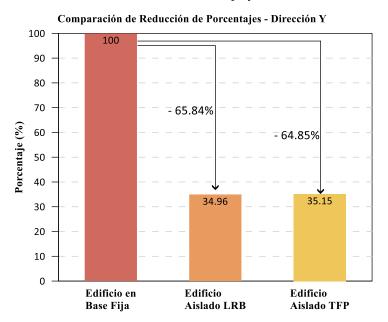

|            | Edifico Base Fija                   | 100%    |         |
|------------|-------------------------------------|---------|---------|
| Promedio Y | Edificio Aislado LRB con deslizador | 65.036% | 34.964% |
| Promedio Y | Edificio Aislado TFP                | 64.853% | 35.147% |

Figura 131

Porcentaje de Reducción de Aceleraciones en Base Fija y Base Aislada en X.

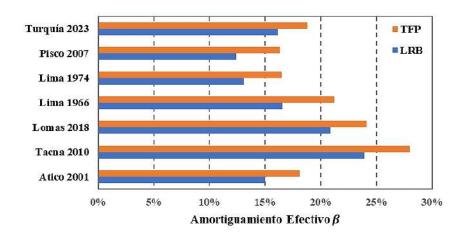


**Figura 132** *Porcentaje de Reducción de Aceleraciones en Base Fija y Base Aislada en Y.* 



## 5.4.4 Amortiguamiento Efectivo

**Tabla 114**Comparación de amortiguamiento según los análisis dinámicos en Base Aislada.


|        | β eff-glb          |     |  |
|--------|--------------------|-----|--|
| Evento | LRB con deslizador | TFP |  |



| Atico 2001       | 15.000% | 18.100% |
|------------------|---------|---------|
| Tacna 2010       | 23.900% | 28.000% |
| Lomas 2018       | 20.850% | 24.100% |
| <b>Lima 1966</b> | 16.550% | 21.200% |
| Lima 1974        | 13.100% | 16.500% |
| Pisco 2007       | 12.350% | 16.300% |
| Turquía 2023     | 16.150% | 18.800% |
|                  |         |         |

Figura 133

Comparación de amortiguamiento según los análisis dinámicos en Base Aislada.





#### 6. Discusión

#### 6.1 Contraste de resultados con referentes del marco teórico.

1) ¿Cuáles son los parámetros de respuesta sísmica que se modifican con la inclusión de Aisladores sísmicos?

A continuación, se indican algunos de los parámetros globales de respuesta estructural que se ven alterados:

- Desplazamientos laterales y derivas de entrepiso.
- Amortiguamiento de sistema estructural global.
- Fuerzas cortantes en la edificación.
- Aceleraciones de Piso.
- 2) ¿Por qué cambia el periodo de la estructura cuando se le añaden aisladores sísmicos en comparación con cuando es sólo una base fija?

De acuerdo con la teoría los Aisladores sísmicos, estos aportan alta flexibilidad horizontal, y mucha rigidez vertical al sistema, por eso, esta flexibilidad tiende a incrementar el periodo fundamental de la estructura.

3) ¿Qué parámetros deben calcularse para proporcionar una descripción precisa del comportamiento de los dispositivos de aislamiento sísmico?

El comportamiento de los dispositivos de aislamiento sísmico puede caracterizarse utilizando cuatro factores diferentes, el coeficiente de amortiguamiento, capacidad de carga, desplazamiento y la rigidez del sistema, la modificación de cualquiera de estos parámetros hace que varié el comportamiento del dispositivos de aislamiento sísmico; el coeficiente amortiguamiento determinar la deformación lateral, el coeficiente de amortiguamiento se puede estimar en función a la Norma Técnica Peruana E.031, la rigidez del sistema está dado por la rigidez horizontal y vertical del aislador, para tener un diseño optimo se debe iterar varias veces estos 4 parámetros.

4) ¿Qué se necesita cumplir para realizar el diseño con Aisladores sísmicos?



El uso de este sistema está permitido de acuerdo a la Norma Técnica Peruana E.030 de Diseño Sismorresistente, la cual establece en el ítem 3.9 "Sistemas de aislamiento sísmico y sistemas de disipación de energía" que el uso de este sistema está permitido siempre y cuando se cumpla con lo establecido en esta norma (fuerza cortante mínima en la base, distorsión máxima admisible entre pisos), y siempre y cuando se cumplan los requisitos del documento "Minimum Design Loads for Building and Other Structures", ASCE/SEI 7-10, Structural Engineering Institute of the American Society of Civil Engineers, Reston, Virginia, USA, 2010, vigente.

5) ¿Cuáles son las ventajas funcionales y económicas de utilizar aisladores sísmicos de base?

Las principales ventajas funcionales de estos dispositivos son la reducción de la aceleración espectral de diseño, la reducción de los daños en los elementos estructurales y no estructurales, y la reducción de las fuerzas que actúan sobre la estructura aislada. Las principales ventajas económicas de estos dispositivos son la operatividad inmediata del edificio tras un seísmo, la reducción del volumen de hormigón y acero con la reducción del espesor de los forjados, pilares y vigas, y la reducción de los daños en los equipos y elementos no estructurales. Estos dispositivos también reducen las fuerzas que actúan sobre la estructura aislada.

#### 6.2 Interpretación de los resultados encontrados en la investigación.

6) ¿La norma peruana de diseño sismorresistente E.031 incluye toda la información que se requiere para el estudio y desarrollo de dispositivos de aislamiento sísmico?

El análisis y la construcción de dispositivos de aislamiento sísmico utilizando nuestro pseudo espectro de aceleración se tratan en detalle en un capítulo que se incluye en la norma.

7) ¿Cómo influyen los aisladores sísmicos en la respuesta sísmica de la edificación Pabellón Inicial del Colegio San Francisco de Asís?

Se muestra una modificación importante en la respuesta sísmica del edificio, al incorporar los aisladores sísmicos, según los resultados obtenidos se puede afirmar que para los niveles de aceleración sometidos la estructura desarrolla un mecanismo estable, evita que el edificio se derrumbe en caso de que se produzca un fuerte terremoto.



#### 6.3 Comentario de la demostración de la hipótesis.

8) ¿En qué medida la respuesta sísmica de la Edificación Aislada denominada "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" varió con respecto al de base fija, usando análisis tiempo-historia y análisis dinámico modal espectral?

Las máximas distorsiones laterales tienen un porcentaje de variación respecto al edificio con y sin aisladores sísmicos de 77,593% en la dirección X-X y 89,370% en la dirección Y-Y para el edificio aislado con LRB y deslizador. En cuanto al edificio aislado con TFP de variación es de 78.651% para la dirección X-X, y para la dirección Y-Y es de 89.037%.

La fuerza cortante tiene un porcentaje de variación respecto al edificio con y sin aisladores sísmicos de 77,034% en la dirección X-X y 77,597% en la dirección Y-Y para el edificio aislado con LRB y deslizador. En cuanto al edificio aislado con TFP de variación es de 67, 428% para la dirección X-X, y para la dirección Y-Y es de 67.438%.

El amortiguamiento efectivo de la estructura aislada obtuvo un valor de hasta 23.900 % para LRB con deslizador y 28.000 % para el edificio aislado con TFP.

Las aceleraciones de piso tienen un porcentaje de variación respecto al edificio con y sin aisladores sísmicos de 68,859% en la dirección X-X y 65,036% en la dirección Y-Y para el edificio aislado con LRB y deslizador. En cuanto al edificio aislado con TFP de variación es de 71.743% para la dirección X-X, y para la dirección Y-Y es de 64.853%.

#### 6.4 Aporte de la investigación.

9) ¿De qué manera contribuye esta investigación a este campo?

Se descubrió que la aplicación de estas técnicas de aislamiento sísmico en el edificio objeto del estudio facilitaba una mejora de la respuesta estructural sísmica del edificio, concretamente en términos de derivas, fuerza cortante y aceleraciones del suelo. Por otra parte, cabe resaltar que la edificación de la presente investigación presenta un sistema estructural de muros estructurales, y con los resultados obtenidos se llega a la conclusión que estos dispositivos trabajan de mejor manera en un sistema estructural de pórticos solamente.

10) ¿Por qué se seleccionó la edificación "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" como muestra de estudio para incorporación de aisladores sísmicos?



De acuerdo con la Norma Técnica Peruana E.030-2018 de Diseño Sismorresistente, se eligió el edificio "PABELLON INICIAL DEL COLEGIO SAN FRANCISCO DE ASIS" por ser una instalación esencial para el uso escolar. Este fue el factor determinante en el proceso de selección. Por lo tanto, esta edificación amerita ser de resguardo ante eventos post sismo, lo cual significa que deber estar operacional luego de un sismo severo.

- 6.5 Incorporación de preocupaciones recientes surgidas a lo largo del proceso de investigación pero que no se tuvieron en cuenta al formular los objetivos del estudio.
- 11) ¿ Además de los métodos mencionados, ¿existen más formas de evaluar la reacción sísmica de un edificio?

Se puede diseñar el sistema de Aislamiento sísmico de una edificación usando los LRB con HDRB (High Damping Rubber Bearing), conjuntamente para tener un diseño optimo y así facilidad la llegada al Periodo objetivo del sistema de aislamiento. También se usó un registro sísmico de un sismo con aceleraciones muy altas de otro país para así obtener como se comportaría la estructura para dicho evento sisimico. Por otra parte, se tuvo en cuenta la estructura con base empotrada. Esto abre un nuevo campo en la interacción suelo-estructura relacionado con el diseño de sistemas de aislamiento sísmico para un edificio que aún no existe. Para el análisis, se utilizó el efecto de las condiciones del suelo y, como resultado, fue posible comparar los resultados obtenidos en la estructura teniendo en cuenta la base empotrada con los obtenidos en la estructura sin base empotrada. Se tuvieron en cuenta el rendimiento del sistema, los costes y otros resultados.



### CONCLUSIONES

#### General

Los resultados llevan a la conclusión de que la respuesta sísmica de la estructura mejoró significativamente con la instalación de un sistema de aislamiento LRB con deslizador y TFP en comparación con su condición de base fija existente. Esto se determinó analizando los datos obtenidos del experimento. Al considerar ambas direcciones de análisis, los resultados mostraron que hubo una reducción media del 83,662% en las distorsiones laterales horizontales máximas; la fuerza cortante máxima disminuyó en un 72.374% en promedio; en cuanto a las aceleraciones máximas de piso disminuyeron en un 67.622 % en promedio. Asimismo, el periodo fundamental del sistema estructural se incrementó de 0.32s a 2.8s. en dirección X, mientras que en la dirección Y de 0.279s a 2.702s. Estos resultados demuestran que el uso de aisladores es una solución viable para mejorar la respuesta sísmica de este edificio, y considerando los resultados, el tipo de aislador que mejor respuesta sísmica brinda a la estructura, luego de los análisis dinámicos realizados, es el de núcleo de plomo con deslizador, pero con resultados muy cercanos al Triple péndulo Friccionante (TFP).

#### **Específicos**

- 1. Sobre la base de los resultados obtenidos, se puede llegar a la conclusión de que la aplicación de aisladores sísmicos que contienen núcleo de plomo con deslizadores y triple péndulo friccionante, disminuyeron la deriva máxima para el sistema estructural en un 77.593% para el LRB con deslizador y un 78.651% para el TFP en la dirección X; mientras que en la dirección Y, disminuyeron en un 89.370% para el LRB con deslizador y un 89.037% para el TFP.
- 2. Con la incorporación de aisladores sísmicos que contienen núcleo de plomo con deslizadores y triple péndulo friccionante, disminuyeron la fuerza cortante disminuyó en un 77.034% para el LRB con deslizador y un 67.428% para el TFP en dirección X; mientras que para la dirección Y, disminuyeron hasta en un 77.597% para el LRB con deslizador y un 67.438% para el TFP.
- 3. Con la incorporación de aisladores sísmicos de núcleo de plomo con deslizadores y triple péndulo friccionante, incrementó el amortiguamiento para el sistema estructural "Pabellón Inicial del Colegio San Francisco de Asís de 5% a 16.843% en promedio para



- LRB con deslizador y 20.429% en promedio para el edificio aislado con TFP, llegando a un valor máximo de 23.9% en ambos dispositivos.
- 4. Con la incorporación de aisladores sísmicos de núcleo de plomo con deslizadores y triple péndulo friccionante, las aceleraciones disminuyeron en 68.859% para el LRB con deslizador y un 71.743% para el TFP en la dirección X; mientras que en la dirección Y, disminuyeron hasta un 65.036% para el LRB con deslizador y un 64.853% para el TFP.



### RECOMENDACIONES

- 1. Se recomienda seguir evaluando estos tipos de aisladores y en caso sea necesario, implementar aisladores sísmicos de núcleo de plomo o triple péndulo friccionante en aquellas edificaciones esenciales e importantes, que lo requieran por su uso, y que presenten además, una deriva máxima en dirección X o Y superior a 5/1000 respectivamente, para lograr una disminución significativa en la deriva máxima y esté operacional después de un evento sísmico. Si bien las distorsiones de entrepiso disminuyeron considerablemente, no es recomendable tener mucho desplazamiento en la base, ya que puede convertirse en la principal desventaja para la parte arquitectónica.
- Para el diseño de edificaciones con aislamiento sísmico de LRB con deslizador es recomendable utilizar dos tipos de aisladores, estos ubicados estratégicamente para lograr una mejor respuesta en la estructura.
- Se recomienda realizar la evaluación comparativa con otros tipos de disipadores pasivos
  y realizar una comparación de respuesta sísmica ya que estos dispositivos son otra
  opción en el mercado.
- 4. Se recomienda seguir evaluando el sistema estructural "Pabellón Inicial del Colegio San Francisco de Asís" considerando otros tipos de análisis no lineales y también poder incluir la interacción suelo estructura para comparar su respuesta sísmica.
- 5. Se recomienda seguir promoviendo y ampliando la implementación de aisladores sísmicos de núcleo de plomo con deslizadores y triple péndulo friccionante como mecanismo para mejorar la resistencia estructural de los edificios ante fenómenos sísmicos, teniendo en cuenta los hallazgos destacables que surgieron de la investigación de la estructura institucional del Colegio San Francisco de Asís.



#### Glosario

#### A

Acelerograma: Es el registro de la aceleración en función del tiempo.

Amortiguamiento: Disminución de la fuerza o intensidad de una fuerza actuante; disminución progresiva en el tiempo de la intensidad de un fenómeno periódico.

Análisis sísmico: El análisis sísmico de una edificación consiste en determinar de acuerdo a la norma E.030, E.020, las fuerzas internas en los elementos estructurales y los desplazamientos laterales producidos por las cargas sísmicas.

Análisis modal espectral: Considera las características o propiedades dinámicas de la estructura en la determinación de las fuerzas sísmicas y en cada efecto particular que desee calcularse.

C

Centro de masas: Es el punto en el que suponemos que se concentra toda la masa del sistema para su estudio. Es el centro de simetría de distribución de un sistema de partículas.

Centro de rigidez: Punto central de los elementos verticales de un sistema que resiste a las fuerzas laterales.

D

Desplazamiento relativo: es la diferencia de desplazamientos absolutos que se tiene entre dos entrepisos continuos.

Deriva: distorsión angular adimensional que resulta de la división del desplazamiento relativo entre la altura de entrepiso correspondiente.

E

Espectro de diseño: Es una curva que resulta de normalizar con respecto a la aceleración máxima de la base de los espectros de respuestas de sismos. Son gráficas que logran promediar o envolver valores de varios espectros de respuesta de múltiples movimientos sísmicos.

Espectro de respuesta: Son los registros de los sismos en un lugar determinado, mide la reacción de una infraestructura ante una vibración. Son graficas irregulares de sismos reales que reflejan valores obtenidos de una frecuencia especifica.

F

Frecuencia: Número de ciclos por unidad de tiempo de una onda u oscilación. Fuerza cortante: Fuerza interna que desarrolla un cuerpo como respuesta a una fuerza cortante y que es tangencial a la superficie sobre la que actúa.

Fuerzas externas: Son las cargas y reacciones a las que está sometido el elemento.

Fuerzas internas: Las fuerzas internas son las que están en el interior de los elementos y son las que mantienen unidas todas las partes del cuerpo e impiden que este colapse.

G



Grados de libertad: Los grados de libertad de una estructura son los desplazamientos independientes (traslacionales y rotacionales) de los nodos que son necesarios para especificar la forma deformada de esta estructura, cuando se sujeta a una carga arbitraria.

Н

Hertz: Unidad de frecuencia equivalente a un ciclo por segundo o pi radianes por segundo.

Hipótesis: Una proposición que se hace en forma tentativa y que es sometida posteriormente a comprobación por la obtención de indicios o experimentos.

I

Isoaceleraciones: Las isoaceleraciones son curvas analógicamente como las curvas de nivel, pero están en función a la aceleración máxima esperada por una fuente cortical con una probabilidad de excedencia en un periodo de tiempo.

M

Magnitud Sísmica: Es utilizada para cuantificar el tamaño de los sismos (mide la energía liberada durante la ruptura de una falla).

Modo de Vibrar: Es un patrón o forma característica en el que vibrara un sistema, el análisis modal determina la forma de estos modos de vibrar.

P

Parámetro: Una función definida sobre valores numéricos.

Periodo de vibración: Tiempo requerido para dar una oscilación en la dirección que se está considerando.

Peso: Es la fuerza con la cual un cuerpo actúa sobre un punto de apoyo originado por la aceleración de la gravedad, cuando esta actúa sobre la masa del cuerpo.

S

Sistema estructural dual: Es un sistema mixto de pórticos reforzados por muros de corte o diagonales de arriostramiento. Los muros tienden a tomar una mayor proporción de los esfuerzos en los niveles inferiores, mientras que los pórticos pueden disipar energía en los niveles superiores.

Sismo: Los sismos son perturbaciones súbitas en el interior de la tierra que dan origen a vibraciones o movimientos del suelo.

Zonificación sísmica: Mapa de una región que indica áreas donde el nivel de peligrosidad sísmica es casi constante o donde se exigen los mismos criterios para el diseño sismorresistente.



### Referencias

- Aguiar, R. (2015). *Analisis sismico por desempeño*. Ecuador: Centro de Investigaciones CIentíficas. Escuela Politécnica del Ejército.
- Benavente, C., Delgado, F., Taipe, E., Audin, L., & Pari, W. (2013). *Neotectónica y Peligro Sísmico en la Región Cusco*. Lima: INGEMMET.
- Bernal, C. (2018). Metodología de la investigación científica. México: Pearson Prentice Hall.
- Bonilla, M. (2015). Teoría del aislamiento sísmico para edificaciones. México: UNAM.
- Bozzo, L., & Gaxiola, G. (2015). El concepto de rigido-flexible-ductil y las conexiones SLB. *Congreso Nacional de Ingeniería Sisimica*. Mexico: Sociedad Mexicana de Ingeniería Sisimica.
- Carpenter & Paterson Ltd. (2015). PTFE Slide Bearings. Welshpool, Reino Unido.
- Chang-Hwan, L., Jinkyu, K., Do-Hyum, K., Jaeho, R., & Young, J. (2016). Numerical and experimental analysis of combined behavior of shear-type friction damper and non-uniforma strip for multi-level seismic protection. *Engineering Structures*, 75-92.
- Chang-Hwan, L., Seuung-Hee, L., Do-hyum, K., Jintak, O., & Young, J. (2016). Hourglass-Shaped strip damper subject to monotonic and cyclic loadings. *Engineering Structures*, 122-134.
- Chopra, A. K. (2014). Dinámica de estructuras. Juarez, Mexico: Pearson Educación.
- Clough, R., & Penzien, J. (2003). *Dynamics of Structures* (Third ed.). California: Computers & Structures, Inc.
- Dávila, O., & Pérez, A. (2013). Influencia del agrietamiento en la respuesta sísmica de edificios peruanos de muros de concreto armado. Lima: PUCP.
- Dynamic Isolation Systems Inc. (2007). Seismic Isolation for Buildings and Bridges. Nevada.
- Fahjan, Y., Tuzun, C., & Kubin, J. (s.f.). *An Alternative Procedure for Accidental Eccentricity in Dynamic Modal Analyses of Buildings*. First European Conference on Earthquake Engineering and Seismology.

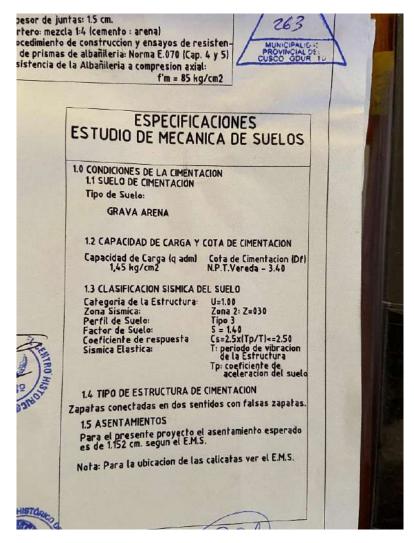


- Fenz, D., & Constantinou, M. (2015). *Modeling Triple Friction Pendulum Bearings for Response-History Analysis*. New York: Earthquake Engineering Practice.
- García, L. (1998). *Dinamica Estructural Aplicada al Diseño Sismico*. Bogota, Colombia: Universidad de los Andes.
- Gatica, V. (2012). Respuesta sísmica de un edificio de estructuras metálica con aisladores : alternativas de diseño. Madrid: Universidad Politécnica de Madrid.
- Gaxiola, G., Gonzales, H., & Bozzo, L. (2016). *Proceso de analisis y diseño utilizando disipadores sismicos tipo SLB*. Lima: Bozzo Estructuras y proyectos S.L.
- Hernández, H. (2016). Comportamiento sísmico de edificios aislados en la base en distintas etapas del proceso constructivo. Lima: Universidad Nacional de Ingeniería.
- Hernández, H., & Fernández-Dávila, V. (2015). *Análisis estructural de un edificio aislado sísmicamente y de su sistema de aislamiento*. Lima: Universidad Nacional de Ingeniería.
- Hernández, R., Fernández, C., & Baptista, M. d. (2014). *Metodología de la Investigación*. México: McGraw Hill.
- Hsu, H., & Halim, H. (2017). Improving seismic performance of framed struuctures with steel curved dampers. *Engineering Structures*, 99-111.
- Hurtado, F., & Bozzo, L. (2008). Numerical and experimental analysis of a shear-link energy disipator for seismic protection of buildings. *14th World conference on earthquake engineering*. Beijing.
- Kelly, J. (2012). Earthquake-Resistant Design with Rubber. London: Springer.
- Kumar, M., Whittaker, A., & Constantinou, M. (2013). *Mechanical properties of elastomeric seismic isolation bearing for analysis under extreme loadings*. San Francisco: 22th Conference on Structural Mechanics in Reactor Technology.
- Kyum-Won, M., Ji-Young, S., & Jinkoo, K. (2013). Simple design procedure of a friction damper for reducing seismic responses of a singlestory structures. *Engineering Structures*, 3539-3547.



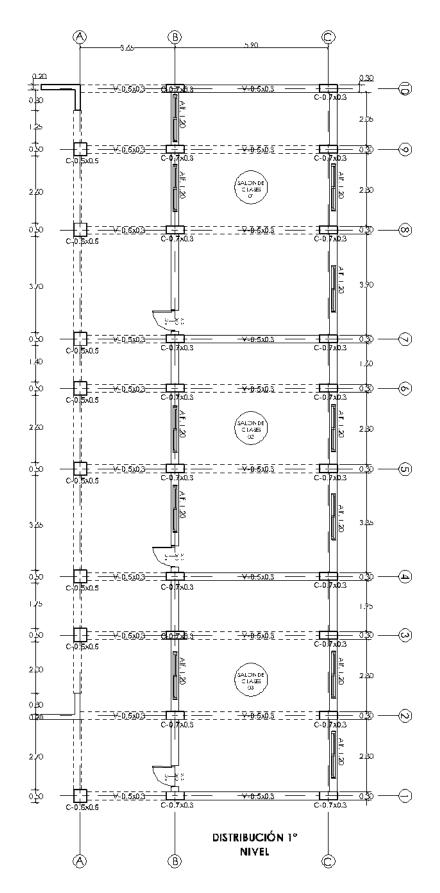
- Luk, C., & Luque, L. (2011). *Influencia del Agrietamiento en la respuesta sísmica de edificios aporticados peruanos*. Lima: PUCP.
- Mamani, E. (2016). Respuesta sísmica de tanques de almacenamiento de agua con sistema de aislamiento en la base. Lima: Universidad Nacional de Ingeniería.
- Nuzzo, I., Losano, D., Caterino, N., Serino, G., & Bozzo Rotondo, L. (2018). Experimental and analytical characterization of steel shear links for seismic energy dissipation. *Engineering Structures*, 405-418.
- Oviedo, J., & Duque, M. (2006). SISTEMAS DE CONTROL DE RESPUESTA SÍSMICA EN EDIFICACIONES. *Revista EIA*, 105-120.
- Piqué del Pozo, J., & Burgos, M. (2008). Design, Effective Rigidity of Reinforced Concrete Elements in Seismic Analysis and Design. China: World Conference on Earthquake Engineering.
- Quaketek. (09 de 2018). Disipadores sismicos. Obtenido de https://www.quaketek.com/es/
- Reglamento Nacional de Edificaciones. (2006). NTE E.020 Cargas. Lima: Diario "El Peruano".
- Reglamento Nacional de Edificaciones. (2018). NTE E.030 Diseño Sismo Resistente. Lima: Diario "El Peruano".
- Reglamento Nacional de Edificaciones. (2019). NTE E.031 Aislamiento Sísmico. Lima: Diario "El Peruano".
- Rivera-Vargas, D., Terron, J., & Arce, C. (2014). Estimación de la rigidez para el análisis sísmico en estructuras de concreto armado. Jalisco: Sociedad Mexicana de Ingeniería Estructural.
- Ruiz, P. (2017). Análisis y diseño de edificios con aisladores sísmicos de péndulo friccional doble y triple. Lima: PUCP.
- Sarkisian, M., Mathias, N., & Ozer, C. (2003). *Effective Stiffness Modelling of Shear Walls for Seismic Analysis of High-Rise Structures*. Council on Tall Buildings and Urban Habitat.




- Schoutanus, M., & Maffei, J. (2008). Computer modeling and effective stiffness of concrete walls. London: Wlaraven&Stoelhorst.
- Skinner, R., Robinson, W., & McVerry, G. (1993). *An introduction to Seismic Isolation*. England: Jhon Wiley & Sons.
- Soong, T., & Dargush, G. (2015). Passive Energy Dissipation Systems in Structural Engineering. New York: John Wiley & Sons, Ltd.
- Symans, M. (2013). Seismic protective systems: seismic isolation. New York: Federal Emergency Management Agency: FEMA.
- Tena-Colunga, A. (2007). State of the art and state of the practice for energy dissipation and seismic isolation of structures in Mexico. Istanbul: 10th World Conference on Seismic Isolation Dissipation and Active Vibration Control of Structures.
- Tena-Colunga, A. (2014). Simplified Method for the Seismic Design of Low-Rise, Shear Wall Base Isolated Buildings. The Open Construction and Building Technology Journal.
- Tena-Colunga, A., & Pérez, M. (2003). Factores de amplificación de los desplazamientos de sistemas de aislamiento sísmico por efectos bidireccionales. XIV Congreso Nacional de Ingeniería Sísmica.
- Tsiavos, A., Mackie, K., & Stojadinovic, B. (2017). *Dynamics of inelastic base-isolated structures subjected to recorded ground motions*. Bulletin of Earthquake Engineering.
- Tsiavos, A., Schlatter, D., Markic, T., & Stojadinovic, B. (2017). Experimental and analytical investigation of the inelastic behavior of structures isolated using friction pendulum bearings. X International Conference on Structural Dynamics, EURODYN 2017.
- Vidovic, D., Grandic, D., & Sculac, P. (2012). Effective Stiffness for Structural Analysis of Buildings in Earthquakes. Zabljak: 4th International Conference Civil Engineering-Science and Practic.
- Villarreal, G. (2016). Curso Breve de Dinámica Estructural. Lima.

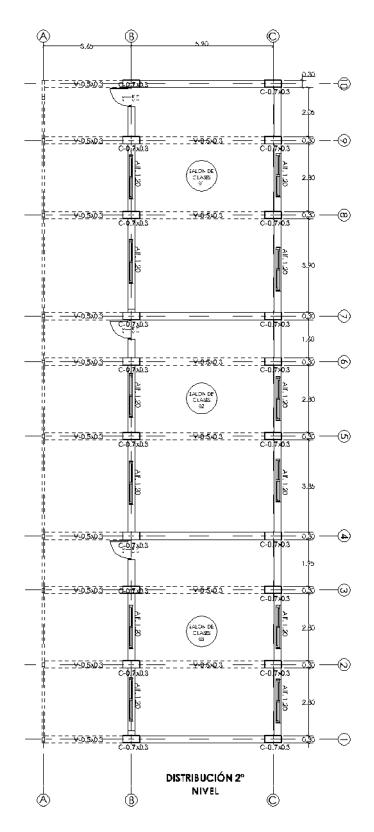


#### **Anexos**


#### **Anexo 1** – Panel Fotográfico

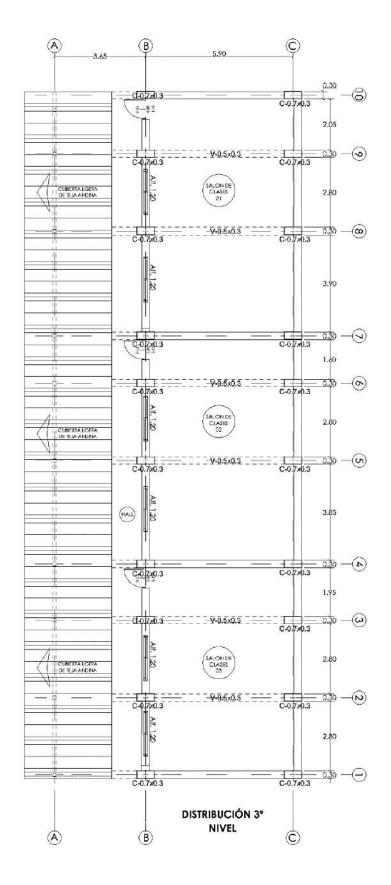
Especificaciones de Estudio de Mecánica de Suelos.






Plano de Distribución del Primer Nivel del Pabellón Nivel Inicial – Colegio San Francisco de Asís Cusco.






Plano de Distribución del Segundo Nivel del Pabellón Nivel Inicial – Colegio San Francisco de Asís Cusco.





Plano de Distribución del Tercer Nivel del Pabellón Nivel Inicial – Colegio San Francisco de Asís Cusco.





**Anexo 2** – Metrado de Elementos Estructurales

|       | Metrado de elementos estructurales |      |          |         |       |  |
|-------|------------------------------------|------|----------|---------|-------|--|
| Vigas |                                    |      |          |         |       |  |
| Piso  | Eje                                | Eje  | Longitud | Peralte | Ancho |  |
|       |                                    |      | m        | m       | m     |  |
| 1     | A                                  | 1-2  | 3.10     | 0.50    | 0.30  |  |
| 1     | Α                                  | 2-3  | 3.10     | 0.50    | 0.30  |  |
| 1     | Α                                  | 3-4  | 2.25     | 0.50    | 0.30  |  |
| 1     | Α                                  | 4-5  | 4.15     | 0.50    | 0.30  |  |
| 1     | Α                                  | 5-6  | 3.10     | 0.50    | 0.30  |  |
| 1     | Α                                  | 6-7  | 1.90     | 0.50    | 0.30  |  |
| 1     | A                                  | 7-8  | 4.20     | 0.50    | 0.30  |  |
| 1     | A                                  | 8-9  | 3.10     | 0.50    | 0.30  |  |
| 1     | A                                  | 9-10 | 2.35     | 0.50    | 0.30  |  |
| 1     | В                                  | 1-2  | 3.10     | 0.50    | 0.30  |  |
| 1     | В                                  | 2-3  | 3.10     | 0.50    | 0.30  |  |
| 1     | В                                  | 3-4  | 2.25     | 0.50    | 0.30  |  |
| 1     | В                                  | 4-5  | 4.15     | 0.50    | 0.30  |  |
| 1     | В                                  | 5-6  | 3.10     | 0.50    | 0.30  |  |
| 1     | В                                  | 6-7  | 1.90     | 0.50    | 0.30  |  |
| 1     | В                                  | 7-8  | 4.20     | 0.50    | 0.30  |  |
| 1     | В                                  | 8-9  | 3.10     | 0.50    | 0.30  |  |
| 1     | В                                  | 9-10 | 2.35     | 0.50    | 0.30  |  |
| 1     | С                                  | 1-2  | 3.10     | 0.50    | 0.30  |  |
| 1     | С                                  | 2-3  | 3.10     | 0.50    | 0.30  |  |
| 1     | С                                  | 3-4  | 2.25     | 0.50    | 0.30  |  |
| 1     | С                                  | 4-5  | 4.15     | 0.50    | 0.30  |  |
| 1     | С                                  | 5-6  | 3.10     | 0.50    | 0.30  |  |
| 1     | С                                  | 6-7  | 1.90     | 0.50    | 0.30  |  |
| 1     | C                                  | 7-8  | 4.20     | 0.50    | 0.30  |  |
| 1     | С                                  | 8-9  | 3.10     | 0.50    | 0.30  |  |
| 1     | С                                  | 9-10 | 2.35     | 0.50    | 0.30  |  |
| 1     | 1                                  | A-B  | 3.65     | 0.50    | 0.30  |  |
| 1     | 1                                  | B-C  | 5.90     | 0.50    | 0.30  |  |
| 1     | 2                                  | A-B  | 3.65     | 0.50    | 0.30  |  |
| 1     | 2                                  | B-C  | 5.90     | 0.50    | 0.30  |  |
| 1     | 3                                  | A-B  | 3.65     | 0.50    | 0.30  |  |
| 1     | 3                                  | B-C  | 5.90     | 0.50    | 0.30  |  |
| 1     | 4                                  | A-B  | 3.65     | 0.50    | 0.30  |  |
| 1     | 4                                  | B-C  | 5.90     | 0.50    | 0.30  |  |

| 1 | 5  | A-B  | 3.65 | 0.50  | 0.30  |
|---|----|------|------|-------|-------|
| 1 | 5  | В-С  | 5.90 | 0.50  | 0.30  |
| 1 | 6  | A-B  | 3.65 | 0.50  | 0.30  |
| 1 | 6  | В-С  | 5.90 | 0.50  | 0.30  |
| 1 | 7  | A-B  | 3.65 | 0.50  | 0.30  |
| 1 | 7  | В-С  | 5.90 | 0.50  | 0.30  |
| 1 | 8  | A-B  | 3.65 | 0.50  | 0.30  |
| 1 | 8  | В-С  | 5.90 | 0.50  | 0.30  |
| 1 | 9  | A-B  | 3.65 | 0.50  | 0.30  |
| 1 | 9  | В-С  | 5.90 | 0.50  | 0.30  |
| 1 | 10 | A-B  | 3.65 | 0.50  | 0.30  |
| 1 | 10 | В-С  | 5.90 | 0.50  | 0.30  |
| 2 | A  | 1-2  | 3.10 | 0.135 | 0.135 |
| 2 | A  | 2-3  | 3.10 | 0.135 | 0.135 |
| 2 | A  | 3-4  | 2.25 | 0.135 | 0.135 |
| 2 | A  | 4-5  | 4.15 | 0.135 | 0.135 |
| 2 | A  | 5-6  | 3.10 | 0.135 | 0.135 |
| 2 | A  | 6-7  | 1.90 | 0.135 | 0.135 |
| 2 | A  | 7-8  | 4.20 | 0.135 | 0.135 |
| 2 | A  | 8-9  | 3.10 | 0.135 | 0.135 |
| 2 | A  | 9-10 | 2.35 | 0.135 | 0.135 |
| 2 | В  | 1-2  | 3.10 | 0.50  | 0.30  |
| 2 | В  | 2-3  | 3.10 | 0.50  | 0.30  |
| 2 | В  | 3-4  | 2.25 | 0.50  | 0.30  |
| 2 | В  | 4-5  | 4.15 | 0.50  | 0.30  |
| 2 | В  | 5-6  | 3.10 | 0.50  | 0.30  |
| 2 | В  | 6-7  | 1.90 | 0.50  | 0.30  |
| 2 | В  | 7-8  | 4.20 | 0.50  | 0.30  |
| 2 | В  | 8-9  | 3.10 | 0.50  | 0.30  |
| 2 | В  | 9-10 | 2.35 | 0.50  | 0.30  |
| 2 | С  | 1-2  | 3.10 | 0.50  | 0.30  |
| 2 | С  | 2-3  | 3.10 | 0.50  | 0.30  |
| 2 | С  | 3-4  | 2.25 | 0.50  | 0.30  |
| 2 | С  | 4-5  | 4.15 | 0.50  | 0.30  |
| 2 | С  | 5-6  | 3.10 | 0.50  | 0.30  |
| 2 | С  | 6-7  | 1.90 | 0.50  | 0.30  |
| 2 | С  | 7-8  | 4.20 | 0.50  | 0.30  |
| 2 | С  | 8-9  | 3.10 | 0.50  | 0.30  |
| 2 | С  | 9-10 | 2.35 | 0.50  | 0.30  |
| 2 | 1  | A-B  | 3.65 | 0.50  | 0.30  |
| 2 | 1  | В-С  | 5.90 | 0.50  | 0.30  |
| 2 | 2  | A-B  | 3.65 | 0.50  | 0.30  |



| 2 | 2  | В-С  | 5.90 | 0.50 | 0.30 |
|---|----|------|------|------|------|
| 2 | 3  | A-B  | 3.65 | 0.50 | 0.30 |
| 2 | 3  | B-C  | 5.90 | 0.50 | 0.30 |
| 2 | 4  | A-B  | 3.65 | 0.50 | 0.30 |
| 2 | 4  | B-C  | 5.90 | 0.50 | 0.30 |
| 2 | 5  | A-B  | 3.65 | 0.50 | 0.30 |
| 2 | 5  | B-C  | 5.90 | 0.50 | 0.30 |
| 2 | 6  | A-B  | 3.65 | 0.50 | 0.30 |
| 2 | 6  | B-C  | 5.90 | 0.50 | 0.30 |
| 2 | 7  | A-B  | 3.65 | 0.50 | 0.30 |
| 2 | 7  | B-C  | 5.90 | 0.50 | 0.30 |
| 2 | 8  | A-B  | 3.65 | 0.50 | 0.30 |
| 2 | 8  | B-C  | 5.90 | 0.50 | 0.30 |
| 2 | 9  | A-B  | 3.65 | 0.50 | 0.30 |
| 2 | 9  | B-C  | 5.90 | 0.50 | 0.30 |
| 2 | 10 | A-B  | 3.65 | 0.50 | 0.30 |
| 2 | 10 | В-С  | 5.90 | 0.50 | 0.30 |
| 3 | В  | 1-2  | 3.10 | 0.50 | 0.30 |
| 3 | В  | 2-3  | 3.10 | 0.50 | 0.30 |
| 3 | В  | 3-4  | 2.25 | 0.50 | 0.30 |
| 3 | В  | 4-5  | 4.15 | 0.50 | 0.30 |
| 3 | В  | 5-6  | 3.10 | 0.50 | 0.30 |
| 3 | В  | 6-7  | 1.90 | 0.50 | 0.30 |
| 3 | В  | 7-8  | 4.20 | 0.50 | 0.30 |
| 3 | В  | 8-9  | 3.10 | 0.50 | 0.30 |
| 3 | В  | 9-10 | 2.35 | 0.50 | 0.30 |
| 3 | С  | 1-2  | 3.10 | 0.50 | 0.30 |
| 3 | С  | 2-3  | 3.10 | 0.50 | 0.30 |
| 3 | С  | 3-4  | 2.25 | 0.50 | 0.30 |
| 3 | С  | 4-5  | 4.15 | 0.50 | 0.30 |
| 3 | C  | 5-6  | 3.10 | 0.50 | 0.30 |
| 3 | C  | 6-7  | 1.90 | 0.50 | 0.30 |
| 3 | С  | 7-8  | 4.20 | 0.50 | 0.30 |
| 3 | С  | 8-9  | 3.10 | 0.50 | 0.30 |
| 3 | С  | 9-10 | 2.35 | 0.50 | 0.30 |
| 3 | 1  | В-С  | 5.90 | 0.50 | 0.30 |
| 3 | 2  | В-С  | 5.90 | 0.50 | 0.30 |
| 3 | 3  | В-С  | 5.90 | 0.50 | 0.30 |
| 3 | 4  | В-С  | 5.90 | 0.50 | 0.30 |
| 3 | 5  | В-С  | 5.90 | 0.50 | 0.30 |
| 3 | 6  | В-С  | 5.90 | 0.50 | 0.30 |
| 3 | 7  | В-С  | 5.90 | 0.50 | 0.30 |



| 3 | 8  | В-С | 5.90 | 0.50 | 0.30 |
|---|----|-----|------|------|------|
| 3 | 9  | В-С | 5.90 | 0.50 | 0.30 |
| 3 | 10 | В-С | 5.90 | 0.50 | 0.30 |

|      | Metrado de elementos estructurales |     |        |         |         |  |  |  |  |
|------|------------------------------------|-----|--------|---------|---------|--|--|--|--|
|      |                                    |     | Colur  | nnas    |         |  |  |  |  |
| Piso | Eje                                | Eje | Altura | Ancho X | Ancho Y |  |  |  |  |
|      |                                    |     | m      | m       | m       |  |  |  |  |
| 1    | A                                  | 1   | 3.00   | 0.50    | 0.50    |  |  |  |  |
| 1    | A                                  | 3   | 3.00   | 0.50    | 0.50    |  |  |  |  |
| 1    | A                                  | 4   | 3.00   | 0.50    | 0.50    |  |  |  |  |
| 1    | A                                  | 5   | 3.00   | 0.50    | 0.50    |  |  |  |  |
| 1    | A                                  | 6   | 3.00   | 0.50    | 0.50    |  |  |  |  |
| 1    | A                                  | 7   | 3.00   | 0.50    | 0.50    |  |  |  |  |
| 1    | A                                  | 8   | 3.00   | 0.50    | 0.50    |  |  |  |  |
| 1    | A                                  | 9   | 3.00   | 0.50    | 0.50    |  |  |  |  |
| 1    | В                                  | 1   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | В                                  | 2   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | В                                  | 3   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | В                                  | 4   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | В                                  | 5   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | В                                  | 6   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | В                                  | 7   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | В                                  | 8   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | В                                  | 9   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | В                                  | 10  | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | С                                  | 1   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | С                                  | 2   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | С                                  | 3   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | С                                  | 4   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | С                                  | 5   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | С                                  | 6   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | С                                  | 7   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | С                                  | 8   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | С                                  | 9   | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 1    | С                                  | 10  | 3.00   | 0.70    | 0.30    |  |  |  |  |
| 2    | A                                  | 1   | 2.50   | 0.135   | 0.135   |  |  |  |  |
| 2    | A                                  | 2   | 2.50   | 0.135   | 0.135   |  |  |  |  |



| 2             | Α      | 3      | 2.50 | 0.135 | 0.135 |
|---------------|--------|--------|------|-------|-------|
| 2             | A      | 4      | 2.50 | 0.135 | 0.135 |
| 2             | A      | 5      | 2.50 | 0.135 | 0.135 |
| $\frac{2}{2}$ | A      | 6      | 2.50 | 0.135 | 0.135 |
|               |        |        | 2.50 | 0.135 | 0.135 |
| 2             | A      | 7<br>8 | 2.50 | 0.135 | 0.135 |
| 2             | A<br>A | 9      | 2.50 | 0.135 | 0.135 |
| 2             |        |        |      |       |       |
| 2             | A      | 10     | 2.50 | 0.135 | 0.135 |
| 2             | В      | 1      | 2.50 | 0.70  | 0.30  |
| 2             | В      | 2      | 2.50 | 0.70  | 0.30  |
| 2             | В      | 3      | 2.50 | 0.70  | 0.30  |
| 2             | В      | 4      | 2.50 | 0.70  | 0.30  |
| 2             | В      | 5      | 2.50 | 0.70  | 0.30  |
| 2             | В      | 6      | 2.50 | 0.70  | 0.30  |
| 2             | В      | 7      | 2.50 | 0.70  | 0.30  |
| 2             | В      | 8      | 2.50 | 0.70  | 0.30  |
| 2             | В      | 9      | 2.50 | 0.70  | 0.30  |
| 2             | В      | 10     | 2.50 | 0.70  | 0.30  |
| 2             | С      | 1      | 2.50 | 0.70  | 0.30  |
| 2             | С      | 2      | 2.50 | 0.70  | 0.30  |
| 2             | С      | 3      | 2.50 | 0.70  | 0.30  |
| 2             | С      | 4      | 2.50 | 0.70  | 0.30  |
| 2             | С      | 5      | 2.50 | 0.70  | 0.30  |
| 2             | С      | 6      | 2.50 | 0.70  | 0.30  |
| 2             | С      | 7      | 2.50 | 0.70  | 0.30  |
| 2             | С      | 8      | 2.50 | 0.70  | 0.30  |
| 2             | С      | 9      | 2.50 | 0.70  | 0.30  |
| 2             | С      | 10     | 2.50 | 0.70  | 0.30  |
| 3             | В      | 1      | 2.50 | 0.70  | 0.30  |
| 3             | В      | 2      | 2.50 | 0.70  | 0.30  |
| 3             | В      | 3      | 2.50 | 0.70  | 0.30  |
| 3             | В      | 4      | 2.50 | 0.70  | 0.30  |
| 3             | В      | 5      | 2.50 | 0.70  | 0.30  |
| 3             | В      | 6      | 2.50 | 0.70  | 0.30  |
| 3             | В      | 7      | 2.50 | 0.70  | 0.30  |
| 3             | В      | 8      | 2.50 | 0.70  | 0.30  |
| 3             | В      | 9      | 2.50 | 0.70  | 0.30  |
| 3             | В      | 10     | 2.50 | 0.70  | 0.30  |
| 3             | С      | 1      | 2.50 | 0.70  | 0.30  |
| 3             | С      | 2      | 2.50 | 0.70  | 0.30  |
| 3             | С      | 3      | 2.50 | 0.70  | 0.30  |
| 3             | С      | 4      | 2.50 | 0.70  | 0.30  |
| _             | _      | _      |      |       |       |



| 3 | C | 5  | 2.50 | 0.70 | 0.30 |
|---|---|----|------|------|------|
| 3 | С | 6  | 2.50 | 0.70 | 0.30 |
| 3 | С | 7  | 2.50 | 0.70 | 0.30 |
| 3 | С | 8  | 2.50 | 0.70 | 0.30 |
| 3 | С | 9  | 2.50 | 0.70 | 0.30 |
| 3 | С | 10 | 2.50 | 0.70 | 0.30 |

|      | Metrado de elementos estructurales Placas                                               |   |      |      |      |      |      |  |  |  |
|------|-----------------------------------------------------------------------------------------|---|------|------|------|------|------|--|--|--|
| Piso | Piso Eje Eje Altura Longitud Longitud Longitud Longitud Mayor X Mayor Y Menor X Menor Y |   |      |      |      |      |      |  |  |  |
|      |                                                                                         |   | m    | m    | m    | m    | m    |  |  |  |
| 1    | 2                                                                                       | A | 3.00 | 1.50 | 1.00 | 1.30 | 0.80 |  |  |  |
| 1    | 10                                                                                      | A | 3.00 | 1.50 | 1.00 | 1.30 | 0.80 |  |  |  |

|      | Metrado de elementos estructurales |      |         |            |            |  |  |  |  |
|------|------------------------------------|------|---------|------------|------------|--|--|--|--|
|      | Losa Maciza                        |      |         |            |            |  |  |  |  |
| Piso | Eje                                | Eje  | Peralte | Longitud X | Longitud Y |  |  |  |  |
|      |                                    |      | m       | m          | m          |  |  |  |  |
|      |                                    |      |         |            |            |  |  |  |  |
| 2    | A-B                                | 1-2  | 0.20    | 3.65       | 3.10       |  |  |  |  |
| 2    | A-B                                | 2-3  | 0.20    | 3.65       | 3.10       |  |  |  |  |
| 2    | A-B                                | 3-4  | 0.20    | 3.65       | 2.25       |  |  |  |  |
| 2    | A-B                                | 4-5  | 0.20    | 3.65       | 4.15       |  |  |  |  |
| 2    | A-B                                | 5-6  | 0.20    | 3.65       | 3.10       |  |  |  |  |
| 2    | A-B                                | 6-7  | 0.20    | 3.65       | 1.90       |  |  |  |  |
| 2    | A-B                                | 7-8  | 0.20    | 3.65       | 4.20       |  |  |  |  |
| 2    | A-B                                | 8-9  | 0.20    | 3.65       | 3.10       |  |  |  |  |
| 2    | A-B                                | 9-10 | 0.20    | 3.65       | 2.35       |  |  |  |  |
| 2    | В-С                                | 1-2  | 0.20    | 5.90       | 3.10       |  |  |  |  |
| 2    | В-С                                | 2-3  | 0.20    | 5.90       | 3.10       |  |  |  |  |
| 2    | В-С                                | 3-4  | 0.20    | 5.90       | 2.25       |  |  |  |  |



| 2     | В-С | 4-5  | 0.20 | 5.90 | 4.15 |
|-------|-----|------|------|------|------|
| 2     | В-С | 5-6  | 0.20 | 5.90 | 3.10 |
| 2     | В-С | 6-7  | 0.20 | 5.90 | 1.90 |
| 2     | В-С | 7-8  | 0.20 | 5.90 | 4.20 |
| 2     | В-С | 8-9  | 0.20 | 5.90 | 3.10 |
| 2     | В-С | 9-10 | 0.20 | 5.90 | 2.35 |
| 3     | A-B | 1-2  | 0.20 | 3.65 | 3.10 |
| 3     | A-B | 2-3  | 0.20 | 3.65 | 3.10 |
| 3     | A-B | 3-4  | 0.20 | 3.65 | 2.25 |
| 3     | A-B | 4-5  | 0.20 | 3.65 | 4.15 |
| 3     | A-B | 5-6  | 0.20 | 3.65 | 3.10 |
| 3     | A-B | 6-7  | 0.20 | 3.65 | 1.90 |
| 3     | A-B | 7-8  | 0.20 | 3.65 | 4.20 |
| 3     | A-B | 8-9  | 0.20 | 3.65 | 3.10 |
| 3     | A-B | 9-10 | 0.20 | 3.65 | 2.35 |
| 3     | В-С | 1-2  | 0.20 | 5.90 | 3.10 |
| 3     | В-С | 2-3  | 0.20 | 5.90 | 3.10 |
| 3     | В-С | 3-4  | 0.20 | 5.90 | 2.25 |
| 3     | В-С | 4-5  | 0.20 | 5.90 | 4.15 |
| 3     | В-С | 5-6  | 0.20 | 5.90 | 3.10 |
| 3     | В-С | 6-7  | 0.20 | 5.90 | 1.90 |
| 3     | В-С | 7-8  | 0.20 | 5.90 | 4.20 |
| 3     | В-С | 8-9  | 0.20 | 5.90 | 3.10 |
| 3     | В-С | 9-10 | 0.20 | 5.90 | 2.35 |
| ТЕСНО | В-С | 1-2  | 0.10 | 5.90 | 3.10 |
| ТЕСНО | В-С | 2-3  | 0.10 | 5.90 | 3.10 |
| ТЕСНО | В-С | 3-4  | 0.10 | 5.90 | 2.25 |
| ТЕСНО | В-С | 4-5  | 0.10 | 5.90 | 4.15 |
| ТЕСНО | В-С | 5-6  | 0.10 | 5.90 | 3.10 |
| ТЕСНО | В-С | 6-7  | 0.10 | 5.90 | 1.90 |
| ТЕСНО | В-С | 7-8  | 0.10 | 5.90 | 4.20 |
| ТЕСНО | В-С | 8-9  | 0.10 | 5.90 | 3.10 |
| ТЕСНО | В-С | 9-10 | 0.10 | 5.90 | 2.35 |



Anexo 3 – Metrado de Cargas de Muros de Albañilería

## METRADO DE CARGAS DE MUROS DE ALBAÑILERÍA - SOGA



#### **BLOCKER 10**



- Peso Unitario: 4.5kg
- Convexidad Máxima = Imm (ALABEC NTP 399.413.2005)

## **PRE PROCESAMIENTO**

GEOMETRIA DE LA UNIDAD DE MUROS DE ALBAÑILERÍA

 $L_i = 30 \ cm$ 

 $A_l = 10 \ cm$ 

 $h_l = 20 \ cm$ 

**PESO UNITARIO** DE LA UNIDAD

 $Pu_l = 4.5 \ kgf$ 

DATOS SOBRE EL MURO DE ALBAÑILERÍA

1) TIPO DE APAREJO: SOGA= -1 Y CABEZA= 1

TA := -1

**ESPESOR DE JUNTA** JUNTA HORIZONTAL JUNTA VERTICAL

 $J_h = 1.5 \ cm$ 

 $J_v = 1.5 \ cm$ 

PESO UNITARIO DE MORTERO DE JUNTA

 $PU_{mortero} = 2000 \frac{kgf}{m^3}$ 

REVESTIMIENTO DEL MURO: DOS CARAS =2; UNA CARA=1; SIN REVESTIMIENTO=0

 $R_{muro} := 2$ 

PESO UNITARIO DE MATERIAL DE REVESTIMIENTO

$$PU_R \coloneqq 2000 \cdot \frac{kgf}{m^3}$$

ESPESOR DE REVESTIMIENTO

 $E_R = 1 \ cm$ 



GEOMETRÍA DEL MURO LARGO DEL MURO  $LM \coloneqq 4 \ m$ 

ALTURA DE MURO HM := 3 m

#### **PROCESAMIENTO**

CANTIDAD DE LADRILLOS SOGA

$$Cls \coloneqq \frac{1 \cdot m^2}{\left(L_l + J_v\right) \cdot \left(h_l + J_h\right)}$$

$$Cls = 14.766$$

**CABEZA** 

$$Clc := \frac{1 \cdot m^2}{(A_l + J_v) \cdot (h_l + J_h)}$$

$$Clc = 40.445$$

## CANTIDAD DE LADRILLOS

$$CL = 14.766$$

PESO DE LOS LADRILLOS

$$PL := CL \cdot Pu_l$$
  $PL = 66.445 \ kgf$ 

mortero en juntas VOLUMEN DE MURO

$$E_M \coloneqq \left| \begin{array}{c} \text{if } (TA < 0) \\ \|A_l \\ \text{else} \\ \|L_l \end{array} \right|$$

$$E_M = 0.1 \ m$$



**VOLUMEN DE MURO** 

$$V_M \coloneqq 1 \cdot m^2 \cdot E_M$$

VOLUMEN DE LADRILLOS 
$$VL := (L_l \cdot A_l \cdot h_l) \cdot CL$$

$$V_M = 0.1 m^3$$

$$VL = 0.089 \ m^3$$

**VOLUMEN DE MORTERO** 

$$V_{mortero} := V_M - VL$$

$$V_{mortero} = 0.011 \ m^3$$

PESO DEL MORTERO

$$Pmo := V_{mortero} \cdot PU_{mortero}$$

$$Pmo = 22.813 \ kgf$$

**REVESTIMIENTO** 

$$V_{RE} := 1 \cdot m^2 \cdot E_R \cdot R_{muro}$$

$$V_{RE} = 0.02 \ m^3$$

PESO DE REVESTIMIENTO

$$P_{RE} := V_{RE} \cdot PU_R$$

$$P_{RE} = 40 \ kgf$$

#### **POS PROCESAMIENTO**

PESO DE LADRILLOS  $PL = 66.445 \ kgf$ 

PESO DE MORTERO  $Pmo = 22.813 \ kgf$ 

PESO DE REVESTIMIENTO

$$P_{RE} = 40 \ kgf$$

PESO DE MURO POR METRO CUADRADO

$$P_M := \frac{\left(PL + Pmo + P_{RE}\right)}{1 \ m^2}$$

$$P_{M} = 129.258 \frac{kgf}{m^{2}}$$



PESO DISTRIBUIDO POR METRO LINEAL

$$Pmuro\_l := P_M \cdot HM$$

$$Pmuro\_l = 387.8 \ \frac{kgf}{m}$$

Recomendaciones de la Norma E.020 Cargas (1998)

TABLA 2.3
CARGAS MÍNIMAS REPARTIDAS EQUIVALENTES A LA DE TABAQUERÍA

| Peso del Tabique<br>(Kg/m) | Carga Equivalente (Kg/m²) a ser<br>añadida a la carga muerta. |
|----------------------------|---------------------------------------------------------------|
| 74 ó menos                 | 30                                                            |
| 75 a 149                   | 60                                                            |
| 150 a 249                  | 90                                                            |
| 250 a 399                  | 150                                                           |
| 400 a 549                  | 210                                                           |
| 550 a 699                  | 270                                                           |
| 700 a 849                  | 330                                                           |
| 850 a1000                  | 390                                                           |

$$Carga\_Equivalente\_Tabiqueria \coloneqq 150 \frac{kgf}{m^2}$$

Anexo 4 – Sistema Estructural e Irregularidades en la Estructura

| SISTEMA E | Ro  | 7 |  |
|-----------|-----|---|--|
| la        | 1.0 |   |  |
| lp        | 1.0 |   |  |

|             |   | tonf     |   | tonf     | Х   | Υ   |
|-------------|---|----------|---|----------|-----|-----|
| %V Columnas | Χ | -63.9585 | Υ | -68.9346 | 49% | 51% |
| %V Placas   | Χ | -67.4538 | Υ | -65.4029 | 51% | 49% |

 $\Sigma$  -131.4123  $\Sigma$  -134.3375

## IRREGULARIDADES ESTRUCTURALES EN ALTURA

## 1. IRREGULARIDAD DE RIGIDEZ O PISO BLANDO DIRECCION X

| NIVEL  | CASO     | VX      | UX       | Despl Relativo | Ki         | 0.70*Ki+1 | Patio  | Verificación |
|--------|----------|---------|----------|----------------|------------|-----------|--------|--------------|
| INIVLL | CASO     | tonf    | m        | m              | tonf/m     | tonf/m    | ivatio | VETTICACIOTI |
| 3      | S. Din X | 45.777  | 0.006149 | 0.002          | 21695.450  | -         | -      | -            |
| 2      | S. Din X | 115.642 | 0.004039 | 0.003          | 44839.744  | 15186.815 | 2.953  | Regular      |
| 1      | S. Din X | 149.347 | 0.001460 | 0.001          | 102292.397 | 31387.821 | 3.259  | Regular      |

|   | Ki         | 0.80*1/3(Ki+1 + Ki+2 +) | Ratio | Verificación |
|---|------------|-------------------------|-------|--------------|
|   | tonf/m     | tonf/m                  |       |              |
| 3 | 21695.4502 | -                       | -     | -            |



| 2 | 44839.7441 | 5785.453397 | 7.75042871 | Regular |
|---|------------|-------------|------------|---------|
| 1 | 102292.397 | 11957.26509 | 8.55483227 | Regular |

## **DIRECCION Y**

| NIVEL  | CASO      | VY       | UY       | Despl Relativo | Ki         | 0.70*Ki+1  | Ratio  | Verificación |
|--------|-----------|----------|----------|----------------|------------|------------|--------|--------------|
| INIVLL | CASO      | tonf     | m        | m              | tonf/m     | tonf/m     | Natio  | verificacion |
| 3      | S. Din. Y | 42.521   | 0.006586 | 0.001477       | 28788.761  | -          | -      | -            |
| 2      | S. Din. Y | 120.2449 | 0.005109 | 0.003363       | 35755.2483 | 20152.1327 | 1.7742 | Regular      |
| 1      | S. Din. Y | 153.4731 | 0.001746 | 0.001746       | 87899.8282 | 25028.6738 | 3.5119 | Regular      |

|   | Ki         | 0.80*1/3(Ki+1 + Ki+2 +) | Ratio      | Verificación |
|---|------------|-------------------------|------------|--------------|
|   | tonf/m     | tonf/m                  |            |              |
| 3 | 28788.761  | -                       | -          | -            |
| 2 | 35755.2483 | 7677.002934             | 4.65744882 | Regular      |
| 1 | 87899.8282 | 9534.732877             | 9.21890831 | Regular      |

## 2. IRREGULARIDAD EXTREMA DE RIGIDEZ

## **DIRECCION X**

| NIVEL  | CASO     | VX       | UX    | Despl Relativo | Ki         | 0.60*Ki+1  | Ratio      | Vorificación |  |
|--------|----------|----------|-------|----------------|------------|------------|------------|--------------|--|
| INIVEL | CASO     | tonf     | m     | m              | tonf/m     | tonf/m     | Natio      | Verificación |  |
| 3      | S. Din X | 45.7774  | 0.006 | 0.00211        | 21695.4502 | -          | -          | -            |  |
| 2      | S. Din X | 115.6417 | 0.004 | 0.002579       | 44839.7441 | 13017.2701 | 3.44463498 | Regular      |  |
| 1      | S. Din X | 149.3469 | 0.001 | 0.00146        | 102292.397 | 26903.8465 | 3.80214768 | Regular      |  |

|   | Ki         | 0.70*1/3(Ki+1 + Ki+2 +) | Ratio | Verificación |
|---|------------|-------------------------|-------|--------------|
|   | tonf/m     | tonf/m                  |       |              |
| 3 | 21695.450  | -                       | -     | -            |
| 2 | 44839.744  | 5062.272                | 8.858 | Regular      |
| 1 | 102292.397 | 15524.879               | 6.589 | Regular      |

## **DIRECCION Y**

| NIVEL  | CASO      | VY      | UY    | Despl Relativo | Ki        | 0.60*Ki+1 | Ratio | Verificación |
|--------|-----------|---------|-------|----------------|-----------|-----------|-------|--------------|
| INIVLL | CASO      | tonf    | m     | m              | tonf/m    | tonf/m    | Natio | Verificación |
| 3      | S. Din. Y | 42.521  | 0.007 | 0.001          | 28788.761 | -         | -     | -            |
| 2      | S. Din. Y | 120.245 | 0.005 | 0.003          | 35755.248 | 20152.133 | 1.774 | Regular      |
| 1      | S. Din. Y | 153.473 | 0.002 | 0.002          | 87899.828 | 25028.674 | 3.512 | Regular      |

|  |  | Ki | 0.70*1/3(Ki+1 + Ki+2 +) | Ratio | Verificación |  |
|--|--|----|-------------------------|-------|--------------|--|
|--|--|----|-------------------------|-------|--------------|--|



|   | tonf/m    | tonf/m    |       |         |
|---|-----------|-----------|-------|---------|
| 3 | 28788.761 | -         | -     | -       |
| 2 | 35755.248 | 6717.378  | 5.323 | Regular |
| 1 | 87899.828 | 15060.269 | 5.837 | Regular |

#### 3. IRREGULARIDAD DE PISO DEBIL

|       | VX      | 0.80*(VX+1) | Ratio | Verificación |
|-------|---------|-------------|-------|--------------|
| NIVEL |         |             |       |              |
| 3     | 45.777  | -           | -     | -            |
| 2     | 115.642 | 36.622      | 3.158 | REGULAR      |
| 1     | 149.347 | 92.513      | 1.614 | REGULAR      |

## 4. IRREGULARIDAD EXTREMA DE RESISTENCIA

|       | VX      | 0.65*(VX+1) | Ratio | Verificación |
|-------|---------|-------------|-------|--------------|
| NIVEL |         |             |       |              |
| 3     | 45.777  | -           | -     | -            |
| 2     | 115.642 | 29.755      | 3.886 | REGULAR      |
| 1     | 149.347 | 75.167      | 1.987 | REGULAR      |

## 5. IRREGULARIDAD DE MASA O PESO

|       | Mi        | Wi      | 1.5*Wi  | Verificación         |
|-------|-----------|---------|---------|----------------------|
| NIVEL | tonf-s2/m | tonf    |         |                      |
| 3     | TECHO     | TECHO   | -       | -                    |
| 2     | 41.882    | 410.858 | 681.399 | NO HAY IRREGULARIDAD |
| 1     | 46.306    | 454.266 | 616.288 | NO HAY IRREGULARIDAD |

## 6. IRREGULARIDAD GEOMETRICA VERTICAL - NO APLICA

|       | Li+1  | 1.3*Li+1 | Marifferent (        |  |  |
|-------|-------|----------|----------------------|--|--|
| NIVEL | m     | m        | - Verificación       |  |  |
| 3     | TECHO | -        | -                    |  |  |
| 2     | 9.55  | -        | NO HAY IRREGULARIDAD |  |  |
| 1     | 9.55  | -        | NO HAY IRREGULARIDAD |  |  |

## 7. IRREGULARIDAD DISCONTINUIDAD DE LOS SISTEMAS RESISTENTES

| V elemento | 3.336   | tonf |
|------------|---------|------|
| Vi         | 149.347 | tonf |
| 0.1*Vi     | 14.935  | tonf |



Verificación NO PRESENTA

## 8. IRREGULARIDAD DISCONTINUIDAD EXTREMA DE LOS SISTEMAS RESISTENTES - NO APLICA

## **IRREGULARIDADES ESTRUCTURALES EN PLANTA**

## 9. IRREGULARIDAD TORSIONAL

#### **DIRECCION X**

| TABLE | E: Piso Max Over Avg<br>Drifts |              |           |              |              |       |
|-------|--------------------------------|--------------|-----------|--------------|--------------|-------|
| Piso  | Output Case                    | Step<br>Type | Direction | Max<br>Drift | Avg<br>Drift | Ratio |
|       |                                |              |           | m            | m            |       |
| Piso3 | ESPECTRO X - EY                | Max          | X         | 0.002599     | 0.002016     | 1.289 |
| Piso3 | ESPECTRO $X + EY$              | Max          | X         | 0.002319     | 0.00192      | 1.208 |
| Piso2 | ESPECTRO X - EY                | Max          | X         | 0.003246     | 0.002435     | 1.333 |
| Piso2 | ESPECTRO $X + EY$              | Max          | X         | 0.002861     | 0.002314     | 1.237 |
| Piso1 | ESPECTRO X - EY                | Max          | X         | 0.001781     | 0.001295     | 1.375 |
| Piso1 | ESPECTRO X + EY                | Max          | X         | 0.001489     | 0.001255     | 1.186 |

#### **DIRECCION Y**

| TABLI | E: Piso Max Over Avg<br>Drifts |              |           |              |              |       |
|-------|--------------------------------|--------------|-----------|--------------|--------------|-------|
| Piso  | Output Case                    | Step<br>Type | Direction | Max<br>Drift | Avg<br>Drift | Ratio |
|       |                                |              |           | m            | m            |       |
| Piso3 | ESPECTRO $Y + EX$              | Max          | Y         | 0.001587     | 0.001574     | 1.009 |
| Piso3 | ESPECTRO Y - EX                | Max          | Y         | 0.001637     | 0.001572     | 1.041 |
| Piso2 | ESPECTRO Y + EX                | Max          | Y         | 0.003456     | 0.003414     | 1.012 |
| Piso2 | ESPECTRO Y - EX                | Max          | Y         | 0.003612     | 0.00348      | 1.038 |
| Piso1 | ESPECTRO Y + EX                | Max          | Y         | 0.001798     | 0.001625     | 1.107 |
| Piso1 | ESPECTRO Y - EX                | Max          | Y         | 0.001688     | 0.00161      | 1.048 |

- 10. IRREGULARIDAD TORSIONAL EXTREMA NO PRESENTA
- 11. IRREGULARIDAD ESQUINA ENTRANTE NO APLICA
- 12. IRREGULARIDAD POR DISCONTINUIDAD DE DIAFRAGMA NO APLICA
- 13. IRREGULARIDAD POR SISTEMAS NO PARALELOS NO APLICA



Anexo 5 – Hoja de Cálculo de MathCad Prime para el Diseño del Aislador LRB con deslizador

## HOJA DE CÁLCULO PARA EL DISEÑO DEL AISLADOR LRB CON DESLIZADOR

Propiedades de la Goma y el Núcleo de Plomo:

Módulo de corte del caucho

$$G = 38.669 \cdot \frac{tonnef}{m^2}$$

Esfuerzo al corte máximo en el plomo

$$\sigma max := 1000 \frac{tonnef}{m^2}$$

Esfuerzo de fluencia del Plomo

$$\tau_{py} \coloneqq 800 \cdot \frac{tonnef}{m^2}$$

Límite de fluencia de la placa Exterior (Acero A36)

$$f_y = 2530 \frac{kgf}{cm^2}$$

Para placas Shim de acero sin orificios (Constantino 2011)

$$\alpha := 1.65$$

Propiedades del Caucho (Goma Natural)

Módulo volumétrico del caucho asumido

$$K = 200000 \cdot \frac{tonnef}{m^2}$$

Valor recomendado, "f" depende del proveedor o usar el obtenido mediante el ensayo ASTM D945.

$$f = 4$$

Módulo Elástico

$$E_o := f \cdot G = 154.676 \frac{tonnef}{m^2}$$



Constante empírica que está en función de G

$$k = 0.75$$

Cargas por Aislador

Carga Axial

$$Pu := 38.91 \cdot tonnef$$

## Parámetros Sísmicos

Gravedad

$$g := 9.81 \cdot \frac{m}{s^2}$$

Periodo objetivo de la Estructura

$$T_M \coloneqq 2.5 \cdot s$$

Factores Sísmicos

$$Z = 0.25$$

$$U \coloneqq 1.5$$

$$S := 1.40$$

$$R := 1$$

$$Tp := 1 \cdot s$$

$$Tl := 1.6 \cdot s$$

$$C \coloneqq 2.5 \cdot \frac{Tp \cdot Tl}{T_M^2} = 0.64$$

Aceleración

$$Sa := \frac{Z \cdot U \cdot C \cdot S}{R} \cdot g = 3.296 \frac{m}{s^2}$$

Amortiguamiento efectivo

$$\beta_M = 0.20$$

Factor

$$B_M := 1.5$$

Masa Sísmica Total del Edificio

$$M_t = 137.08056 \ tonnef \cdot \frac{s^2}{m}$$

$$Wo := M_t \cdot g = 1344.76 \ tonnef$$

## **Desplazamientos**

Desplazamiento máximo

$$D_M \coloneqq \left(\frac{1}{4 \cdot \pi^2}\right) \cdot \frac{Sa \cdot T_M^2}{B_M} = 34.8 \text{ cm}$$

Desplazamiento máximo Total

$$D_{TM} = 1.15 \cdot D_M = 40 \ cm$$

## Geometría del Aislador

Espesor de cada capa de Caucho

$$t_r := 0.8 \cdot cm$$

Espesor de cada capa de Acero

$$t_s := 0.3 \cdot cm$$

Altura Total mínima del Caucho (Tr>Tr-Min)

$$T_{r\_min} := \frac{D_{TM}}{2.5} = 16.003 \ cm$$

Espesor de las placas de extremos

$$T_r := 16 \ cm$$

Número de capas de goma

$$N \coloneqq \frac{T_r}{t_r} = 20$$

Espesor de Cobertura

$$C_s := 1$$
 cm



Espesor de Planchas de Montajes

$$t_{tbp} := 2.5 \ cm$$

Espesor de Planchas Internas

$$t_{iv} := 0.25 \ cm$$

Altura Total de Acero

$$T_s := (N-1) \cdot t_s = 5.7$$
 cm

Altura Total del Aislador

$$H := 2 \cdot t_{tbp} + 2 \cdot t_{tbp} + T_r + T_s = 31.7$$
 cm

## Pre-Dimensionamiento del Aislador

Pre-dimensionamiento del área del aislador

$$A \coloneqq \frac{Pu}{\sigma max} = 0.039 \ m^2$$

Diámetro del aislador

$$Do_{min} := \sqrt{\frac{4 \cdot A}{\pi}} = 22.3 \ cm$$

$$Do_{min} = 1.5 \cdot D_{TM} = 60 \ cm$$

Diámetro a considerar

$$D_o := 63 \cdot cm$$

Área con Diámetro Total

$$A := \frac{\boldsymbol{\pi} \cdot D_o^2}{4} = 0.312 \ \boldsymbol{m}^2$$

Rango recomendado: [D/6,D/3]

$$\frac{D_o}{6} = 10.5 \ cm$$
  $\frac{D_o}{3} = 21 \ cm$ 

Diámetro del Núcleo de Plomo

$$D_i := 10 \cdot cm$$

Área del núcleo de plomo

$$A_p \coloneqq \frac{\boldsymbol{\pi} \cdot D_i^2}{4} = 0.008 \ \boldsymbol{m}^2$$

## Cálculo de Dimensiones

Diámetro Neto, sin contar la cobertura de caucho exterior

$$D_o = D_o - 2 \cdot C_s = 61$$
 cm

Área con Diámetro Neto

$$A_e = \frac{\pi \cdot D_e^2}{4} = 0.292 \ m^2$$

Área de la Goma sin recubrimiento

$$A_n \coloneqq A_e - A_p = 0.284 \ m^2$$

Área de la Goma incluyendo recubrimiento

$$A_g := A - A_p = 0.304 \ m^2$$

Factor de Forma

$$\widehat{S} \coloneqq \frac{A_n}{\pi \cdot D_e \cdot t_r} = 18.55$$

## Módulo Efectivo Elástico

Módulo de compresión del aislador

$$E_c := E_o \cdot (1 + 2 \cdot k \cdot S^2) = 79993.037 \frac{tonnef}{m^2}$$

Módulo de Rigidez Vertical

$$E_{v} \coloneqq \frac{1}{\frac{1}{6 \cdot G \cdot S^{2}} + \frac{4}{3 \cdot K}} = 52105.115 \frac{tonnef}{m^{2}}$$

Rigidez a Compresión del Aislador

$$K_v := E_v \cdot \frac{A_n}{T_r} = 92614.456 \frac{tonnef}{m}$$



Coeficiente de amortiguamiento vertical

$$C_v = 2 \cdot 5\% \cdot \sqrt{K_v \cdot \frac{Pu}{g}} = 60.609 \frac{tonnef}{m} \cdot s$$

## Propiedades de Rigidez a Corte

Rigidez Post Fluencia

$$K_d := A_g \cdot \frac{G}{T_r} = 73.4 \frac{tonnef}{m}$$

Rigidez Elástica

$$K_l := 10 \cdot K_d = 734.4 \frac{tonnef}{m}$$

Fuerza Histerética

$$Q_d := A_p \cdot \tau_{py} = 6.283$$
 tonnef

Fuerza Fluencia

$$F_{y} \coloneqq \frac{Q_{d} \cdot K_{l}}{K_{l} - K_{d}} = 6.981$$
 tonnef

Desplazamiento de Fluencia

$$D_y = \frac{F_y}{K_I} = 0.951 \ cm$$

Rigidez Efectiva

$$K_{eff} = \frac{Q_d + K_d \cdot D_M}{D_M} = 91.5 \frac{tonnef}{m}$$

Energía Disipada por Ciclo

$$EDC := 4 \cdot Q_d \cdot (D_M - D_y) = 8.504$$
 tonnef · m

Coeficiente de amortiguamiento Horizontal

$$C_h \coloneqq \frac{EDC \cdot T_M}{2 \cdot \pi^2 \cdot D_M^2} = 8.9 \frac{tonnef}{m} \cdot s$$

Fuerza de Restitución

$$F_R := 0.5 \cdot K_d \cdot D_M = 12.774 \ tonnef$$

Área Reducida de la Goma

$$A_{r} = A \cdot 2 \cdot \frac{\left(D_{e}^{2} \cdot asin\left(\frac{\sqrt{D_{e}^{2} - D_{TM}^{2}}}{D_{e}}\right) - D_{TM} \cdot \sqrt{D_{e}^{2} - D_{TM}^{2}}\right)}{\pi \cdot D_{e}^{2}} = 0.072 \ m^{2}$$

$$A_r = 22.943\% A$$

Carga Axial Crítica de Pandeo

$$FS := 3$$

$$P_{crit} := \frac{\pi}{\sqrt{8}} \cdot G \cdot S \cdot \frac{D_e}{T_r} \cdot A_r = 217.246 \ tonnef$$

$$P_{crit} := \frac{1}{FS} \cdot \frac{\pi}{\sqrt{8}} \cdot G \cdot S \cdot \frac{D_e}{T_r} \cdot A_r = 72.415 \ tonnef$$

$$F_{max} := K_{eff} \cdot D_M = 31.832 \ tonnef$$

$$\frac{K_d}{K_s} = 0.1$$

Anexo 6 – Hoja de Cálculo de MathCad Prime para el Diseño del Deslizador

# HOJA DE CÁLCULO PARA EL DISEÑO DE UN SISTEMA DE AISLACIÓN CON DESLIZADOR

Carga Axial de Servicio

$$P_{serv} := 57.7 \cdot tonnef$$

Carga Axial Máxima

$$P_{max} := 145.82 \cdot tonnef$$

Desplazamiento máximo

$$D_M := 34.8 \cdot cm$$

Factor de Fricción

$$\mu \coloneqq 3.5\%$$

$$t_r := 2.5 \ cm$$

Módulo Volumétrico

$$K = 210920.7 \frac{tonnef}{m^2}$$

## Periodo de la Estructura en Base Aislada

Periodo objetivo de la Estructura

$$T_M = 2.50 \text{ s}$$

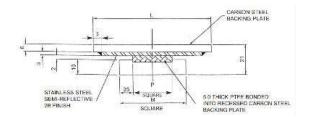
Gravedad

$$g := 9.81 \cdot \frac{m}{s^2}$$

Fuerza de Fricción

$$F_v := \mu \cdot P_{serv} = 2.02$$
 tonnef

$$Q_d = \mu \cdot P_{serv} = 2.02$$
 tonnef


$$K_{ef} = \frac{F_y}{D_M} = 5.803 \frac{tonnef}{m}$$

$$E_D := 4 \cdot F_y \cdot D_M = 2.811$$
 tonnef · m

$$E_E := K_{ef} \cdot (D_M)^2 = 0.703 \ tonnef \cdot m$$

$$\beta \coloneqq \frac{2}{\pi} - \frac{F_y}{\pi \cdot (100 \cdot K_{ef}) \cdot D_M} = 63.3\%$$

$$\beta \coloneqq \frac{E_D}{2 \cdot \pi \cdot E_E} = 63.7\%$$



Coeficiente de Amortiguamiento horizontal

$$C_h \coloneqq \frac{E_D \cdot T_M}{2 \cdot \pi^2 \cdot D_M^2} = 2.9 \frac{tonnef \cdot s}{m}$$

Esfuerzo axial permisible en servicio del teflón (dato fabricante)

$$\sigma_{\varsigma} := 22 \, MPa$$

Esfuerzo axial permisible en combinación del teflón (dato fabricante)

$$\sigma_u := 45 \, MPa$$

Pre-dimensionamiento del área del teflón

$$A := \max \left( \frac{P_{serv}}{\sigma_s}, \frac{P_{max}}{\sigma_u} \right) = 0.032 \ m^2$$

Diámetro total mínimo del Teflón

$$D_{\underline{t}\_min} \coloneqq \sqrt{\frac{4 A}{\pi}} = 20.11 \ cm$$

Diámetro total del Teflón

$$D_t = 25$$
 cm

Diámetro total del POT

$$D_r = D_t + 2 \cdot 2.5 \ cm = 30 \ cm$$

$$K_{v} \coloneqq \frac{K \cdot \pi \cdot D_{r}^{2}}{12 \cdot t_{r}} = 198788 \frac{tonnef}{m}$$

Coeficiente de Amortiguamiento Vertical

$$C_v \coloneqq 2 \cdot 5\% \cdot \sqrt{K_v \cdot \frac{P_{serv}}{g}} = 108.13 \frac{tonnef \cdot s}{m}$$



## Anexo 7 – Hoja de Cálculo de MathCad Prime para el Diseño del AISLADOR TFP TIPO 1

## HOJA DE CÁLCULO PARA EL DISEÑO DE AISLADOR TFP TIPO 1

Periodo de la Estructura en Base Fija

$$Tbf = 0.321 \text{ s}$$

Gravedad

$$g = 9.807 \frac{m}{s^2}$$

Periodo objetivo de la Estructura

$$T_M = 3 \cdot Tbf = 0.963 \ s$$

se considerará el valor de:

$$T_M = 2.5 \cdot s$$

Amortiguamiento efectivo

$$\beta M = 20\%$$

Factor de Amortiguamiento

$$B_M = 1.5$$

Masa Sísmica Total del Edificio

$$M_t = 137.08056 \ tonnef \cdot \frac{s^2}{m}$$

$$W_t := M_t \cdot g = 1344.301 \ tonnef$$

Rigidez lateral del sistema

$$K_{M} \coloneqq \left(\frac{2 \cdot \pi}{T_{M}}\right)^{2} \cdot M_{t} = 865.876 \ \frac{tonnef}{m}$$

Factores Sísmicos

$$Z = 0.25$$

$$S = 1.4$$

$$Tp \coloneqq 1 \cdot s$$

$$Tl = 1.6 \cdot s$$

$$C = 2.5 \cdot \frac{Tp \cdot Tl}{{T_M}^2} = 0.64$$

Aceleración espectral

$$S_a \coloneqq 1.5 \cdot Z \cdot S \cdot C \cdot g = 3.295 \ \frac{m}{s^2}$$

Desplazamiento máximo

$$D_M \coloneqq \frac{1}{4 \cdot \pi^2} \cdot \frac{S_a \cdot T_M^2}{B_M} = 34.8 \ cm$$

Desplazamiento máximo Total

$$D_{TM} = 1.15 \cdot D_M = 39.993$$
 cm

Número de Aisladores

$$na = 30$$

Rigidez lateral en cada aislador

$$Khi = \frac{K_M}{na} = 28.863 \frac{tonnef}{m}$$

Carga Axial

$$Pu = 63.70 \cdot tonnef$$

Esfuerzo máximo del acero

$$\sigma max = 60 \cdot ksi = 42184.17 \frac{tonnef}{m^2}$$

Área del deslizador rígido

$$Ad \coloneqq \frac{Pu}{\sigma max} = 15.1 \ cm^2$$

Coeficiente de Fricción

$$\mu_1 = 6\%$$

$$\mu_2 = 3\%$$

$$\mu_3 := \mu_2$$

$$\mu_4 := \mu_1$$

Fuerza de Fricción

$$F_{f1} := \mu_1 \cdot Pu = 3.822$$
 tonnef

$$F_{f2} \coloneqq \mu_2 \cdot Pu = 1.911 \ tonnef$$

$$F_{f3} = F_{f2}$$

$$F_{f4} = F_{f1}$$

Radio Efectivo

$$R_{eff\_min} = \frac{g}{2} \cdot \left(\frac{T_M}{2 \cdot \pi}\right)^2 = 0.78 \ m$$

$$R_{eff\_max} \coloneqq \frac{20 \cdot D_M}{2} = 3.48 \ \textit{m}$$

$$R_{eff1} = 1.5 \, \boldsymbol{m}$$

$$R_{eff2\_aprox}\!\coloneqq\!\frac{R_{eff1}}{8}\!=\!18.75~\textit{cm}$$

Radio Efectivo

$$R_{eff2} = 19$$
 cm

$$R_{eff4} = R_{eff1}$$

$$R_{eff3} \coloneqq R_{eff2}$$

$$d'_{1\_min} = \frac{D_M}{4} = 8.69 \ cm$$

$$d'_{1\_max} := \frac{D_M}{2} - \left(\mu_4 - \mu_1\right) \cdot R_{eff1} = 17.39$$
 cm

Capacidades de desplazamiento nominal

$$d'_1 = 17 \ cm$$

$$d'_{2\_min} = \frac{D_M}{2} - d'_1 = 0.39 \ cm$$

$$d'_2 = 0.39$$
 cm

## Régimen 1:

$$D'_{u1} = 2 \cdot (\mu_1 - \mu_2) \cdot R_{eff2} = 1.14 \ cm$$

$$F_{m1}\!\coloneqq\!\!\frac{Pu}{2\!\cdot\!R_{eff2}}\!\cdot\!D'_{u1}\!+\!F_{f2}\!=\!3.822~\textit{tonnef}$$

$$K_{eff1} = \frac{F_{m1}}{D'_{m1}} = 335.26 \frac{tonnef}{m}$$

$$E_{D1} = F_{m1} \cdot 2 \cdot D'_{u1} = 0.087$$
 tonnef · m

$$E_{E1} = \frac{F_{m1} \cdot D'_{u1}}{2} = 0.022 \ tonnef \cdot m$$

$$\beta_{r1}\!\coloneqq\!\frac{E_{D1}}{4\!\cdot\!\pi\!\cdot\!E_{E1}}\!=\!0.318$$

## Régimen 2:

$$D'_{u2} := D'_{u1} + 2 \cdot d'_{1} = 35.14 \ cm$$

$$F_{m2}\!\coloneqq\!\!\frac{Pu}{2\!\cdot\! R_{eff1}}\!\cdot\! \left(\!D'_{u2}\!-\!D'_{u1}\!\right)\!+\! F_{f1}\!=\!11.041 \ \textit{tonnef}$$

$$K_{eff2} = \frac{F_{m2}}{D'_{m2}} = 31.42 \frac{tonnef}{m}$$

$$E_{D2}\!\coloneqq\! 4 \cdot \left( D'_{u1} \cdot F_{f2} \!-\! D'_{u1} \cdot F_{m2} \!+\! D'_{u2} \cdot F_{f1} \right) \!=\! 4.956 \ \textit{tonnef} \cdot \textit{m}$$

$$K_{d2} \coloneqq \frac{Pu}{R_{eff1} + R_{eff3}} = 37.692 \ \frac{tonnef}{m}$$

$$Q_{d2} = F_{f1} - K_{d2} \cdot D'_{u1} = 3.392 \ tonnef$$

$$E_{E2} \!\coloneqq\! \frac{F_{m2}\!\cdot\! D'_{u2}}{2} \!=\! 1.94 \ \textit{tonnef}\!\cdot\! \textit{m}$$

$$\beta_{r2}\!\coloneqq\!\frac{E_{D2}}{4\!\cdot\!\pi\!\cdot\!E_{E2}}\!=\!0.203$$

Régimen 3:

$$D'_{u3} := 2 \cdot d'_1 + 2 \cdot d'_2 = 34.78$$
 cm

$$F_{m3} \coloneqq \frac{Pu}{2 \cdot R_{eff2}} \cdot \left( D'_{u3} - D'_{u2} \right) + \frac{Pu}{2 \cdot R_{eff1}} \cdot \left( D'_{u2} - D'_{u1} \right) + F_{f1} = 10.438 \ \textit{tonnef}$$

$$K_{eff3} = \frac{F_{m3}}{D'_{n3}} = 30.01 \ \frac{tonnef}{m}$$

$$E_{D3} = 2 \cdot E_{D1} + E_{D2} = 5.13$$
 tonnef · m

$$E_{E3} \coloneqq \frac{F_{m3} \cdot D'_{u3}}{2} = 1.815 \ \textit{tonnef} \cdot \textit{m}$$

$$\beta_{r3}\!\coloneqq\!\frac{E_{D3}}{4\cdot\!\pi\!\cdot\!E_{F3}}\!=\!22.491\%$$

$$K_d\!\coloneqq\!\frac{F_{m2}\!-\!F_{f1}}{D'_{u2}\!-\!D'_{u1}}\!=\!21.233\;\frac{\textit{tonnef}}{\textit{m}}$$

$$Q_{ds} = F_{f1} - K_d \cdot D'_{u1} = 3.58$$
 tonnef

$$K_{efs} = K_{eff3} \cdot na = 900.33 \frac{tonnef}{m}$$

$$V_b = K_{efs} \cdot D_M = 313.11$$
 tonnef

$$V_b\!=\!23.29\%\ W_t$$

$$R_a = 2$$

$$V_s \!\coloneqq\! \frac{V_b}{R_a} \!=\! 156.55 \ \textit{tonnef}$$

$$V_s = 43.73 \ Q_{ds}$$

$$V_s = 11.65\% \ W_t$$

Anexo 8 – Hoja de Cálculo de MathCad Prime para el Diseño del AISLADOR TFP TIPO 2

## HOJA DE CÁLCULO PARA EL DISEÑO DE AISLADOR TFP TIPO 2

Periodo de la Estructura en Base Fija

$$Tbf = 0.321 \text{ s}$$

Gravedad

$$g = 9.807 \frac{m}{s^2}$$

Periodo objetivo de la Estructura

$$T_M = 3 \cdot Tbf = 0.963 s$$

se considerará el valor de:

$$T_M = 2.5 \cdot s$$

Amortiguamiento efectivo

$$\beta M = 20\%$$

Factor de Amortiguamiento

$$B_M = 1.5$$

Masa Sísmica Total del Edificio

$$M_t = 137.08056 \ tonnef \cdot \frac{s^2}{m}$$

$$W_t := M_t \cdot g = 1344.301 \ tonnef$$

Rigidez lateral del sistema

$$K_{M} \coloneqq \left(\frac{2 \cdot \pi}{T_{M}}\right)^{2} \cdot M_{t} = 865.876 \frac{tonnef}{m}$$

Factores Sísmicos

$$Z = 0.25$$

$$S = 1.4$$

$$Tp \coloneqq 1 \cdot s$$

$$Tl \coloneqq 1.6 \cdot s$$

$$C = 2.5 \cdot \frac{Tp \cdot Tl}{{T_M}^2} = 0.64$$

Aceleración espectral

$$S_a \coloneqq 1.5 \cdot Z \cdot S \cdot C \cdot g = 3.295 \frac{m}{s^2}$$

Desplazamiento máximo

$$D_{M} = \frac{1}{4 \cdot \pi^{2}} \cdot \frac{S_{a} \cdot T_{M}^{2}}{B_{M}} = 34.8 \ cm$$

Desplazamiento máximo Total

$$D_{TM} = 1.15 \cdot D_M = 39.993$$
 cm

Número de Aisladores

$$na = 30$$

Rigidez lateral en cada aislador

$$Khi = \frac{K_M}{na} = 28.863 \frac{tonnef}{m}$$

Carga Axial

$$Pu = 41.68 \cdot tonnef$$

Esfuerzo máximo del acero

$$\sigma max = 60 \cdot ksi = 42184.17 \frac{tonnef}{m^2}$$

Área del deslizador rígido

$$Ad = \frac{Pu}{\sigma max} = 9.88 \ cm^2$$

## Coeficiente de Fricción

$$\mu_1 \coloneqq 6\%$$

$$\mu_2 = 3\%$$

$$\mu_3 := \mu_2$$

$$\mu_4 := \mu_1$$

## Fuerza de Fricción

$$F_{f1} = \mu_1 \cdot Pu = 2.501 \ tonnef$$

$$F_{f2} = \mu_2 \cdot Pu = 1.25 \ tonnef$$

$$F_{f3} \coloneqq F_{f2}$$

$$F_{f4} = F_{f1}$$

## Radio Efectivo

$$R_{eff\_min}\!\coloneqq\!\frac{g}{2}\!\cdot\!\left(\!\frac{T_M}{2\!\cdot\!\pi}\!\right)^2\!=\!0.78~\textbf{m}$$

$$R_{eff\_max} = \frac{20 \cdot D_M}{2} = 3.48 \ m$$

$$R_{eff1} = 1.5 \ m$$

$$R_{eff2\_aprox} \coloneqq \frac{R_{eff1}}{8} = 18.75 \ cm$$

## Radio Efectivo

$$R_{eff2} \coloneqq 19$$
 cm

$$R_{eff4}\!\coloneqq\!R_{eff1}$$

$$R_{eff3} := R_{eff2}$$

$$d'_{1\_min} = \frac{D_M}{4} = 8.69 \ cm$$

$${d'}_{1\_{max}}\!\coloneqq\!\frac{D_{M}}{2}\!-\!\left(\!\mu_{4}\!-\!\mu_{1}\!\right)\!\cdot\!R_{e\!f\!f\!1}\!=\!17.39\;{\color{red}cm}$$

Capacidades de desplazamiento nominal

$$d'_1 = 17 \ cm$$

$$d'_{2\_min} = \frac{D_M}{2} - d'_1 = 0.39$$
 cm

$$d'_2 = 0.39 \ cm$$

Régimen 1:

$$D'_{u1} = 2 \cdot (\mu_1 - \mu_2) \cdot R_{eff2} = 1.14 \ cm$$

$$F_{m1} = \frac{Pu}{2 \cdot R_{eff2}} \cdot D'_{u1} + F_{f2} = 2.501$$
 tonnef

$$K_{eff1} = \frac{F_{m1}}{D'_{m1}} = 219.37 \frac{tonnef}{m}$$

$$E_{D1} = F_{m1} \cdot 2 \cdot D'_{u1} = 0.057$$
 tonnef · m

$$E_{E1} \!\coloneqq\! \frac{F_{m1}\!\cdot\! D'_{u1}}{2} \!=\! 0.014 \; \textit{tonnef}\!\cdot\! \textit{m}$$

$$\beta_{r1} \coloneqq \frac{E_{D1}}{4 \cdot \pi \cdot E_{E1}} = 0.318$$

Régimen 2:

$$D'_{u2} = D'_{u1} + 2 \cdot d'_{1} = 35.14 \ cm$$

$$F_{m2} = \frac{Pu}{2 \cdot R_{eff1}} \cdot (D'_{u2} - D'_{u1}) + F_{f1} = 7.225 \ tonnef$$

$$\begin{split} E_{D2} \coloneqq & 4 \cdot \left( D'_{u1} \cdot F_{f2} - D'_{u1} \cdot F_{m2} + D'_{u2} \cdot F_{f1} \right) = 3.243 \ \textit{tonnef} \cdot \textit{m} \\ \\ & K_{d2} \coloneqq \frac{Pu}{R_{eff1} + R_{eff3}} = 24.663 \ \frac{\textit{tonnef}}{\textit{m}} \\ \\ & Q_{d2} \coloneqq F_{f1} - K_{d2} \cdot D'_{u1} = 2.22 \ \textit{tonnef} \\ \\ & E_{E2} \coloneqq \frac{F_{m2} \cdot D'_{u2}}{2} = 1.269 \ \textit{tonnef} \cdot \textit{m} \end{split}$$

$$\beta_{r2}\!\coloneqq\!\frac{E_{D2}}{4\!\cdot\!\pi\!\cdot\!E_{E2}}\!=\!0.203$$

Régimen 3:

$$D'_{u3} = 2 \cdot d'_1 + 2 \cdot d'_2 = 34.78$$
 cm

$$F_{m3} \coloneqq \frac{Pu}{2 \cdot R_{eff2}} \cdot \left( D'_{u3} - D'_{u2} \right) + \frac{Pu}{2 \cdot R_{eff1}} \cdot \left( D'_{u2} - D'_{u1} \right) + F_{f1} = 6.83 \ \textit{tonnef}$$

$$K_{eff3} \coloneqq \frac{F_{m3}}{D'_{n}} = 19.64 \ \frac{\textit{tonnef}}{m}$$

$$E_{D3} := 2 \cdot E_{D1} + E_{D2} = 3.357 \ tonnef \cdot m$$

$$E_{E3} \coloneqq \frac{F_{m3} \cdot D'_{u3}}{2} = 1.188 \ \textit{tonnef} \cdot \textit{m}$$

$$\beta_{r3}\!\coloneqq\!\frac{E_{D3}}{4\cdot\!\pi\!\cdot\!E_{F3}}\!=\!22.491\%$$

$$K_d\!\coloneqq\!\frac{F_{m2}\!-\!F_{f1}}{D_{u2}'\!-\!D_{u1}'}\!=\!13.893\;\frac{\textit{tonnef}}{\textit{m}}$$

$$V_s = 11.65\% \ W_t$$

$$Q_{ds}\!:=\!F_{f1}\!-\!K_{d}\!\cdot\!D'_{u1}\!=\!2.342\ \textit{tonnef}$$

$$K_{efs} = K_{eff3} \cdot na = 589.1 \frac{tonnef}{m}$$

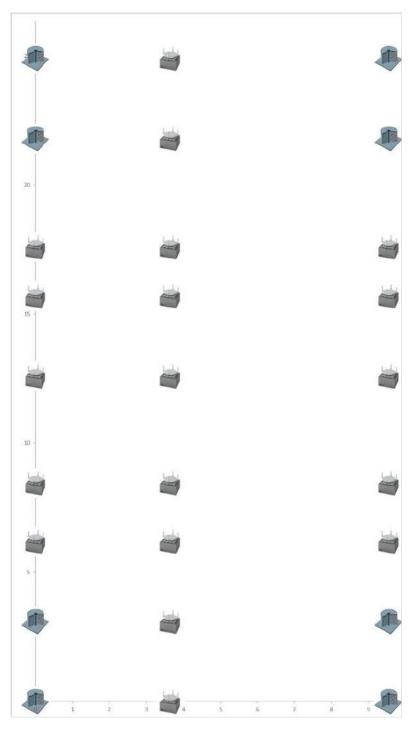


$$V_b = K_{efs} \cdot D_M = 204.87 \ tonnef$$

$$V_b\!=\!15.24\%~W_t$$

$$R_a = 2$$

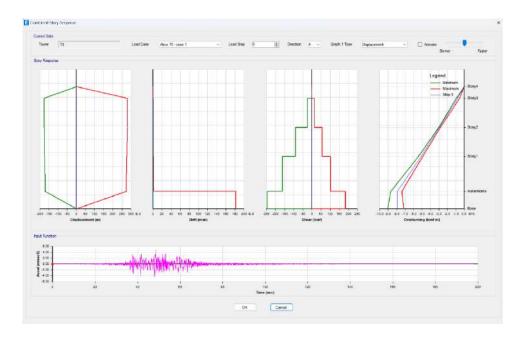
$$V_s\!\coloneqq\!\frac{V_b}{R_a}\!=\!102.44~\textit{tonnef}$$

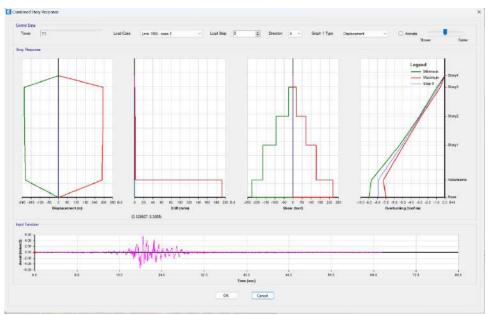

$$V_s\!=\!43.73~Q_{ds}$$

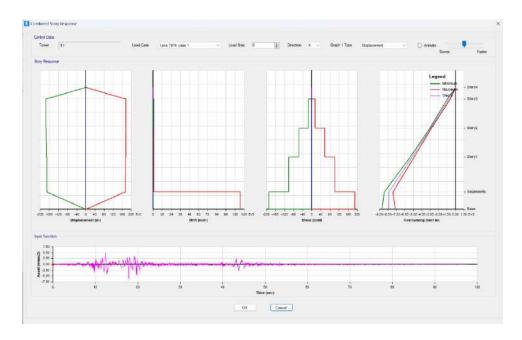
$$V_s\!=\!7.62\%~W_t$$

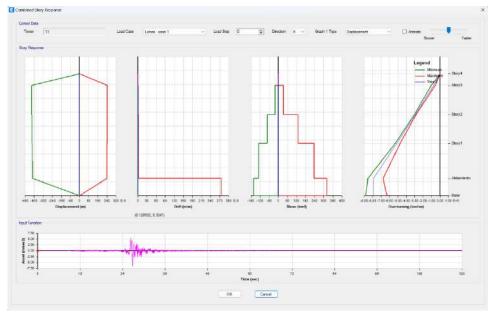


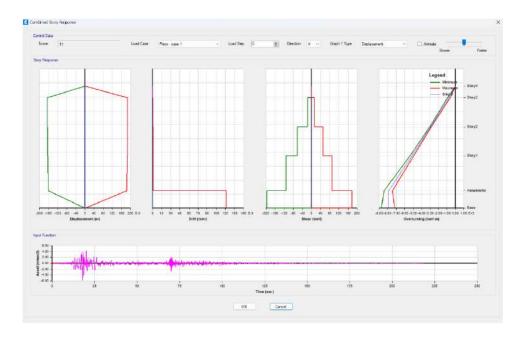
Anexo 9 – Distribución de Sistema de control de Vibraciones.

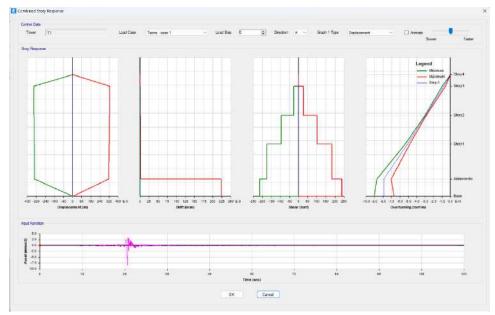

• Distribución de aisladores LRB y Deslizadores en planta.

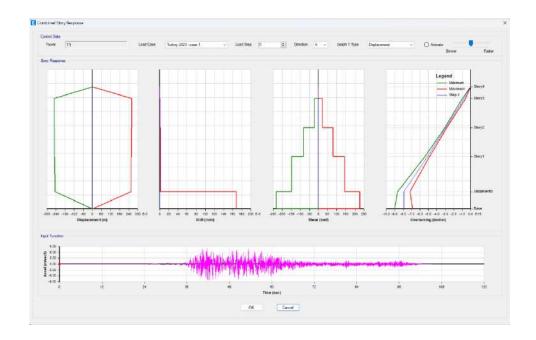




• Distribución de aisladores TFP en planta.

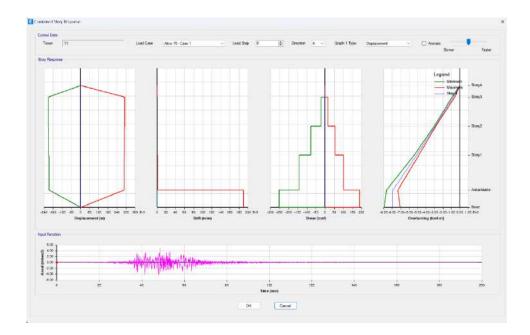


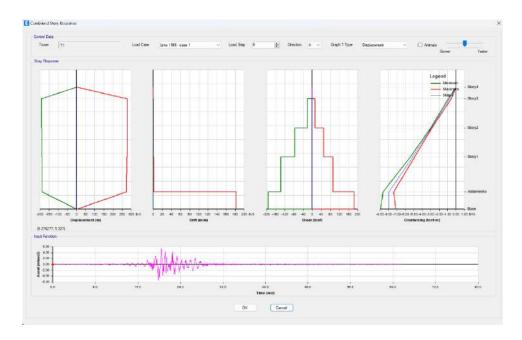


**Anexo 10** – Combinación de Historias de Respuesta para Acelerogramas para Sistema de Aislamiento con LRB con deslizador (Desplazamientos, Drifts, Cortantes y Momentos)

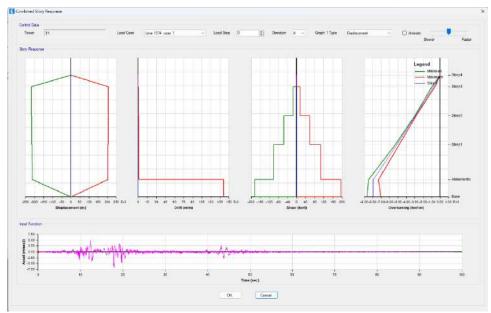




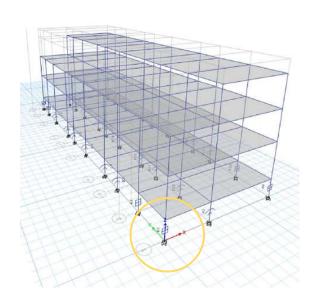



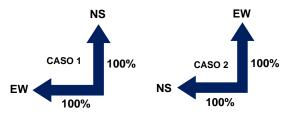



**Anexo 11** – Combinación de Historias de Respuesta para Acelerogramas para Sistema de Aislamiento con TPF (Desplazamientos, Drifts, Cortantes y Momentos)



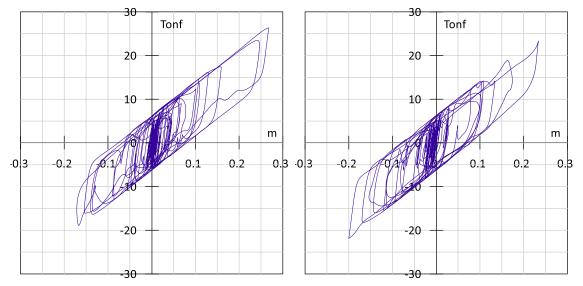





#### Anexo 12 – Gráficos de Histéresis en Aisladores LRB.

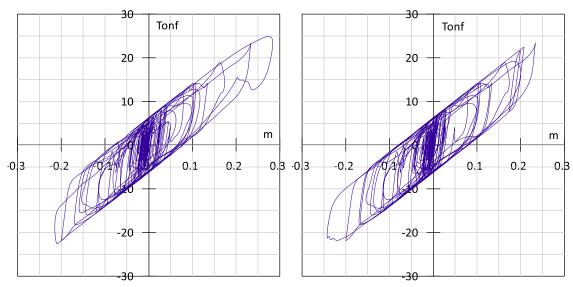
Ubicación del Aislador LRB para los siguientes gráficos Fuerza vs Desplazamiento (Histéresis):


Link K1



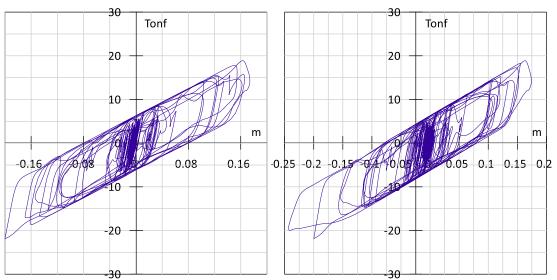


HISTÉRESIS - LRB ATICO 2001 - CASO 1


HISTÉRESIS - LRB ATICO 2001 - CASO 2

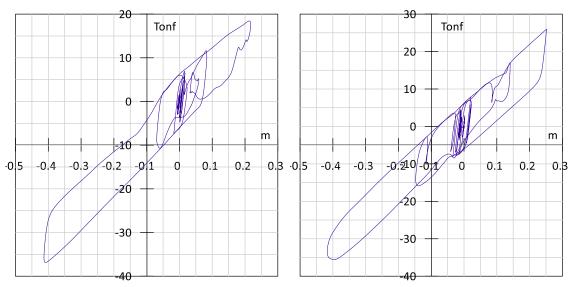




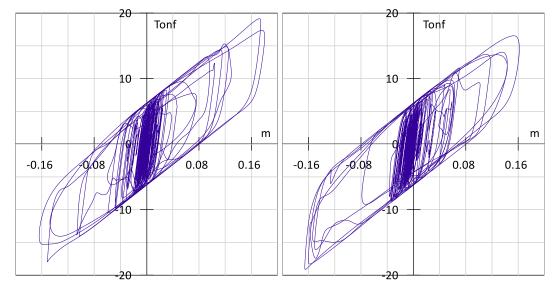



HISTÉRESIS - LRB LIMA 1996 - CASO 2

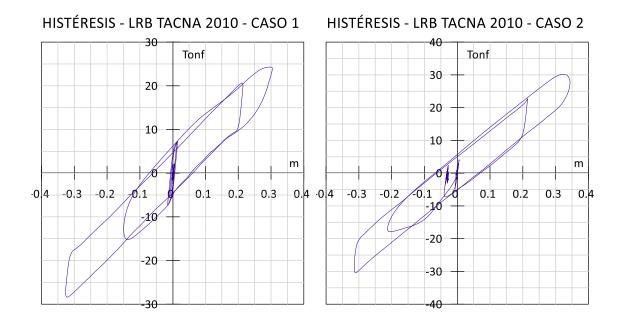


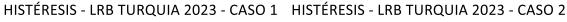

HISTÉRESIS - LRB LIMA 1974 - CASO 1

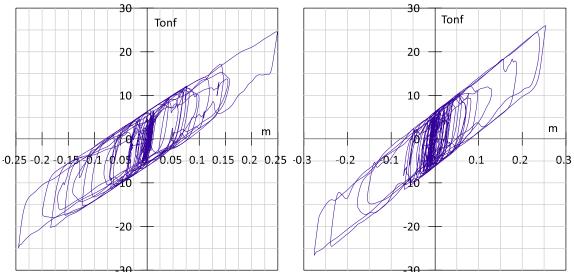
HISTÉRESIS - LRB LIMA 1974 - CASO 2







# HISTÉRESIS - LRB LOMAS 2018 - CASO 2



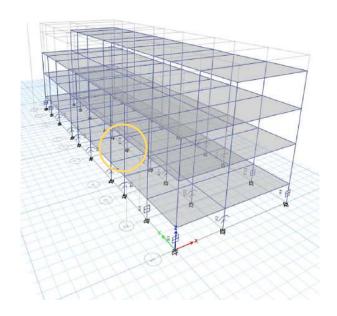


#### HISTÉRESIS - LRB PISCO 2007 - CASO 1 HISTÉRESIS - LRB PISCO 2007 - CASO 2

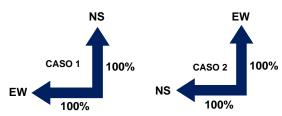




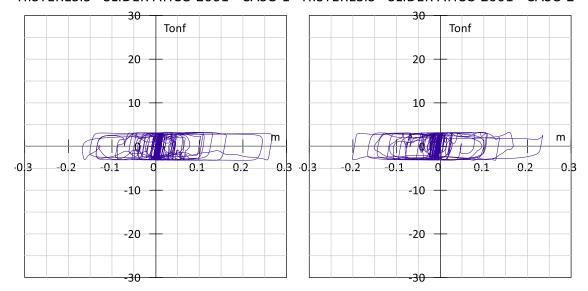






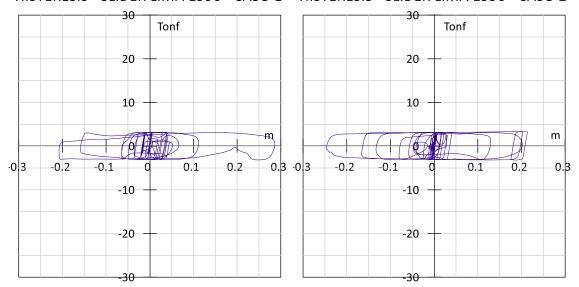


Anexo 13 – Gráficos de Histéresis en Deslizadores.

Ubicación del Deslizador para los siguientes gráficos Fuerza vs Desplazamiento (Histéresis):

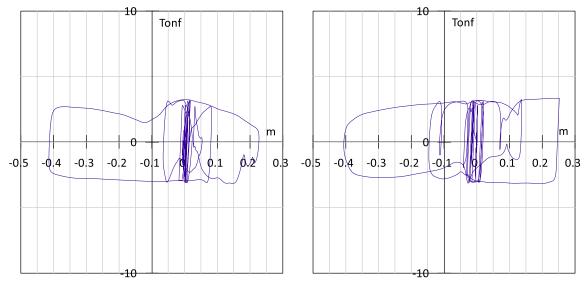

Link K19





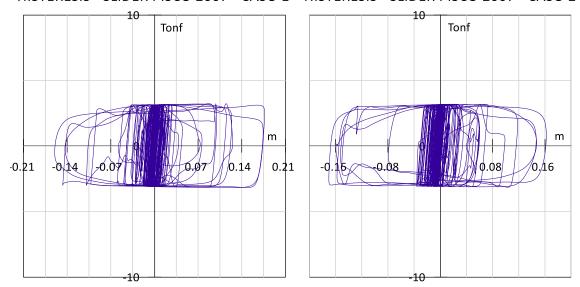



## HISTÉRESIS - SLIDER ATICO 2001 - CASO 1 HISTÉRESIS - SLIDER ATICO 2001 - CASO 2

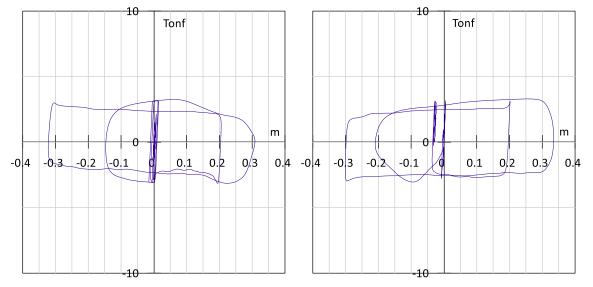





### HISTÉRESIS - SLIDER LIMA 1996 - CASO 1 HISTÉRESIS - SLIDER LIMA 1996 - CASO 2

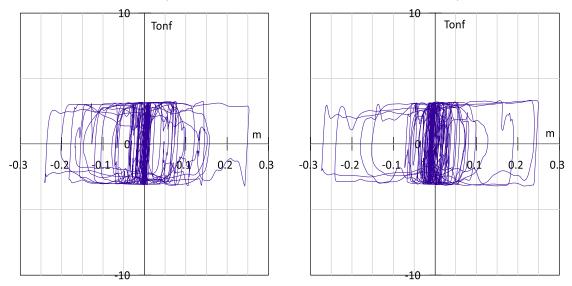



## HISTÉRESIS - SLIDER LOMAS 2018 - CASO 1 HISTÉRESIS - SLIDER LOMAS 2018 - CASO 2





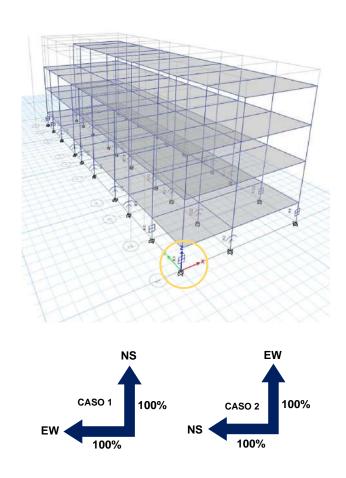

### HISTÉRESIS - SLIDER PISCO 2007 - CASO 1 HISTÉRESIS - SLIDER PISCO 2007 - CASO 2




#### HISTÉRESIS - SLIDER TACNA 2010 - CASO 1 HISTÉRESIS - SLIDER TACNA 2010 - CASO 2



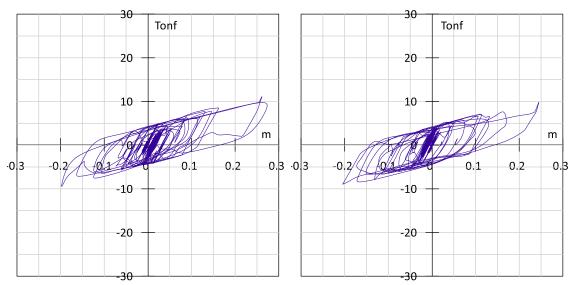






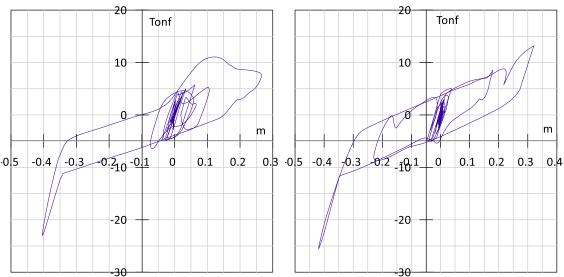

Anexo 14 – Gráficos de Histéresis en Aisladores TFP.

Ubicación del Aislador TFP para los siguientes gráficos Fuerza vs Desplazamiento (Histéresis):

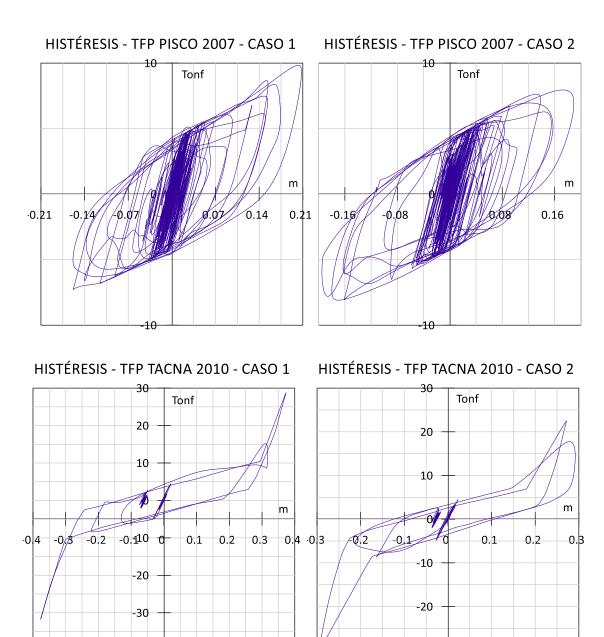

Link K1







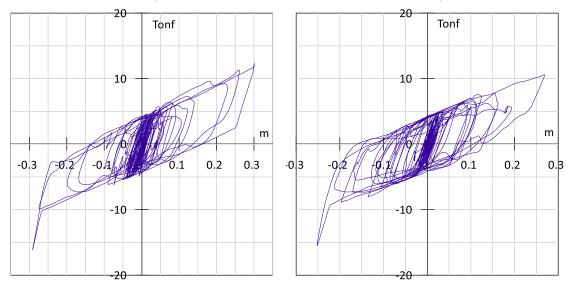

HISTÉRESIS - TFP ATICO 2001 - CASO 2





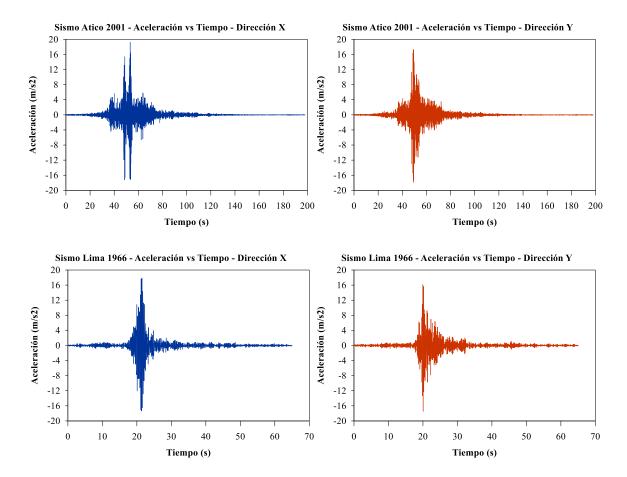

HISTÉRESIS - TFP LOMAS 2018 - CASO 2

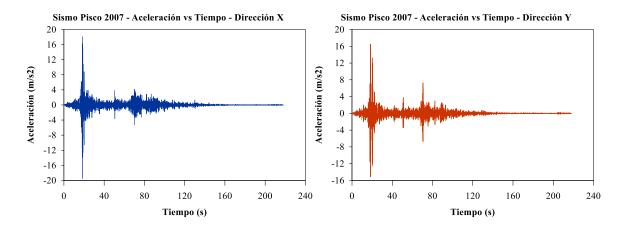




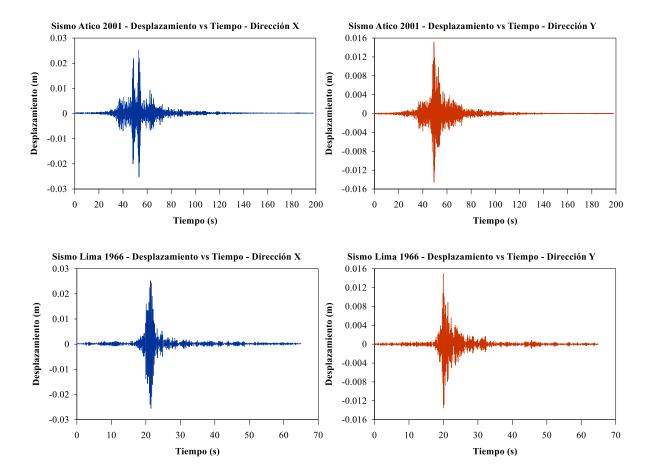


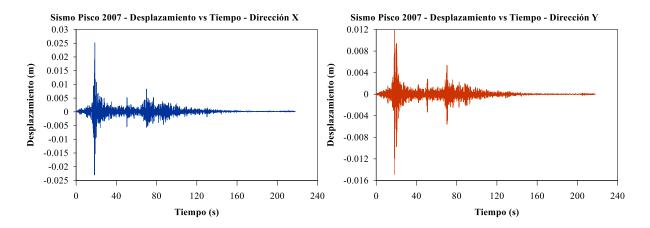

-30



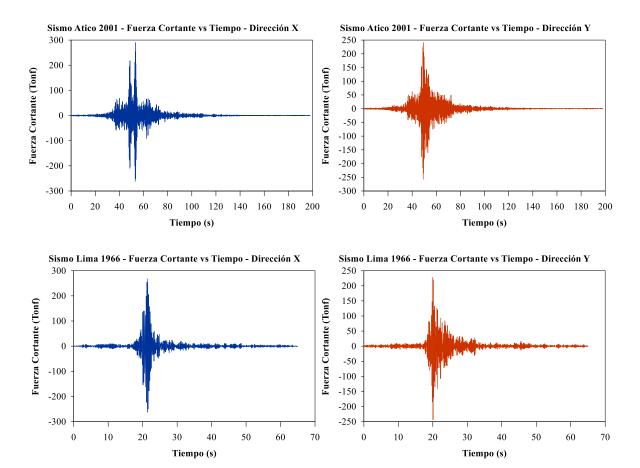



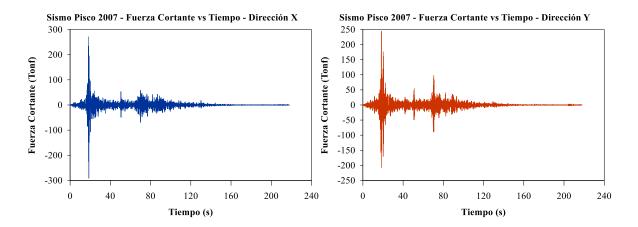




Anexo 15 – Gráficos Tiempo Historia de Base Fija, Aisladores LRB con deslizador y TFP.

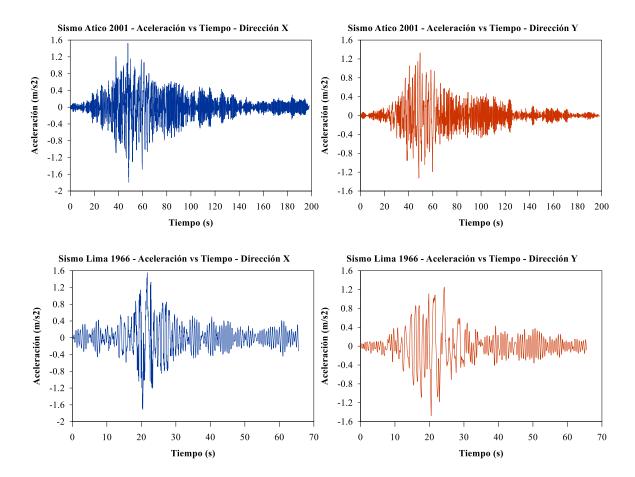

Base Fija: Aceleración vs Tiempo

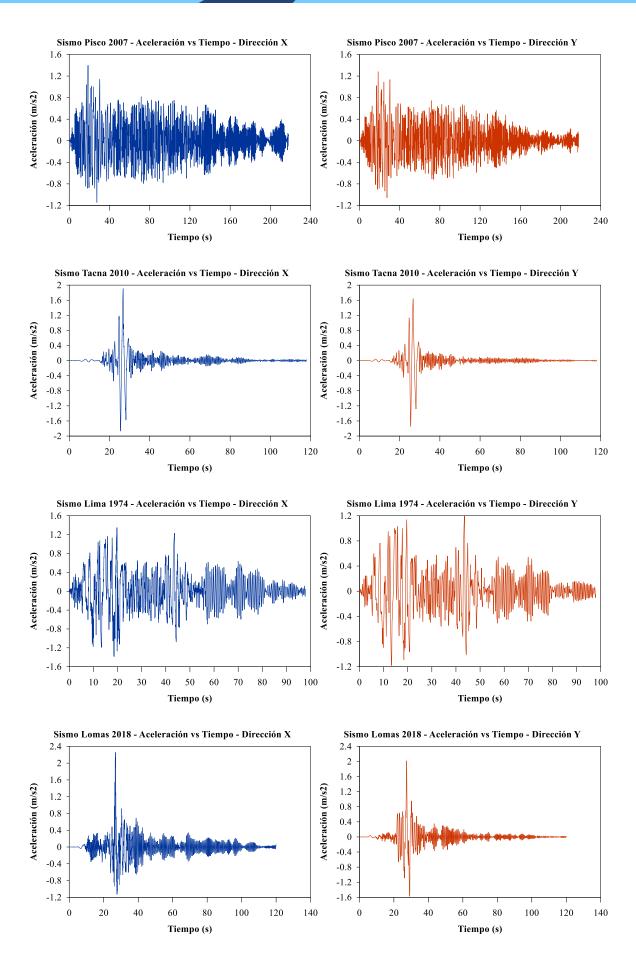


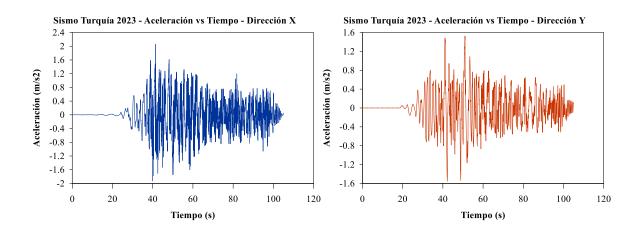




Base Fija: Desplazamiento vs Tiempo

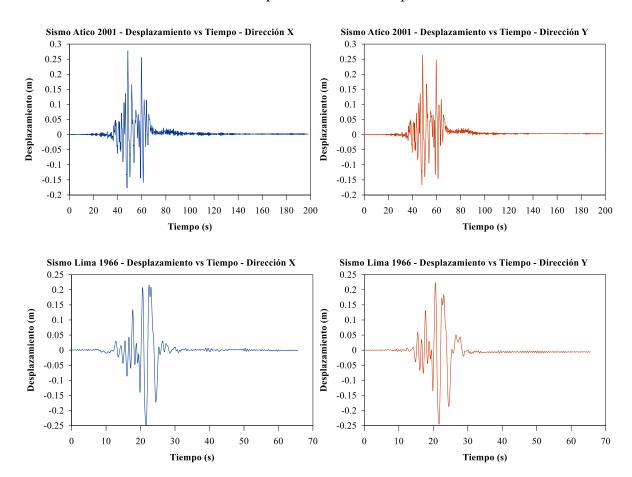


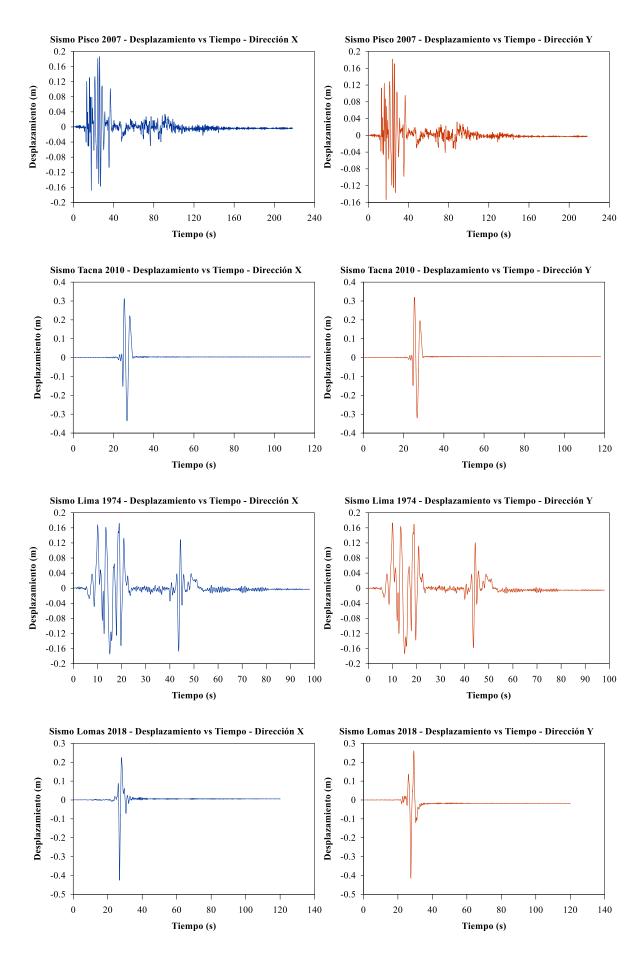


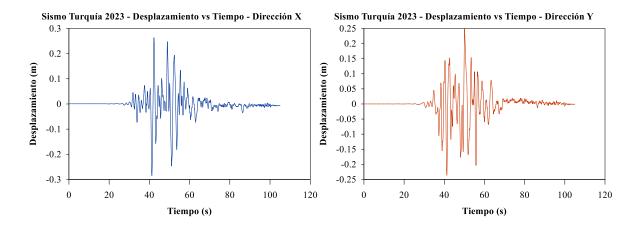


Base Fija: Fuerza Cortante vs Tiempo



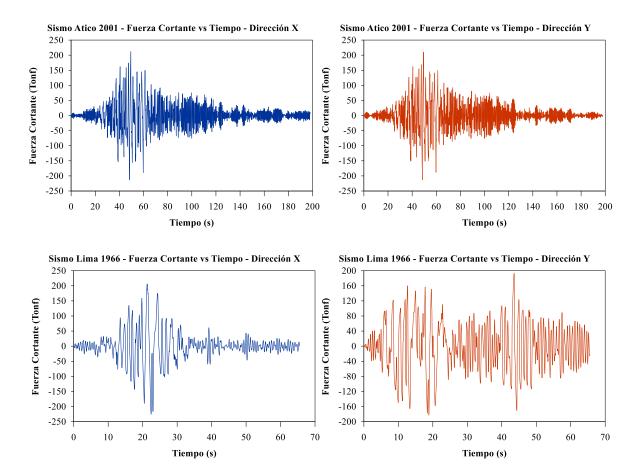


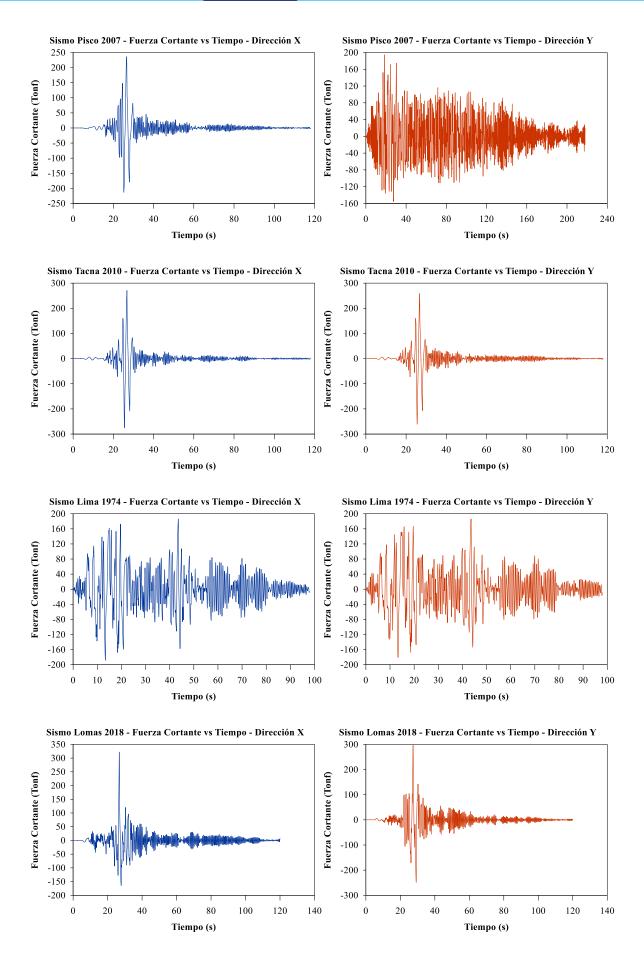


Base Aislada LRB con deslizador: Aceleración vs Tiempo

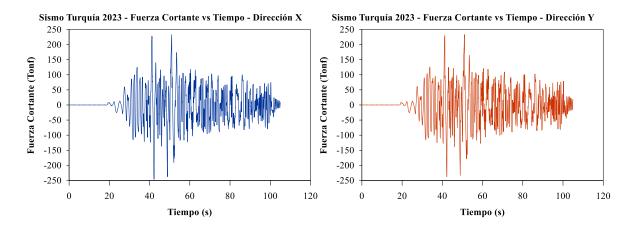


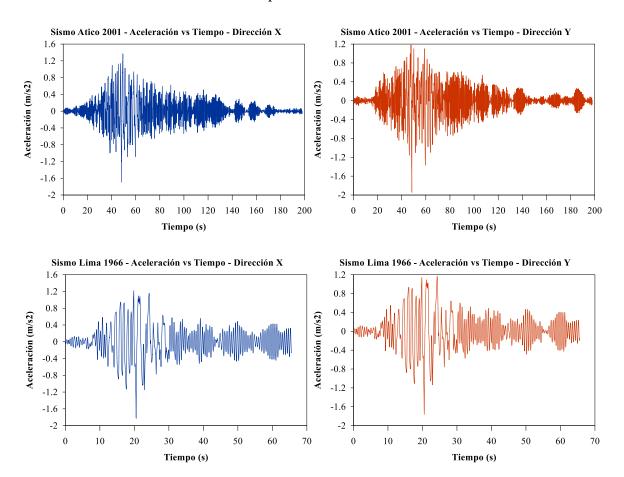


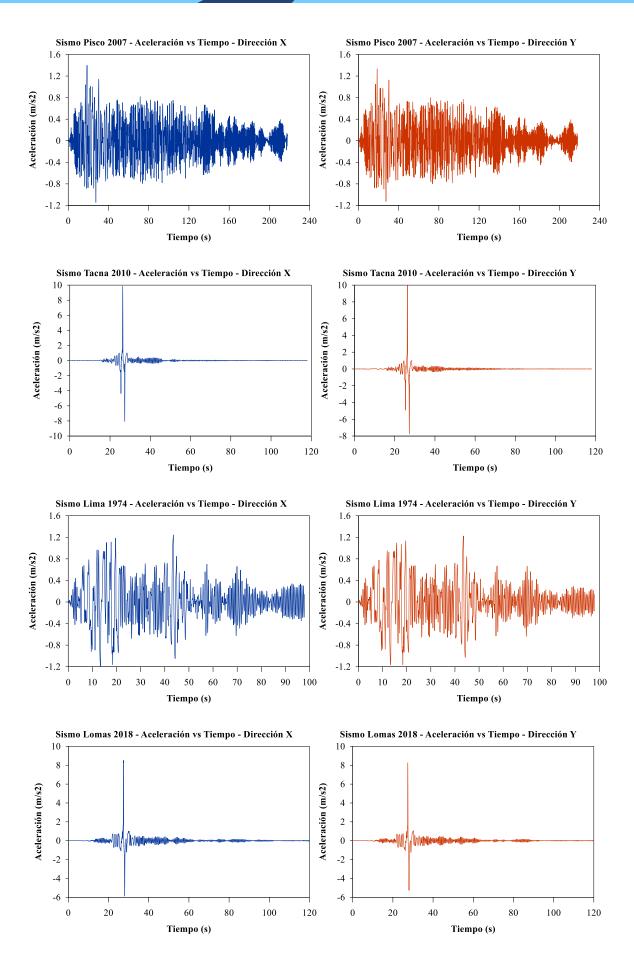


Base Aislada LRB con deslizador: Desplazamiento vs Tiempo

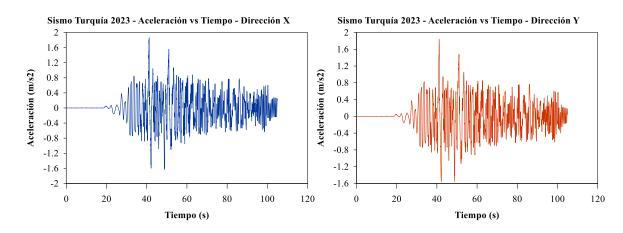


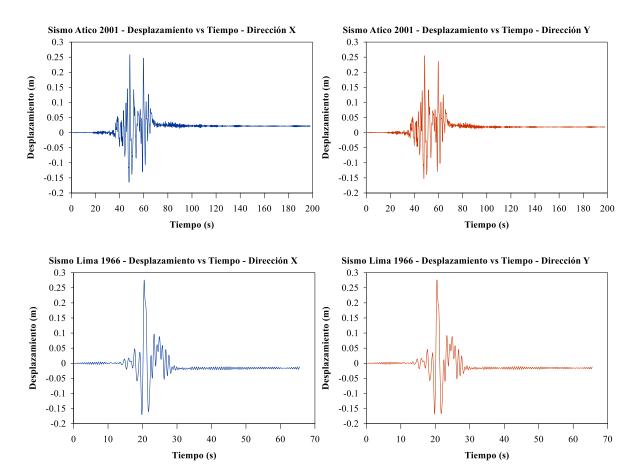


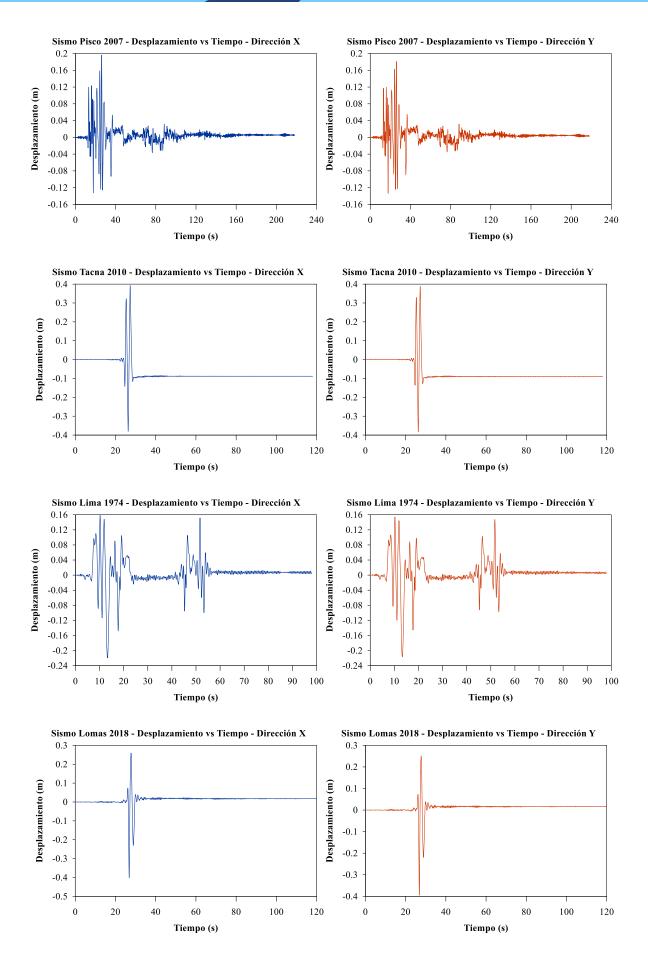


Base Aislada LRB con deslizador: Fuerza Cortante vs Tiempo

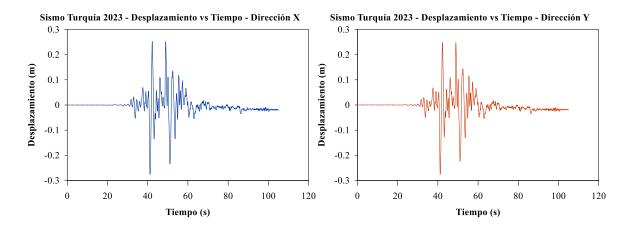


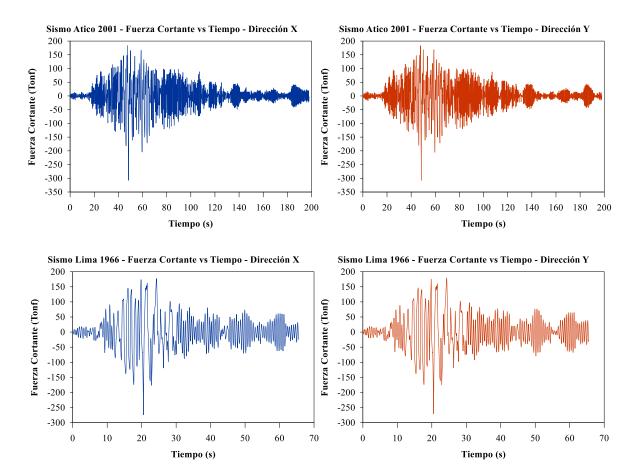




Base Aislada TFP: Aceleración vs Tiempo

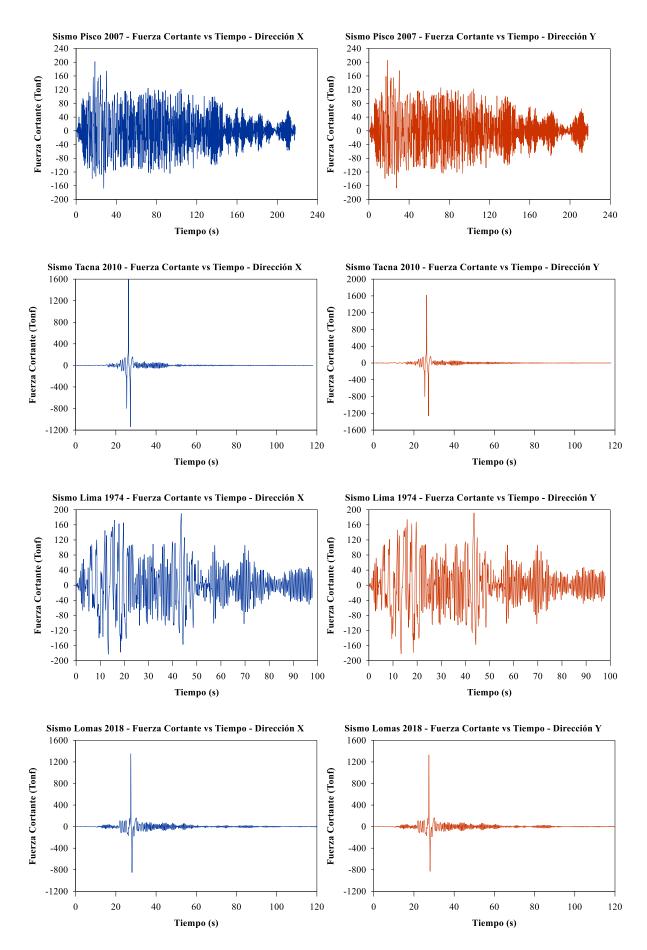


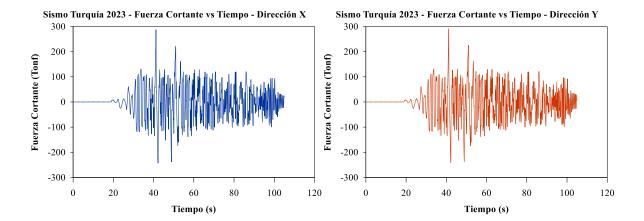







Base Aislada TFP: Desplazamiento vs Tiempo






Base Aislada TFP: Fuerza Cortante vs Tiempo







