

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

"ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO – 2023"

Presentado por:

Bach. Lucero Libertad Condori Torres

Código ORCID: 0009-0002-2764-5135

Para optar al Título Profesional de

Ingeniero Civil

Asesor: Mgt. Ing. Jorge Álvarez Espinoza

Código ORCID: 0000-0001-8632-808X

Cusco – Perú

2023

Metadatos

D-t	I-1t	
	lel autor	
Nombres y apellidos	Lucero Libertad Condori Torres	
Número de documento de identidad	75197457	
URL de Orcid	0009-0002-2764-5135	
Datos d	el asesor	
Nombres y apellidos	Mgt. Ing. Jorge Alvarez Espinoza	
Numero de documento de identidad	23818765	
URL de Oreid	0000-0001-8632-808X	
Datos d	eljurado	
Presidente del j	urado (jurado 1)	
Nombres y apellidos	Mgt. Ing. Walter Roberto Alvarez Monterola	
Número de documento de identidad	24660325	
Jun	ado 2	
Nombres y apellidos	Mgt. Ing. Kildare Jussety Ascue Escalante	
Número de documento de identidad	45246758	
Jun	ado 3	
Nombres y apellidos	Mgt. Ing. John Charlie Oscoo Orcohuarancca	
Número de documento de identidad	43999821	
Jun	ado 4	
Nombres y apellidos	Mgt. Ing. Goyo Alvarez Alvarez	
Número de documento de identidad	46383097	
Datos de la investigación		
Linea de investigación de la Escuela Profesional	Construccion, tecnologia de materiales	

Tesis Bloquetas

por Lucero Condori Torres

Fecha de entrega: 07-dic-2023 04:57p.m. (UTC-0500)

Identificador de la entrega: 2251772259

Nombre del archivo: Tesis_final_para_presentar-VERSION_03.pdf (5.77M)

Total de palabras: 47622 Total de caracteres: 240471 Jenn

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERÍA Y ARQUITECTURA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

"ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICOMECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE
CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE
POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA
CIUDAD DEL CUSCO – 2023"

Presentado por:

Bach. Lucero Libertad Condori Torres

Para optar al Título Profesional de

Ingeniero Civil

Asesor: Mgt. Ing. Jorge Álvarez Espinoza

Cusco - Perú

2023

Jenn

Tesis Bloquetas

INFORME DE ORIGINALIDAD	
19% 17% 2% INDICE DE SIMILITUD FUENTES DE INTERNET PUBLICACIONES	4% TRABAJOS DEL ESTUDIANTE
FUENTES PRIMARIAS	
docplayer.es Fuente de Internet	4%
repositorio.upla.edu.pe Fuente de Internet	3%
repositorio.ucv.edu.pe Fuente de Internet	2%
repositorio.upn.edu.pe	2%
repositorio.urp.edu.pe	2%
6 core.ac.uk Fuente de Internet	2%
Submitted to Universidad Peruana de Ciencias Aplicadas Trabajo del estudiante	1%
8 idoc.pub Fuente de Internet	1%

Jenny

Recibo digital

Este recibo confirma quesu trabajo ha sido recibido por Turnitin. A continuación podrá ver la información del recibo con respecto a su entrega.

La primera página de tus entregas se muestra abajo.

Autor de la entrega: Lucero Condori Torres
Título del ejercicio: Tesis Bloquetas
Título de la entrega: Tesis Bloquetas

Nombre del archivo: Tesis_final_para_presentar-VERSION_03.pdf

Tamaño del archivo: 5.77M
Total páginas: 206
Total de palabras: 47,622
Total de caracteres: 240,471

Fecha de entrega: 07-dic.-2023 04:57p. m. (UTC-0500)

Identificador de la entre... 2251772259

Jenn

Agradecimientos

Agradezco a los docentes, amigos y compañeros quienes me ayudaron e hicieron posible la culminación de la etapa universitaria y a mi asesor quien me brindó su tiempo y apoyo durante la presente investigación.

Dedicatoria

Esta tesis está dedicada a:

A nuestro ser supremo; Dios, por ser nuestra guía en la vida, más aún en la etapa universitaria siendo nuestro sustento en el camino a cumplir con nuestras metas.

A mi familia por el apoyo incondicional, paciencia y los consejos brindados que fueron motivo y motor para seguir adelante.

A mis amigos, compañeros y docentes quienes me animaron a seguir en el proceso de aprender dentro y fuera de aulas. Me compartieron aquellas experiencias que hasta el día de hoy me ayudan a superar las adversidades de la vida cotidiana en todos los ámbitos.

Jurado de tesis

DICTAMINANTES:

- Mgt. Ing. KILDARE JUSSETY ASCUE ESCALANTE. SECRETARIO DE ACTAS)
- Mgt. Ing. WALTER ROBERTO ALVAREZ MONTEROLA.

REPLICANTES:

- Mg. Ing. JOHN CHARLIE OSCCO ORCOHUARANCCA.
- Mgt. Ing. GOYO ALVAREZ ALVAREZ.

ASESOR:

• Mgt. ING. JORGE ÁLVAREZ ESPINOZA

Índice general

Agrad	lecimientos	ii
Dedic	atoria	iii
Jurado	o de tesis	iv
Índice	general	v
Índice	de tablas	ix
Índice	de figuras	xviii
Resun	nen	xx
Abstra	act	xxii
Capítu	ılo I: Introducción	23
1.1. P	lanteamiento del Problema	23
1.2. F	ormulación de Problema	24
1.2.1.	Problema General	24
1.2.2.	Problemas específicos	24
1.3. Ju	ıstificación	25
1.3.1.	Conveniencia	25
1.3.2.	Relevancia social	25
1.3.3.	Implicancia práctica	26
1.3.4.	Valor teórico	26
1.3.5.	Utilidad metodológica	26
1.4. O	bjetivos de investigación	26
1.4.1.	Objetivo General	26
1.4.2.	Objetivos Específicos	26
1.5. D	Pelimitación del estudio	27
1.5.1.	Delimitación espacial	27
1.5.2.	Delimitación temporal	28
Capítı	ılo II: Marco teórico	28
2.1. A	ntecedentes de la investigación	28
2.1.1.	Antecedentes internacionales	28
2.1.2.	Antecedentes Nacionales	30

2.1.3.	Antecedentes locales	. 32
2.2. B	ases Teóricas	. 34
2.2.1.	Unidades de albañilería	. 34
2.2.2.	Bloque de concreto	. 34
2.2.3.	Muro portante	. 35
2.2.4.	Muro no portante	. 35
2.2.5.	Materiales utilizados en la fabricación de bloque de concreto	. 35
2.3. M	[arco conceptual	. 36
2.3.1.	Ensayos para los agregados	. 36
2.3.2.	Dosificación	. 42
2.3.3.	Diseño de mezcla	. 42
2.3.4.	Propiedades del concreto	. 44
2.3.5.	Plástico PET	. 45
2.3.6.	Poliestireno expandido	. 46
2.3.7.	Conductividad térmica	. 47
2.3.8.	Aislamiento acústico	. 48
2.3.9.	Costo de producción	. 49
2.3.10	. Costo directo	. 49
2.3.11	. Producción	. 49
2.3.12	. Partida	. 49
2.3.13	. Metrado	. 49
2.3.14	. Rendimiento	. 50
2.3.15	. Aporte unitario de materiales	. 50
2.3.16	. Consumo de mano de obra	. 50
2.3.17	. Propiedades físicas de los bloques de concreto	. 50
2.3.18	. Propiedad mecánica de los bloques de concreto	. 55
2.4. H	ipótesis	. 56
2.4.1.	Hipótesis general	. 56
2.4.2.	Hipótesis Específicas	. 56
2.5. V	ariables e indicadores	. 57
2.5.1.	Identificación de variables	. 57
2.5.2.	Operacionalización de variables	. 59

Capitu	ılo III: Método (Diseño metodológico)	60
3.1. A	lcance del estudio	60
3.2. D	viseño de la investigación	60
3.3. P	oblación	62
3.3.1.	Descripción de la población	62
3.3.2.	Cuantificación de la población	62
3.4. N	Nuestra	62
3.4.1.	Descripción de la muestra	62
3.4.2.	Cuantificación de la muestra	62
3.5. T	écnicas e instrumentos de recolección de datos	63
3.5.1.	Instrumentos metodológicos	63
3.5.2.	Instrumentos de ingeniería	70
3.6. V	alidez y confiabilidad de los instrumentos	70
3.7. P	lan de análisis de datos	70
3.7.1.	Toma de datos	70
3.7.2.	Procesamiento de datos	131
Capitu	ılo IV: Resultados de la investigación	174
4.1. R	esultados respecto a los objetivos específicos	174
4.1.1.	Variación dimensional	174
4.1.2.	Alabeo	176
4.1.3.	Absorción y densidad	177
4.1.4.	Conductividad térmica.	179
4.1.5.	Aislamiento acústico	180
4.1.6.	Resistencia a compresión	181
4.1.7.	Costos de producción	183
4.2. R	esultados respecto al objetivo General	187
CAPI	TULO V: DISCUSIÓN	188
5.1. D	Descripción de los hallazgos más relevantes y significativos	188
5.2. L	imitaciones del estudio	188
5.3. C	Comparación crítica con la literatura existente	189

5.4. Implicancias del estudio	189
CONCLUSIONES Y RECOMENDACIONES	190
REFERENCIAS BIBLIOGRAFICAS	194
INSTRUMENTOS DE RECOLECCIÓN DE DATOS	198
VALIDACIÓN DE INSTRUMENTOS	205
ANEXOS	206

Índice de tablas

Tabla 1 Clases de unidades de albanileria	. 34
Tabla 2 Clasificación de bloques según su densidad	. 34
Tabla 3 Límites de gradación para agregado fino	. 37
Tabla 4 Límites de gradación para agregado grueso	. 38
Tabla 5 Asentamientos recomendados para los tipos de consistencia	. 43
Tabla 6 Volumen unitario de agua	. 43
Tabla 7 Relación agua cemento	. 43
Tabla 8 Contenido de aire atrapado	. 44
Tabla 9 Clasificación de conductividad térmica	. 48
Tabla 10 Niveles recomendados de ruido exterior	. 48
Tabla 11 Matriz/tabla de operacionalización de variables	. 59
Tabla 12 Cuantificación de la muestra	. 62
Tabla 13 Cantidad de material fino que pasa el tamiz Nº 200 por lavado	. 63
Tabla 14 Contenido de humedad del agregado	. 63
Tabla 15 Análisis granulométrico del agregado	. 64
Tabla 16 Gravedad específica y absorción de los agregados	. 65
Tabla 17 Peso unitario suelto y compactado del agregado	. 65
Tabla 18 Diseño de bloquetas de concreto	. 66
Tabla 19 Variación dimensional de bloques de concreto	. 67
Tabla 20 Ensayo de alabeo de bloques de concreto	. 67
Tabla 21 Absorción y densidad de bloques de concreto	. 68
Tabla 22 Conductividad térmica de los bloques de concreto	. 68
Tabla 23 Aislamiento acústico de bloques de concreto	
Tabla 24 Resistencia a la compresión de bloques de concreto	. 69
Tabla 25 Toma de datos del ensayo Cantidad de Material Fino que pasa el tamiz de 75 μm (N° 200) de la cantera Pisaq	
Tabla 26 Toma de datos del ensayo Cantidad de Material Fino que pasa el tamiz de 75 μ m (N^o 200) de la cantera Cunyac	
Tabla 27 Datos del ensayo Cantidad de Material Fino que pasa el tamiz de 75 µm (Nº 200) la cantera Senqa	
Tabla 28 Toma de datos de ensayo de contenido de humedad de agregado fino	. 74
Tabla 29 Toma de datos de ensayo de contenido de humedad del confitillo	. 74
Tabla 30 Datos de ensayo de granulometría de agregado fino de cantera Pisaq	. 79

Tabla 31 Datos de ensayo de granulometría de agregado fino de cantera Cunyac79
Tabla 32 Datos de ensayo de granulometría de agregado fino, combinación de canteras 75% Pisaq + 25% Cunyac
Tabla 33 Datos de ensayo de granulometría del confitillo de cantera Senqa 80
Tabla 34 Toma de datos de gravedad específica y absorción de agregado fino
Tabla 35 Toma de datos de peso específico de confitillo
Tabla 36 Toma de datos de ensayo de peso unitario suelto de agregado fino
Tabla 37 Toma de datos de ensayo de peso unitario compactado de agregado fino
Tabla 38 Toma de datos de ensayo de peso unitario suelto de confitillo
Tabla 39 Toma de datos de ensayo de peso unitario compactado de confitillo
Tabla 40 Toma de datos de ensayo de granulometría de plástico PET reciclado91
Tabla 41 Toma de datos de ensayo de granulometría de poliestireno expandido91
Tabla 42 Toma de datos de ensayo de variación dimensional del bloque patrón95
Tabla 43 Toma de datos de ensayo de variación dimensional del bloque con 1% de poliestireno96
Tabla 44 Toma de datos de ensayo de variación dimensional del bloque con 3% de poliestireno
Tabla 45 Toma de datos de ensayo de variación dimensional del bloque con 5% de poliestireno
Tabla 46 Toma de datos de ensayo de variación dimensional del bloque con 1% de plástico PET reciclado97
Tabla 47 Toma de datos de ensayo de variación dimensional del bloque con 3% de plástico PET reciclado
Tabla 48 Toma de datos de ensayo de variación dimensional del bloque con 5% de plástico PET reciclado
Tabla 49 Toma de datos de alabeo de bloque patrón99
Tabla 50 Toma de datos de alabeo de bloqueta de concreto con reemplazo de 1% de poliestireno expandido
Tabla 51 Toma de datos de alabeo de bloqueta de concreto con reemplazo de 3% de poliestireno expandido
Tabla 52 Toma de datos de alabeo de bloqueta de concreto con reemplazo de 5% de poliestireno expandido
Tabla 53 Toma de datos de alabeo de bloqueta de concreto con reemplazo de 1% de plástico PET
Tabla 54 Toma de datos de alabeo de bloqueta de concreto con reemplazo de 3% de plástico

Tabla 55 Toma de datos de alabeo de bloqueta de concreto con reemplazo de 5% de plástico PET
Tabla 56 Toma de datos de ensayo de absorción y densidad de bloque patrón104
Tabla 57 Toma de datos de ensayo de absorción y densidad de bloqueta con reemplazo de 1% de poliestireno expandido
Tabla 58 Toma de datos de ensayo de absorción y densidad de bloqueta con reemplazo de 3% de poliestireno expandido
Tabla 59 Toma de datos de ensayo de absorción y densidad de bloqueta con reemplazo de 5% de poliestireno expandido
Tabla 60 Toma de datos de ensayo de absorción y densidad de bloqueta con reemplazo de 1% de plástico PET reciclado
Tabla 61 Toma de datos de ensayo de absorción y densidad de bloqueta con reemplazo de 3% de plástico PET reciclado
Tabla 62 Toma de datos de ensayo de absorción y densidad de bloqueta con reemplazo de 5% de plástico PET reciclado
Tabla 63 Toma de datos de ensayo de conductividad térmica de bloqueta patrón 108
Tabla 64 Toma de datos de ensayo de conductividad térmica de bloqueta con reemplazo de 1% de poliestireno expandido
Tabla 65 Toma de datos de ensayo de conductividad térmica de bloqueta con reemplazo de 3% de poliestireno expandido
Tabla 66 Toma de datos de ensayo de conductividad térmica de bloqueta con reemplazo de 5% de poliestireno expandido
Tabla 67 Toma de datos de ensayo de conductividad térmica de bloqueta con reemplazo de 1% de plástico PET reciclado
Tabla 68 Toma de datos de ensayo de conductividad térmica de bloqueta con reemplazo de 3% de plástico PET reciclado
Tabla 69 Toma de datos de ensayo de conductividad térmica de bloqueta con reemplazo de 5% de plástico PET reciclado
Tabla 70 Toma de datos de ensayo de aislamiento acústico de bloqueta patrón
Tabla 71 Toma de datos de ensayo de aislamiento acústico de bloqueta con reemplazo de 1 % de poliestireno expandido
Tabla 72 Toma de datos de ensayo de aislamiento acústico de bloqueta con reemplazo de 3% de poliestireno expandido
Tabla 73 Toma de datos de ensayo de aislamiento acústico de bloqueta con reemplazo de 5% de poliestireno expandido
Tabla 74 Toma de datos de ensayo de aislamiento acústico de bloqueta con reemplazo de 1% de plástico PET reciclado

de plástico PET reciclado	
Tabla 76 Toma de datos de ensayo de aislamiento acústico de bloqueta con reemplazo de de plástico PET reciclado	
Tabla 77 Toma de datos de ensayo de compresión de bloqueta patrón a los 7 días	122
Tabla 78 Toma de datos de ensayo de compresión de bloqueta con reemplazo de 1% de poliestireno expandido a los 7 días	. 122
Tabla 79 Toma de datos de ensayo de compresión de bloqueta con reemplazo de 3% de poliestireno expandido a los 7 días	. 122
Tabla 80 Toma de datos de ensayo de compresión de bloqueta con reemplazo de 5% de poliestireno expandido a los 7 días	123
Tabla 81 Toma de datos de ensayo de compresión de bloquetas con reemplazo de 1% de plástico PET reciclado a los 7 días	. 123
Tabla 82 Toma de datos de ensayo de compresión de bloquetas con reemplazo de 3% de plástico PET reciclado a los 7 días	124
Tabla 83 Toma de datos de ensayo de compresión de bloquetas con reemplazo de 5% de plástico PET reciclado a los 7 días	124
Tabla 84 Toma de datos de ensayo de compresión de bloquetas patrón a los 14 días	125
Tabla 85 Toma de datos de ensayo de compresión de bloquetas con reemplazo de 1% de poliestireno expandido a los 14 días	. 125
Tabla 86 Toma de datos de ensayo de compresión de bloquetas con reemplazo de 3% de poliestireno expandido a los 14 días	126
Tabla 87 Toma de datos de ensayo de compresión de bloquetas con reemplazo de 5% de poliestireno expandido a los 14 días	126
Tabla 88 Toma de datos de ensayo de compresión de bloquetas con reemplazo de 1% de plástico PET reciclado a los 14 días	. 127
Tabla 89 Toma de datos de ensayo de compresión de bloquetas con reemplazo de 3% de plástico PET reciclado a los 14 días	. 127
Tabla 90 Toma de datos de ensayo de compresión de bloquetas con reemplazo de 5% de plástico PET reciclado a los 14 días	. 128
Tabla 91 Toma de datos de ensayo de compresión de bloquetas patrón a los 28 días	128
Tabla 92 Toma de datos de ensayo de compresión de bloquetas con reemplazo de 1% de poliestireno expandido a los 28 días	128
Tabla 93 Toma de datos de ensayo de compresión de bloquetas con reemplazo de 3% de poliestireno expandido a los 28 días	129
Tabla 94 Toma de datos de ensayo de compresión de bloquetas con reemplazo de 5% de poliestireno expandido a los 28 días	. 129

Tabla 122 Cantidad de material a mezclar por porcentaje de reemplazo148
Tabla 123 Procesamiento de ensayo de variación dimensional de bloqueta de concreto patrón
Tabla 124 Procesamiento de ensayo de variación dimensional de bloqueta de concreto con 1% de reemplazo de poliestireno expandido
Tabla 125 Procesamiento de ensayo de variación dimensional de bloqueta de concreto con 3% de reemplazo de poliestireno expandido
Tabla 126 Procesamiento de ensayo de variación dimensional de bloqueta de concreto con 5% de reemplazo de poliestireno expandido
Tabla 127 Procesamiento de ensayo de variación dimensional de bloqueta de concreto con 1% de reemplazo de plástico PET reciclado
Tabla 128 Procesamiento de ensayo de variación dimensional de bloqueta de concreto con 3% de reemplazo de plástico PET reciclado
Tabla 129 Procesamiento de ensayo de variación dimensional de bloqueta de concreto con 5% de reemplazo de plástico PET reciclado
Tabla 130 Procesamiento de ensayo de alabeo de bloqueta patrón
Tabla 131 Procesamiento de ensayo de alabeo de bloqueta con 1% de reemplazo de poliestireno expandido
Tabla 132 Procesamiento de ensayo de alabeo de bloqueta con 3% de reemplazo de poliestireno expandido
Tabla 133 Procesamiento de ensayo de alabeo de bloqueta con 5% de reemplazo de poliestireno expandido
Tabla 134 <i>Procesamiento de ensayo de alabeo de bloqueta con 1% de reemplazo de plástico PET reciclado</i> 153
Tabla 135 Procesamiento de ensayo de alabeo de bloqueta con 3% de reemplazo de plástico PET reciclado
Tabla 136 Procesamiento de ensayo de alabeo de bloqueta con 5% de reemplazo de plástico PET reciclado
Tabla 137 Procesamiento de ensayo de absorción y densidad de bloquetas de concreto patrón
Tabla 138 Procesamiento de ensayo de absorción y densidad de bloquetas de concreto con 1% de reemplazo de poliestireno expandido
Tabla 139 Procesamiento de ensayo de absorción y densidad de bloquetas de concreto con 3% de reemplazo de poliestireno expandido
Tabla 140 Procesamiento de ensayo de absorción y densidad de bloquetas de concreto con 5% de reemplazo de poliestireno expandido
Tabla 141 <i>Procesamiento de ensayo de absorción y densidad de bloquetas de concreto con</i> 1% de reemplazo de plástico PET reciclado

Tabla 142 Procesamiento de ensayo de absorción y densidad de bloquetas de concreto con 3% de reemplazo de plástico PET reciclado
Tabla 143 Procesamiento de ensayo de absorción y densidad de bloquetas de concreto con 5% de reemplazo de plástico PET reciclado
Tabla 144 Procesamiento de ensayo de conductividad térmica de bloqueta de concreto patrón
Tabla 145 Procesamiento de ensayo de conductividad térmica de bloqueta de concreto con 1% de reemplazo de poliestireno expandido
Tabla 146 Procesamiento de ensayo de conductividad térmica de bloqueta de concreto con 3% de reemplazo de poliestireno expandido
Tabla 147 Procesamiento de ensayo de conductividad térmica de bloqueta de concreto con 5% de reemplazo de poliestireno expandido
Tabla 148 Procesamiento de ensayo de conductividad térmica de bloqueta de concreto con 1% de reemplazo de plástico PET reciclado
Tabla 149 Procesamiento de ensayo de conductividad térmica de bloqueta de concreto con 3% de reemplazo de plástico PET reciclado
Tabla 150 Procesamiento de ensayo de conductividad térmica de bloqueta de concreto con 5% de reemplazo de plástico PET reciclado
Tabla 151 Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón
Tabla 152 Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón con 1% de reemplazo de poliestireno expandido
Tabla 153 Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón con 3% de reemplazo de poliestireno expandido
Tabla 154 Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón con 5% de reemplazo de poliestireno expandido
Tabla 155 Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón con 1% de reemplazo de plástico PET reciclado
Tabla 156 Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón con 3% de reemplazo de plástico PET reciclado
Tabla 157 Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón con 5% de reemplazo de plástico PET reciclado
Tabla 158 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto patrón a los 7 días
Tabla 159 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 1% de reemplazo de poliestireno expandido a los 7 días
Tabla 160 <i>Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 3% de reemplazo de poliestireno expandido a los 7 días</i>

1301a 161 Procesamiento de ensayo de resistencia a compresion de bioqueta de concreto con 5% de reemplazo de poliestireno expandido a los 7 días
Tabla 162 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 1% de reemplazo de plástico PET a los 7 días
Tabla 163 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 3% de reemplazo de plástico PET a los 7 días
Tabla 164 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 5% de reemplazo de plástico PET a los 7 días
Tabla 165 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto patrón a los 14 días
Tabla 166 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 1% de reemplazo de poliestireno expandido a los 14 días
Tabla 167 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 3% de reemplazo de poliestireno expandido a los 14 días
Tabla 168 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 5% de reemplazo de poliestireno expandido a los 14 días
Tabla 169 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 1% de reemplazo de plástico PET a los 14 días
Tabla 170 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 3% de reemplazo de plástico PET a los 14 días
Tabla 171 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 5% de reemplazo de plástico PET a los 14 días
Tabla 172 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto patrón a los 28 días
Tabla 173 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 1% de reemplazo de poliestireno expandido a los 28 días
Tabla 174 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 3% de reemplazo de poliestireno expandido a los 28 días
Tabla 175 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 5% de reemplazo de poliestireno expandido a los 28 días
Tabla 176 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 1% de reemplazo de plástico PET a los 28 días
Tabla 177 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 3% de reemplazo de plástico PET a los 28 días
Tabla 178 Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 5% de reemplazo de plástico PET a los 28 días
Tabla 179 Resultados del ensayo de variación dimensional
Tabla 180 Resultados del ensayo de alabeo

Tabla 181 Resultados del ensayo de absorción y densidad	177
Tabla 182 Resultados del ensayo de absorción y densidad	178
Tabla 183 Resultados del ensayo de conductividad térmica	179
Tabla 184 Resultados del ensayo de aislamiento acústico	180
Tabla 185 Resultados del ensayo de resistencia a compresión a 7 días	181
Tabla 186 Resultados del ensayo de resistencia a compresión a 14 días	182
Tabla 187 Resultados del ensayo de resistencia a compresión a 28 días	182
Tabla 188 Resultados costo de producción de bloqueta patrón	183
Tabla 189 Resultados costo de producción de bloqueta con 1 % de reemplazo de poliest expandido	
Tabla 190 Resultados costo de producción de bloqueta con 3 % de reemplazo de poliest expandido	
Tabla 191 Resultados costo de producción de bloqueta con 5 % de reemplazo de poliest expandido	
Tabla 192 Resultados costo de producción de bloqueta con 1 % de reemplazo de plástic reciclado	
Tabla 193 Resultados costo de producción de bloqueta con 3 % de reemplazo de plástic reciclado	
Tabla 194 Resultados costo de producción de bloqueta con 5 % de reemplazo de plástic	107

Índice de figuras

Figura I Curva granulométrica de los agregados	. 39
Figura 2 Estructura de aparato de placa caliente	53
Figura 3 Estructura de aparato de aislamiento externo	. 54
Figura 4 Procedimiento de ensayo de determinación de finos por lavado	71
Figura 5 Muestras retiradas del horno	72
Figura 6 Procedimiento de ensayo de contenido de humedad de agregado fino y confitillo .	74
Figura 7 Procedimiento de método de cuarteo de la arena	75
Figura 8 Procedimiento de método de cuarteo del confitillo	76
Figura 9 Procedimiento de ensayo de granulometría del agregado fino	77
Figura 10 Procedimiento de ensayo de granulometría del agregado grueso	77
Figura 11 Pesaje de material retenido en tamices	78
Figura 12 Secado del agregado en la estufa	. 81
Figura 13 Determinación de la consistencia en molde cónico metálico	82
Figura 14 Procedimiento de ensayo de gravedad específica y absorción del agregado fino.	83
Figura 15 Procedimiento de secado superficial del confitillo	85
Figura 16 Procedimiento de ensayo de gravedad específica y absorción del confitillo	85
Figura 17 Colocación del agregado en agua	. 86
Figura 18 Procedimiento de pesaje del agregado más recipiente	87
Figura 19 Procedimiento de ensayo de peso unitario de agregado fino y grueso	. 88
Figura 20 Procedimiento de ensayo de granulometría de poliestireno expandido y plástico PET reciclado	
Figura 21 Procedimiento de pesaje de poliestireno expandido y plástico Pet reciclado	92
Figura 22 Procedimiento de elaboración de bloquetas de concreto con poliestireno expand	
Figura 23 Procedimiento de elaboración de bloquetas de concreto con plástico PET	93
Figura 24 Procedimiento de vibrado de bloquetas de concreto	. 94
Figura 25 Procedimiento de fraguado de bloquetas de concreto	. 94
Figura 26 Procedimiento de ensayo de variación dimensional de bloquetas de concreto	. 95
Figura 27 Procedimiento de ensayo de alabeo	99
Figura 28 Procedimiento de ensayo de absorción y densidad de bloquetas de concreto	103
Figura 29 Bloque de concreto retirado del agua para ensayo de absorción	103
Figura 30 Cortado de placas para ensayo de conductividad térmica	107
Figura 31 Procedimiento de ensayo de conductividad térmica de bloquetas de concreto	108

Figura 32 Software generador de sonido	112
Figura 33 Aplicativo de sonómetro	113
Figura 34 Ensayo de aislamiento acústico	114
Figura 35 Refrentado de bloques	120
Figura 36 Ensayo de resistencia a la compresión a los bloques de concreto	120
Figura 37 Colocación de bloques en la compresión a los bloques de concreto	121
Figura 38 Ruptura de bloques de concreto	121
Figura 39 Curva granulométrica de arena Pisaq	135
Figura 40 Curva granulométrica de arena Cunyac	136
Figura 41 Curva granulométrica de arena 75% Pisaq + 25% Cunyac	137
Figura 42 Curva granulométrica de confitillo	138
Figura 43 Curva granulométrica de poliestireno expandido	138
Figura 44 Curva granulométrica de plástico Pet reciclado	139
Figura 45 Dimensiones de bloqueta de concreto	147
Figura 46 Comparación del largo de bloques de concreto	174
Figura 47 Comparación del ancho de bloques de concreto	175
Figura 48 Comparación de altura de bloques de concreto	175
Figura 49 Comparación de espesor de bloques de concreto	176
Figura 50 Comparación de absorción en los bloques de concreto	177
Figura 51 Comparación de densidad en los bloques de concreto	178
Figura 52 Comparación de conductividad térmica en los bloques de concreto	179
Figura 53 Comparación de aislamiento acústico en los bloques de concreto	180
Figura 54 Comparación de resistencia a compresión a los 7 días	181
Figura 55 Comparación de resistencia a compresión a los 14 días	182
Figura 56 Comparación de resistencia a compresión a los 28 días	183

Resumen

La presente investigación denominada "Análisis comparativo de las características físicomecánicas y costos de producción de bloquetas de concreto reemplazadas con diferentes
porcentajes de poliestireno expandido y plástico PET reciclado en la ciudad del cusco – 2023"
se estudió el comportamiento de las perlas de poliestireno expandido de y el plástico PET
reciclado que reemplazo al confitillo de los bloques de concreto no portante en los porcentajes
de 1.0%, 3.0% y 5.0%.

Con la investigación realizada y los datos obtenidos con los ensayos concretados, observamos una evidente transformación de las propiedades físico — mecánicas en las unidades de albañilería estudiadas al realizar la sustitución de peso del confitillo, siendo este material uno de los componentes principales en la fabricación de los elementos en estudio. En el caso de la resistencia a la compresión notamos una indudable diferencia entre las unidades con poliestireno expandido y plástico PET reciclado, hallando una mayor resistencia en los bloques con sustitución de plástico PET reciclado.

Además, podemos indicar que se obtuvo una relación inversamente proporcional en el caso de la conductividad térmica con respecto a la fabricación de los bloques no portantes con poliestireno, pues a mayores porcentajes de poliestireno expandido sustituido se consigue lograr una disminución de conductividad térmica. En el caso de las unidades con sustitución de plástico PET reciclado encontramos un resultado similar, entendiendo que poseen la misma relación.

Dentro de los resultados se obtuvo menor variación dimensional en las bloquetas con reemplazo de 1% y 5% de plástico Pet reciclado, para el ensayo de alabeo se obtuvo menor concavidad y convexidad en bloquetas con reemplazo de 5.0% de poliestireno expandido.

Se obtuvo menor absorción en los bloques con 5.0% de reemplazo con plástico Pet reciclado con un 4.09% de absorción, para el ensayo de densidad se obtuvo el menor valor para bloques con 5.0% de reemplazo con poliestireno expandido con un 2694.21 kg/cm3.

Se obtuvo menor conductividad térmica en el bloque con 5.0% de reemplazo de poliestireno expandido con un promedio de 0.159 W/m.°K, mientras que para aislamiento acústico se obtuvo el mayor valor en los bloques de poliestireno expandido con 5.0% de reemplazo con un valor de 44.60 dB.

El ensayo de resistencia obtuvo el mayor valor en los bloques con 1.0% de plástico Pet reciclado teniendo como resultado 0.88 Mpa a los 7 días, 1.51 Mpa a los 14 días y 2.44 Mpa a los 28 días.

Para los costos de producción se obtuvo el menor valor para los bloques con 1.0% de reemplazo de plástico Pet reciclado con 2.29 soles.

Abstract

The present research called "Comparative analysis of the physical-mechanical characteristics and production costs of concrete blocks replaced with different percentages of expanded polystyrene and recycled PET plastic in the city of Cusco - 2023" studied the behavior of expanded polystyrene beads. of and the recycled PET plastic that replaced the confitillo of the non-bearing concrete blocks in the percentages of 1.0%, 3.0% and 5.0%.

With the research carried out and the data obtained with the specific tests, we observed an evident transformation of the physical-mechanical properties in the masonry units studied when replacing the weight of the confitillo, this material being one of the main components in the manufacture of the elements under study. In the case of compression resistance, we noticed an undoubted difference between the units with expanded polystyrene and recycled PET plastic, finding greater resistance in the blocks with replacement of recycled PET plastic.

Furthermore, we can indicate that an inversely proportional relationship was obtained in the case of thermal conductivity with respect to the manufacture of non-load-bearing blocks with polystyrene, since at higher percentages of substituted expanded polystyrene a decrease in thermal conductivity is achieved. In the case of units with replacement of recycled PET plastic we found a similar result, understanding that they have the same relationship.

Among the results, less dimensional variation was obtained in the blocks with replacement of 1% and 5% of recycled Pet plastic, for the warping test, less concavity and convexity was obtained in blocks with replacement of 5.0% of expanded polystyrene.

Lower absorption was obtained in the blocks with 5.0% replacement with recycled Pet plastic with 4.09% absorption, for the density test the lowest value was obtained for blocks with 5.0% replacement with expanded polystyrene with 2694.21 kg/cm3.

Lower thermal conductivity was obtained in the block with 5.0% replacement of expanded polystyrene with an average of 0.159 W/m.°K, while for acoustic insulation the highest value was obtained in the expanded polystyrene blocks with 5.0% replacement with a value of 44.60 dB.

The resistance test obtained the highest value in the blocks with 1.0% recycled Pet plastic, resulting in 0.88 Mpa at 7 days, 1.51 Mpa at 14 days and 2.44 Mpa at 28 days.

For production costs, the lowest value was obtained for the blocks with 1.0% replacement of recycled Pet plastic with 2.27 soles.

Capítulo I: Introducción

1.1. Planteamiento del Problema

En los últimos años en la ciudad del Cusco las construcciones se vieron afectadas por el aumento de costos en los materiales de construcción debido a la coyuntura mundial, por lo tanto disminuyó también la calidad de vida como consecuencia de construcciones precarias e inseguras. Esto también se debe a la falta de prueba de calidad de los materiales usados, sobre todo en las unidades de albañilería.

Según una entrevista realizada a 4 empresas bloqueteras en Cusco, indicaron que la producción de bloquetas disminuyo de manera considerable, teniendo como causas principales el peso de los bloques, la fatiga que genera al movilizar los productos en grandes cantidades y sobre todo su alto costo.

En ese sentido es importante continuar explorando en la industria de la construcción con diferentes materiales que reemplacen los insumos tradicionales (agregados, agua y cemento) ya que las canteras se ven sobreexplotadas.

El propósito de la investigación es el reemplazo de confitillo por perlas de poliestireno expandido y plástico PET reciclado, sin disminuir las propiedades físico-mecánicas de los bloques de concreto y mejorando los costos de producción para incluirla en la industria de la construcción obteniendo un producto sostenible.

El plástico PET y el poliestireno expandido tardan años en degradarse, caracterizándose así por su larga duración y resistencia en el tiempo. Al mismo tiempo su uso causa gran impacto dentro de la contaminación ambiental.

Según la ex Ministra del Ambiente Fabiola Muñoz (Muñoz, 2018) manifestó en el diario "El Comercio" que la mayoría de residuos de plástico utilizado va a parar a basureros y rellenos sanitarios, reciclándose así solo el 4% de 900000 toneladas que se desechan en el país. Por otro lado según el Ministerio del Ambiente en el 2020 indico que la producción de residuos municipal anual en Cusco es de 230,892.51 toneladas por año y a nivel de la provincia de Cusco la generación de residuos es de 124,936.79 toneladas por año, estos datos se incrementaron en los últimos meses con un ingreso al botadero de Jaquira de 400 a 500 toneladas diarias aproximadamente.

Por otra parte la región del Cusco está situada en la sierra peruana, caracterizada principalmente por tener temperaturas bajas, teniendo como consecuencia enfermedades

respiratorias y tasas altas de mortalidad, así también el tener un ambiente aislado acústicamente es importante para una adecuada realización de actividades y confort. En Perú aún no se encuentran maquinas o instrumentos normados para la medición de conductividad térmica y aislamiento acústico.

De lo expuesto anteriormente se busca presentar como alternativa la utilización de hojuelas de plástico PET reciclado del cuerpo de botellas plásticas y perlas de poliestireno expandido como reemplazo del confitillo en diferentes porcentajes y comparar las propiedades físico-mecánicas de las bloquetas con plástico PET reciclado y bloquetas con poliestireno expandido y los costos de producción de las mismas para que pueden ser utilizadas en la construcción de muros no portantes.

1.2. Formulación de Problema

1.2.1. Problema General

¿Cuál será el análisis comparativo de las características físico-mecánicas y costos de producción de las bloquetas de concreto al reemplazar diferentes porcentajes de peso con poliestireno expandido y plástico PET reciclado?

1.2.2. Problemas específicos

- **Problema específico n°01**.- ¿Cuál será la variación dimensional de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado?
- **Problema específico n°02.** ¿Cuál será el alabeo de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado?
- **Problema específico n°03.** ¿Cuál será la densidad de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado?
- **Problema específico n°04.**-¿Cuál será la absorción de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado?
- **Problema específico n**° 5.- ¿Cuál será la conductividad térmica de bloques de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado?

- **Problema específico n**° 6.- ¿Cuál será el aislamiento acústico de bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado?
- **Problema específico n°07.** ¿Cuál será la resistencia a compresión adquirida de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado?
- **Problema específico n°08.** ¿Cuál será el costo de producción de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado?

1.3. Justificación

1.3.1. Conveniencia

La presente investigación se enfoca en la rama de construcciones ya que actualmente el uso de bloquetas es escaso por su peso elevado dentro de la construcción de muros y por lo cual se presenta una nueva alternativa de uso de las bloquetas elaboradas con poliestireno expandido y plástico PET reciclado.

El aporte de la investigación radica en cuál será la mejor opción de bloqueta al comparar las características físicas-mecánicas y de costo al modificar la dosificación patrón de la bloqueta de concreto al reemplazar el peso de confitillo con plástico PET y poliestireno expandido en diferentes porcentajes.

1.3.2. Relevancia social

El estudio de las bloquetas con reemplazo de plástico PET y poliestireno expandido permite mejorar la ligereza del mismo.

Trae consigo beneficios ecológicos como son el aprovechamiento de estos materiales que abundan en los desechos diarios y tienen como característica ser reusados y reciclados. En este caso ambos materiales tienen propiedades que ayudaran a mejorar las características físicas y mecánicas de las bloquetas.

La comerciabilidad de estas unidades incrementaría por lo tanto se verían beneficiados los fabricantes y/o productores.

La presente investigación posee un valor de base de información para futuras generaciones.

1.3.3. Implicancia práctica

El presente proyecto de investigación se realiza porque existe la necesidad de mejorar e incorporar nuevos elementos dentro de la dosificación normal de un bloque de concreto no portante, por otra parte, buscar innovación de forma sostenible con elementos abundantes dentro de la construcción como en la vida cotidiana.

1.3.4. Valor teórico

La presente investigación tiene su valor en los aportes que se brindarán a las futuras investigaciones para la innovación de materiales de construcción con elementos o aditivos que puedan ser reciclados del uso diario como es el plástico PET y el poliestireno expandido que también es utilizado en la construcción actual.

1.3.5. Utilidad metodológica

El proyecto de investigación sirve para seguir innovando en la industria de la construcción con materiales que abundan en el diario vivir como son el plástico de botellas descartables o técnicamente conocido como Plástico Pet, el cual puede ser utilizado en la fabricación de bloquetas y otras unidades de albañilería debido a sus características físicas y mecánicas.

Por otro lado, el Poliestireno Expandido es un elemento utilizado dentro de dosificaciones de concreto que ayudan a alivianar su peso, buscando ese mismo objetivo en las bloquetas sin disminuir sus propiedades.

1.4. Objetivos de investigación

1.4.1. Objetivo General

Analizar comparativamente las características físico- mecánicas y costos de producción de bloquetas de concreto de tipo no portante al reemplazar diferentes porcentajes de peso del confitillo (1%, 3% y 5%) con perlas de poliestireno expandido, y hojuelas de plástico PET reciclado.

1.4.2. Objetivos Específicos

• **Objetivo específico n**° **1.-** Determinar la variación dimensional de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado.

- **Objetivo específico n**° **2.-** Determinar el alabeo de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado.
- **Objetivo específico n**° **3.** Determinar la densidad de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado.
- **Objetivo específico n° 4.-** Determinar la absorción de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado.
- **Objetivo específico n**° **5.** Determinar la conductividad térmica de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado.
- **Objetivo específico n**° **6.** Determinar el aislamiento acústico de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado.
- **Objetivo específico n**° **7.** Determinar la resistencia a compresión de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado.
- Objetivo específico n° 8.- Determinar el costo de producción de las bloquetas de concreto al reemplazar el 1%, 3% y 5% de confitillo con poliestireno expandido y plástico PET reciclado.

1.5. Delimitación del estudio

1.5.1. Delimitación espacial

Para realizar la siguiente investigación se limitará al uso de la máquina de compresión, horno, balanza, vernier y demás instrumentos del laboratorio de Ingeniería y arquitectura de la Universidad Andina del Cusco ubicada en San Jerónimo – Cusco, que serán requeridas de acuerdo a los ensayos propuestos, realizadas bajo las condiciones climáticas propias del lugar.

La investigación se realizará con hojuelas de plástico de tipo PET el que se puede encontrar en el cuerpo de las botellas de bebidas gaseosas y/o de agua. Por otra parte, las perlas de poliestireno expandido serán adquiridas de tiendas de la ciudad de Cusco.

La fabricación de los bloques se realizará en la empresa bloquetera: "BLOCS", ubicada en Parque Industrial – Wanchaq- Cusco, con los materiales e instrumentos propios de la empresa bloquetera.

1.5.2. Delimitación temporal

El proyecto de investigación se realizará entre los meses de febrero y mayo.

Capítulo II: Marco teórico

2.1. Antecedentes de la investigación

2.1.1. Antecedentes internacionales

* "LADRILLOS ELABORADOS CON PLÁSTICO RECICLADO (PET), PARA MAMPOSTERÍA NO PORTANTE" Universidad de Cuenca en la ciudad de Cuenca (Ecuador), Angumba Pedro, 2016.

Resumen:

En esta tesis se analizaron las propiedades físico-mecánicas de los ladrillos elaborados con plástico reciclado (PET), para mampostería no portante. Para ello se realizó una adecuada dosificación habiéndose realizado previamente ensayos a los agregados a emplear.

Dentro del diseño del mortero para el prototipo del ladrillo con PET reciclado se utilizó arena, cemento y agua adicionando a esta base 10, 25, 40, 55, 65 y 70% de PET respecto al agregado fino.

Dentro de la investigación también redacta la exhaustiva recolección del plástico PET reciclado.

Conclusiones:

- Se tuvo como resultado óptimo un 25 % de adición de plástico PET el cual cumple con las características deseadas para cumplir con la función de ladrillo no portante.
- Esta tecnología constructiva es simple, económica y reduce la explotación de recursos naturales como son la arena y la grava, además aprovecha los residuos de plástico para introducirlos en las dosificaciones tradicionales.

Comentario:

La tesis se relaciona con la presente investigación en el aporte que brinda en la sustitución del agregado fino por plástico Pet reciclado y el análisis de costos que se realizó. También se comprobó y garantizo mejor aislación térmica y baja pérdida de calor, por ende, mejores niveles de confort en viviendas en climas templados.

* "ANÁLISIS COMPARATIVO DE LA RESISTENCIA A COMPRESIÓN ENTRE BLOQUES TRADICIONALES Y BLOQUES ELABORADOS CON POLIESTIRENO EXPANDIDO GRANULAR Y BLOQUES ELABORADOS CON TUSA DE MAÍZ TRITURADO COMO SUSTITUTO PARCIAL DEL AGREGADO GRUESO", de la Universidad Técnica de Ambato, Chicaiza Verónica, 2017.

Resumen:

Este trabajo experimental tiene el objetivo principal de analizar la resistencia a compresión de bloques tradicionales, bloques elaborados con poliestireno y bloques elaborados con tusa de maíz como sustituto parcial del agregado grueso.

En el proceso de la investigación de planteo un adecuado porcentaje de sustitución del agregado grueso, así como la variación de densidad entre los mismos. También se le realizo ensayos a los agregados y al cemento.

La obtención de la tusa de maíz se realizó se manera mecánica y posteriormente una trituración manual para determinar su granulometría, así mismo se obtuvo resultados de los ensayos del poliestireno expandido.

Finalmente se realizaron los ensayos a los bloques de concreto enfocándose principalmente en la rotura a compresión.

Conclusiones:

- Como principales conclusiones tenemos que con respecto al bloque tradicional adquiere al sustituir en un 5% y 10% de chasqui por poliestireno adquieren resistencias para uso en alivianamiento de losa y en cuanto al bloque con tusa de maíz al sustituirse parcialmente en un 5% se obtiene una resistencia a compresión para uso en alivianamiento de losa.
- El poliestireno al no tener absorción es ideal en la elaboración de bloquetas y además por su baja densidad.

Comentario:

La tesis se relaciona con la presente investigación en la sustitución parcial del confitillo por otros elementos como son el poliestireno expandido y tusa de maíz triturado obteniendo un 5% de sustitución ideal y tener un concreto más liviano.

2.1.2. Antecedentes Nacionales

❖ "DISEÑO DE BLOQUES DE CONCRETO LIGERO CON LA APLICACIÓN DE PERLAS DE POLIESTIRENO, DISTRITO DE TARAPOTO, SAN MARTÍN – 2018", Amasifuen, Héctor, 2018.

Resumen:

La presente investigación tuvo como objetivo principal determinar el adecuado diseño para aplicar las perlas de poliestireno a la dosificación tradicional de los bloques de concreto, para llegar a una resistencia a compresión de 50 kg/cm2 como mínimo.

También se realizó un análisis de costos de la elaboración de bloques de concreto con la incorporación del poliestireno.

Conclusiones:

- Se superó la resistencia a la compresión mínima propuesta llegando a de 57.43 kg/cm2.
- La dosificación propuesta dio resultados de los ensayos de dimensionamiento, absorción y resistencia a compresión dentro de los márgenes establecidos en la norma NTP 339.005 y NTP 339.006
- En cuando a los costos de elaboración de los bloques de concreto con poliestireno se obtuvo un 10% más respecto al costo del bloque tradicional.

Comentario:

La tesis se relaciona con la presente investigación en la sustitución del confitillo por poliestireno expandido comprobando el cumplimiento de los parámetros exigidos para las propiedades físico – mecánicas y también el análisis de costos respecto a bloques tradicionales.

* "EFECTO DEL POLIESTIRENO EXPANDIDO EN LAS PROPIEDADES FÍSICAS Y MECÁNICAS DE LA UNIDAD DE ALBAÑILERÍA DE CONCRETO EN LA CIUDAD DE HUANCAYO" en la Universidad Continental, Lapa Jordy, 2020.

Resumen:

En esta tesis se determinó con el trabajo de investigación el efecto que produce el poliestireno expandido en las propiedades físicas y mecánicas de las unidades de albañilería de concreto. Para conseguir lo propuesto, se realizó tres diseños de mezcla de concreto usando materiales convencionales como cemento, agua y agregado fino (diseños patrón) y se quitó

porcentajes del agregado fino en cada diseño de mezcla y se reemplazó por perlas de poliestireno expandido (EPS o Teknopor).

Conclusión:

Se tuvo como conclusión principal que "el uso de perlas de poliestireno expandido en una mezcla de concreto reacciona de manera estable y afecta favorablemente a las propiedades físicas como variación de las dimensiones de la unidad de concreto, alabeo, succión, absorción y densidad, sin embargo, sus propiedades mecánicas como la resistencia a la compresión fueron limitadas y reducidas.

Comentario:

La tesis se relaciona con la presente investigación con el uso de perlas de poliestireno como sustituto parcial del agregado fino y su efecto favorable en el análisis de las propiedades físicas y mecánicas en la elaboración de bloques de concreto.

* "ANÁLISIS COMPARATIVO DE LA UTILIZACIÓN DEL CONCRETO SIMPLE Y EL CONCRETO LIVIANO CON PERLITAS DE POLIESTIRENO COMO AISLANTE TÉRMICO Y ACÚSTICO APLICADO A UNIDADES DE ALBAÑILERÍA EN EL PERÚ" en la Universidad Peruana de Ciencias Aplicadas, Paulino, Jean; Espino, Ronald, 2017.

Resumen:

La investigación mencionada presenta un concreto incorporado con perlas de poliestireno aplicado en unidades de albañilería, en este caso son bloquetas de concreto, con el objetivo de reducir el peso y determinar el aislamiento térmico y acústico. El concreto liviano se logró con el reemplazo de agregado grueso con las perlas de poliestireno.

En el desarrollo de la investigación presentan la construcción del instrumento para medir la conductividad térmica por el método de la placa caliente según la norma ASTM C 117-13 y el instrumento para el ensayo de aislamiento acústico según la norma UNE-EN ISO 717-1.

Conclusiones:

• El concreto liviano presento un 52% menos de resistencia a compresión respecto al concreto simple.

- Obtuvo una reducción de la conductividad térmica en un 65 % con el concreto liviano.
- El concreto liviano con reemplazo de perlas de poliestireno obtuvo un 11% más de aislamiento acústico frente a un concreto simple tradicional.
- Las unidades de albañilería de concreto liviano mejoraron la productividad en cuanto a la construcción de un muro, ya que se utilizan 13 unidades de bloques de concreto mientras que un muro hecho por ladrillos requieren 39 unidades.

Comentario:

La tesis se relaciona con la presente investigación en la sustitución parcial de agregado grueso por perlas de poliestireno para disminuir el peso de bloques de concreto y analizar la conductividad térmica y el aislamiento acústico.

2.1.3. Antecedentes locales

* "EVALUACIÓN DE LA CONDUCTIVIDAD TÉRMICA Y PROPIEDADES FÍSICO-MECÁNICAS DE BLOQUES DE CONCRETO SUSTITUYENDO EL CONFITILLO POR POLIESTIRENO EXPANDIDO TIPO PERLA", de la Universidad Andina del Cusco, Casapino, Manuel; Serrano Ana, 2020.

Resumen:

En esta tesis se examinó el comportamiento del poliestireno tipo perla, determinando que existe una diferencia las propiedades físico - mecánicas de los bloques de concreto.

Como principal objetivo tuvo la determinación de la conductividad térmica y resistencia a la compresión de los bloques tradicionales y los bloques con poliestireno expandido que fueron reemplazados en 0.5%, 1.0%, 1.5%, 2.0% en el confitillo.

Según su procedimiento se hizo la mezcla de dos arenas para lograr una buena dosificación y cumplir con el reglamento utilizado en dicha investigación.

La investigación citada obtuvo resultados favorables respecto a sus hipótesis presentadas.

Conclusiones:

• Como principal conclusión tenemos que se cumplió la hipótesis general, teniendo que la sustitución del confitillo con el poliestireno expandido tipo perlo incremento

las propiedades térmicas del bloque de concreto al ir disminuyendo la conductividad térmica, las propiedades físicas - mecánicas cumplieron con lo requerido por la Norma Técnica E.070.

• La resistencia a compresión de los bloques con sustitución de poliestireno cumplió con los parámetros de la norma E-070.

Comentario:

La tesis se relaciona con la presente investigación en la sustitución parcial del confitillo por perlas de poliestireno para el análisis de sus propiedades físico mecánicas y la conductividad térmica de bloques de concreto, también la construcción del aparato de caja térmica para la realización de dicho ensayo.

* "EVALUACIÓN DE LA CONDUCTIVIDAD TÉRMICA, PROPIEDADES FÍSICO MECÁNICAS DEL LADRILLO KING-KONG 18 HUECOS ADICIONADO CON PUZOLANA DE LA CANTERA RAQCHI EN DIFERENTES PORCENTAJES, CON RESPECTO A UN LADRILLO TRADICIONAL" de la Universidad Andina del Cusco, Camino, Richard, Camino Ronald, 2017.

Resumen:

La investigación mencionada presenta un ladrillo con adición de puzolana para determinar su conductividad térmica, así como sus propiedades físicas y mecánicas.

Para determinar la conductividad térmica emplearon un equipo construido según el método de la placa caliente, el cual consta de una caja con aislantes térmicos y 2 placas frías y una caliente con el fin de precisar la transmitancia térmica de los ladrillos.

Conclusiones:

- Se logró reducir la conductividad térmica de los ladrillos adicionados con puzolana hasta en un 24% y 18% respecto al ladrillo patrón.
- Las propiedades físicas y mecánicas se lograron mejorar con un 10% de adición de puzolana.

Comentario:

La tesis se relaciona con la presente investigación en la construcción del aparato simplificado para la medición de conductividad térmica para unidades de albañilería.

2.2. Bases Teóricas

2.2.1. Unidades de albañilería

Las unidades de albañilería según la Norma E-070 del Reglamento Nacional de Edificaciones, son ladrillos y bloques en cuya elaboración se utiliza arcilla, sílice-cal o concreto, como materia prima. Estas unidades de albañilería pueden ser sólidas, huecas, alveolares o tubulares. (Norma Tecnica E.070, 2006)

 Tabla 1

 Clases de unidades de albañilería

Clase	dimens	riación d ión (máx orcentaj	kima en	Alabeo (Máximo	Resistencia característica a compresión fb	
	Hasta 100 mm	Hasta 150 mm	Más de 150 mm	en mm)	mínimo en MPA (Kgf/cm2) sobre área bruta	
Ladrillo I	± 8	± 6	± 4	10	4,9 (50)	
Ladrillo II	± 7	± 6	± 4	8	6,9 (70)	
Ladrillo III	± 5	± 4	± 3	6	9,3 (95)	
Ladrillo IV	± 4	± 3	± 2	4	12,7 (130)	
Ladrillo V	± 3	± 2	± 1	2	17,6 (180)	
Bloque P	± 4	± 3	± 2	4	4,9 (50)	
Bloque NP	± 7	± 6	± 4	8	2,0 (20)	

Fuente: (Norma Tecnica E.070, 2006)

2.2.2. Bloque de concreto

Pieza pre fabricada a base de cemento, agua y áridos finos y/o gruesos, naturales y/o artificiales, con o sin aditivos, incluidos pigmentos, de forma sensiblemente prismática con dimensiones modulares no mayor de 60 cm. (NTP 399.604, 2002)

Tabla 2Clasificación de bloques según su densidad

Clasificación	Densidad seca al horno promedio de tres unidades (kg/cm3)
Peso liviano	Menor que 1680
Peso medio	No menor que 1680 a 2000

Peso normal Mayor que 2000

Fuente: (NTP 399.600 Unidades de albañileria. Bloques de concreto para uso no estructural.

Requisitos, 2017)

2.2.3. Muro portante

Los muros portantes le proporcionan la fortaleza y la solidez necesarias a una vivienda, es decir, la vuelven más resistente, quiere decir que tienen la función de soportar y transferir peso o carga de cada uno de los pisos de una vivienda. (Aceros Arequipa, 2020)

2.2.4. Muro no portante

Un muro no portante solo puede soportar su peso propio, no puede soportar otro tipo de cargas presentes en una estructura. Estos muros solo deben ser utilizados para separar ambientes o espacios dentro de una estructura. (Medina, 2011)

2.2.5. Materiales utilizados en la fabricación de bloque de concreto

2.2.5.1. Cemento

Mezcla formada de arcilla y materiales calcáreos, sometida a cocción y muy finamente molida, que mezclada a su vez con agua se solidifica y endurece. (RAE, 2021)

2.2.5.2.Arena

La arena para construcción es un tipo de agregado fino o árido que se utiliza para fabricar hormigón, concreto y mortero; se compone de partículas de rocas trituradas que pueden ser muy pequeñas y finas o un poco más grandes dependiendo del uso para el que sea destinada. (Ferrex, 2022)

2.2.5.3. Confitillo

Es el agregado que se obtiene por medio de la trituración artificial de gravas o rocas y en tamaños específicos, utilizada principalmente en elaboración de ladrillos a base de concreto. (C&M, 2023)

2.3. Marco conceptual

2.3.1. Ensayos para los agregados

2.3.1.1. Cantidad de material fino que pasa el tamiz de 75 µm (nº 200) por lavado

El material más fino que el tamiz de 75 μ m (N° 200) puede ser separado de las partículas mayores de manera más eficiente y completa por el proceso de tamizado. Por ello, cuando se desea determinar de manera exacta el material más fino que el tamiz de 75 μ m (N° 200) en un agregado grueso o fino, este ensayo es usado sobre la muestra antes del tamizado en estado seco. Para determinar los resultados se harán de acuerdo a la norma MTC E204, normalmente es una cantidad pequeña en caso el porcentaje que pasa sea muy grande, la eficiencia de la operación de lavado debe ser chequeada. Esto también puede ser indicativo de degradación del agregado. (NTP 400.018, 2002)

Se determinara mediante la siguiente formula:

$$A = \frac{B - C}{R} x 100$$

Donde:

A = Porcentaje del material fino que pasa el tamiz de $N^{\circ}200$ (75 μm) por lavado

B = Peso seco de la muestra original, en gramos.

C = Peso seco de la muestra después de lavado, en gramos.

2.3.1.2. Contenido de humedad

La NTP 399.185 indica que para obtener la muestra representativa para realizar el ensayo del contenido de humedad de los agregados se debe obtener de la misma fuente de abastecimiento de acuerdo a la muestra. La muestra debe ser protegida para evitar errores durante el ensayo.

El primer paso dentro del procedimiento es determinar la masa de la muestra con una balanza de precisión del 0.1%.

Posteriormente se seca la muestra completamente en el recipiente por medio de la fuente al horno, teniendo cuidado de evitar perdida de las partículas. Tener cuidado de que el secado sea muy rápido ya que puede generar que exploten algunas partículas resultando perdida de la muestra. Usar un horno de temperatura controlada cuando el calor excesivo puede alterar las

características del agregado o cuando se requiera una medición más precisa. Si se usa una fuente de calor diferente al horno de temperatura controlada revolver la muestra al momento del secado para acelerar el proceso y evitar sobrecalentamiento localizado. Cuando se use un horno microondas, es opcional el revolver la muestra. (*NTP 339.185., 2018*)

Para determinar el contenido de humedad se utiliza la siguiente formula:

$$P = \frac{100(W - D)}{D}$$

Donde:

P = Contenido total de humedad en porcentaje.

W = Masa de la muestra húmeda en gramos.

D = Masa de la muestra seca en gramos.

2.3.1.3. Análisis granulométrico de agregados gruesos y finos

Se aplica para determinar la gradación del agregado. Los resultados serán usados para determinar el cumplimiento de la distribución del tamaño de partículas con los requisitos exigidos en la especificación técnica de la obra y proporcionar datos necesarios para el adecuado control de producción de agregados. (NTP 400.012, 2013)

Tabla 3 *Límites de gradación para agregado fino*

Apertura	de tamiz	Porcentaje que	pasa
N° 3/8	9.500 mm	100	
N° 4	4.750 mm	95	100
N° 8	2.360 mm	80	100
N° 16	1.180 mm	50	85
N° 30	0.600 mm	25	60
N° 50	0.300 mm	10	30
N° 100	0.149 mm	2	10

Fuente: (ASTM C33, Standard Specification for Concrete Aggregates)

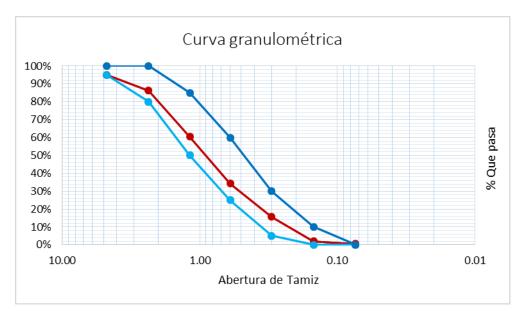


Tabla 4 *Límites de gradación para agregado grueso*

Fuente: (ASTM C33/C33M-18, Standard Specification for Concrete Aggregates)

Numero			C	antidades	s más fina	s que cad	la tamiz d	e laborate	orio (dián	netro de a	apertura)	porcenta	je de mas	sa	
de	Malla ASTM	4"	3 ½"	3"	2 ½"	2"	1 ½"	1"	3/4"	1/2"	3/8" (9.5	N° 4	N° 8	N° 16	N° 50
tamaño		(100mm)	(90mm)	(75mm)	(63 mm)	(50mm)	(37.5mm)	(25mm)	(19mm)	(12.5mm)	mm)	(4.75mm)	(2.36mm)	(1.18mm)	(0.30mm)
	3 ½" a 1 ½" 90 a														
1	37.5 mm 2 ½" a 1 ½" 63 a	100	90 a 100	-	25 a 60	-	0 a 15	-	0 a 5	-	-	-	-	-	-
2	37.5 mm 2" a 1" 50 a	-	-	100	90 a 100	35 a 70	0 a 15	-	0 a 5	-	-	-	-	-	-
3	25.0 mm 2" a N° 4 50 a	-	-	-	100	90 a 100	35 a 70	0 a 15	-	0 a 5	-	-	-	-	-
357	4.75 mm 1 ½" a ¾" 37.5 a	-	-	-	100	90 a 100	-	35 a 70	-	10 a 30	-	0 a 5	-	-	-
4	19 mm 1 ½" a N° 4 37.5	-	-	-	-	100	90 a 100	20 a 55	0 a 15	-	0 a 5	-	-	-	-
467	a 4.7 mm 1 a ½" 25 a 12.5	-	-	-	-	100	90 a 100	-	35 a 70	-	10 a 30	0 a 5	-	-	-
5	mm 1" a 3 /8" 25.0 a	-	-	-	-	-	100	90 a 100	20 a 55	0 a 10	0 a 5	-	-	-	-
56	9.5 mm 1" a N° 4 25.0 a	-	-	-	-	-	100	90 a 100	40 a 85	10 a 40	0 a 15	0 a 5	-	-	-
57	4.7mm 3/4" a 3 /8" 19.0 a	-	-	-	-	-	100	95 a 100	-	25 a 60	-	0 a 10	0 a 5	-	-
6	9.5 mm ¾" a N° 4 19.0 a	-	-	-	-	-	-	100	90 a 100	20 a 55	0 a 15	0 a 5	-	-	-
67	4.7 mm ½" a N° 4 12.5 a	-	-	-	-	-	-	100	90 a 100	-	20 a 55	0 a 10	0 a 5	-	-
7	4.7 mm 3 /8" a N° 8 9.5	-	-	-	-	-	-	-	100	90 a 100	40 a 70	0 a 15	0 a 5	-	-
8	a 2.36 mm 3 /8" a N° 16 9.5	-	-	-	-	-	-	-	-	100	85 a 100	10 a 30	0 a 10	0 a 5	-
89	a 1.18 mm N° 4 a N° 16 4.7	-	-	-	-	-	-	-	-	100	90 a 100	20 a 55	5 a 30	0 a 10	0 a 5
9A	a 1.18 mm	-	-	-	_	-	-	-	_	-	100	85 a 100	10 a 40	1 a 10	1 a 5

Figura 1Curva granulométrica de los agregados

Fuente: Elaboración propia

2.3.1.4. Gravedad específica y absorción de agregados finos

La gravedad específica es la característica que se usa para calcular el volumen ocupado por el agregado. También es usado en el cálculo de vacíos en el agregado del ensayo MTC E 203.

El peso específico aparente y peso específico relativo atañen al material sólido de las partículas constituyentes que no incluyen el espacio poroso dentro de ellas que es donde se almacena agua.

Los valores de absorción son usados para calcular el cambio en la masa de un agregado debido al agua absorbida entre los poros de las partículas constituyentes, en cuanto a la condición seca, cuando el agregado ha estado en contacto con el agua lo suficiente para satisfacer la mayor absorción potencial.

Se aplica para determinar el peso específico seco, peso específico saturado con superficie seca, peso específico aparente y la absorción de agregado fino, a fin de usar estos valores tanto en el cálculo y corrección de diseños de mezclas, como en control de uniformidad de las características físicas.

Este ensayo no se aplica para agregados ligeros por cuanto la inmersión en agua por 24 horas no asegura que los poros se llenen de manera completa, ya que es un requisito indispensable para poder aplicar el ensayo eficientemente. (NTP 400.022, 2013)

Para hallar la gravedad específica del agregado fino se utiliza las siguientes formulas:

$$Pem = \frac{A}{B + S - C}$$

Donde:

Pem: Peso especifica de la masa, (gr/cm3)

A = Peso de la muestra seca en el aire, (gr)

B = Peso de la muestra saturada superficialmente seca en el aire, (gr)

C = Peso en el agua de la muestra saturada, (gr)

S = Masa de la muestra de saturado superficialmente seca, (gr)

Peso específico de masa saturada con superficie seca (Pesss)

$$Pesss = \frac{B}{(B-C)}$$

Peso específico aparente (Pea)

$$Pea = \frac{A}{(A-C)}$$

Absorción (Ab)

$$Ab = \frac{(B-A)}{A} * 100$$

2.3.1.5. Peso específico y absorción de agregados gruesos

El espécimen de agregado se sumerge en agua por 24 horas aproximadamente para llenar los poros esencialmente. Luego se retira del agua, se seca el agua de la superficie de las partículas, y se procede con el pesado. La muestra se pesa posteriormente mientras es sumergida en agua. Finalmente, la muestra es secada al horno y se pesa una vez más. Usando los pesos así obtenidos y fórmulas en este modo operativo, es posible calcular tres tipos de peso específico y de absorción. (NTP 400.021, 2002)

Para hallar el Peso específico de masa del agregado grueso se necesita las siguientes formulas:

$$Pem = \frac{A}{(B-C)}$$

Donde:

Pem = Peso específico de masa

A = Peso en el aire de la muestra secada en el horno, (gr)

B = Peso de la muestra saturada superficialmente seca en el aire, (gr)

C = Peso en el agua de la muestra saturada, (gr)

Peso específico de masa saturado con superficie seca (Pesss)

$$Pesss = \frac{B}{(B-C)}$$

Peso específico aparente (Pea)

$$Pea = \frac{A}{(A-C)}$$

Absorción (Ab)

$$Ab = \frac{(B-A)}{A} * 100$$

2.3.1.6. Peso unitario y vacío de los agregados

Se utiliza para determinar el valor del peso unitario utilizado por algunos métodos de diseño de mezclas de concreto.

También se utiliza para calcular la relación masa/volumen para conversiones en acuerdos de compra donde se desconoce la relación entre el grado de compactación del agregado en una unidad de transporte o depósito de almacenamiento (que usualmente contienen humedad superficial absorbida) y los llevados a cabo por este ensayo que determina el peso unitario seco. (NTP400.017, 2011)

$$M = \frac{G - T}{V}$$

Donde:

M = Peso unitario del agregado, (kg/m3)

G = Peso del recipiente de medida más el agregado, (kg)

T = Peso del recipiente de medida, (kg)

V = Volumen del recipiente de medida, (m3)

2.3.2. Dosificación.

Dosificación quiere decir, utilizar la cantidad adecuada de cada uno de los ingredientes que se incluirán a la mezcladora para elaborar el cemento. Dichas cantidades deben proporcionarle al concreto las características que se requieran alcanzar.

Los criterios mínimos a tenerse en cuenta en la dosificación de los ingredientes del concreto son:

- Consistencia requerida del concreto.
- Resistencia a la compresión especificada en el plano.

Es importante la cantidad de agua para lograr la consistencia del concreto deseada y alcanzar la resistencia requerida. (Aceros Arequipa, 2020)

2.3.3. Diseño de mezcla

Existen diferentes métodos de cálculo para la selección y ajuste de las dosificaciones de concreto de peso normal. Sin embargo, todos ellos solo establecen una aproximación de proporciones con el propósito realizar pruebas en el laboratorio o en campo y hacer los ajustes necesarios para producir las características deseadas del concreto.

El concreto está compuesto principalmente de cemento, agregados y agua. Contiene, asimismo, alguna cantidad de aire atrapado y puede contener también aire incorporado; según el diseño, por el uso de un aditivo o de cemento incorporado de aire.

La estimación de los pesos requeridos para alcanzar una resistencia de concreto determinada, involucra una secuencia de pasos lógicos y directos. (Capeco, 2019)

2.3.3.1. Diseño de mezcla por el método ACI

Este método fue desarrollado para realizar un diseño de mezcla sencillo en el cual se utilizan tablas para su procedimiento. El primer dato para la realización es determinar la consistencia que dependerá del tipo de vibrado que se realizara, luego se requerirá la resistencia compresión que se desea alcanzar así como los datos de los agregados previamente realizados.

La consistencia o movilidad se mide por diferentes métodos en los cuales se determina la deformación de un cono.

Tabla 5Asentamientos recomendados para los tipos de consistencia

CONSISTENCIA	ASENTAMIENTO
Seca	0" a 2"
Plástica	3" a 4"
Fluida	≥ 5"

Fuente: (ACI, 2011)

• Para determinar la cantidad de agua según la tabla de Volumen unitario de agua:

Tabla 6 *Volumen unitario de agua*

Asentamiento	Agua, o	en m3, pa			aáx. nomina cia indicado	_	regado	grueso
	3/8"	1/2"	3/4"	1"	1 1/2"	2"	3"	6"
Concreto sin aire incorporado								
1" a 2"	207	199	190	179	166	154	130	113
3" a 4"	228	216	205	193	181	169	145	124
6" a 7"	243	228	216	202	190	178	160	
		Cone	creto con	aire inco	rporado			
1" a 2"	181	175	168	160	150	142	122	107
3" a 4"	202	193	184	175	165	157	133	119
6" a 7"	216	205	197	184	174	166	154	

Fuente: (ACI, 2011)

• Para determinar la relación agua-cemento se utilizó la siguiente tabla:

Tabla 7 *Relación agua cemento*

Resistencia a	Relación Agua - Cemento de diseño en peso					
compresión a los 28 días (f'cr) (Kg/cm2)	Concreto sin aire incorporado	Concreto con aire incorporado				
450	0.38					
400	0.43					
350	0.48	0.4				
300	0.55	0.46				
250	0.62	0.53				

200	0.7	0.61
150	0.8	0.71

Fuente: (ACI, 2011)

Para determinar el contenido de aire atrapado se utilizó la siguiente tabla:

Tabla 8

Contenido de aire atrapado

Tamaño Máximo Nominal	Aire Atrapado
3/8"	3.0%
1/2"	2.5%
3/4"	2.0%
1"	1.5%
1 1/2"	1.0%
2"	0.5%
3"	0.3%
6"	0.2%

Fuente: (*ACI*, 2011)

2.3.4. Propiedades del concreto

2.3.4.1. Trabajabilidad, resistencia y durabilidad

- 2.3.4.1.1. *La Trabajabilidad:* significa que tan fácil es la manipulación y acabado de una mezcla de concreto. El concreto seco, que será utilizada en la presente investigación; puede ser difícil de manejar y compactar ya que si no se dosifica apropiadamente no será tan resistente cuando haya endurecido completamente.
 - La Trabajabilidad se ve afectada principalmente por la cantidad de cemento y la granulometría del agregado, ya que los agregados más redondos y lisos mejoran la trabajabilidad de la mezcla.
- 2.3.4.1.2. *Resistencia:* La resistencia de un concreto se mide cuando este ha endurecido completamente, mediante el ensayo de resistencia a compresión. Por la naturaleza del concreto es un material muy resistente a compresión.
- 2.3.4.1.3. *Durabilidad:* El concreto es durable ya que es razonablemente impermeable al agua capaz de resistir cambios de temperatura, así como también resistir desgaste por intemperismo.
 - La resistencia y la durabilidad son afectadas también por el proceso de compactación, proceso en el cual se busca remover el aire atrapado, un concreto

bien compactado es resistente y durable ya que se logra una densidad adecuada. (IMCYC, 2004)

2.3.5. Plástico PET

El PET es un poliéster, su denominación técnica es polietilén tereftalato o politereftalato de etileno y forma parte del grupo de los termoplásticos, razón por la cual es posible reciclarlo.

El PET (polietilén tereftalato) pertenece al grupo de los materiales sintéticos denominados poliésteres. Fue descubierto por los científicos británicos Whinfield y Dickson, en el año 1941, quienes lo patentaron como polímero para la fabricación de fibras. Se debe recordar que su país estaba en plena guerra y existía una apremiante necesidad de buscar sustitutos para el algodón proveniente de Egipto. Recién a partir de 1946 se lo empezó a utilizar industrialmente como fibra y su uso textil ha proseguido hasta el presente. En 1952 se lo comenzó a emplear en forma de film para el embasamiento de alimentos. Pero la aplicación que le significó su principal mercado fue en envases rígidos, a partir de 1976; pudo abrirse camino gracias a su particular aptitud para el embotellado de bebidas carbonatadas. (Tecnología de los plásticos, 2017)

2.3.5.1. Propiedades del plástico PET

- Resistencia y rigidez muy altas
- * Resistencia a la torsión
- Llevada resistencia a la deformación térmica
- ❖ Alta resistencia a la intemperie
- Muy buena estabilidad dimensional
- Excelente resistencia al impacto, incluso a bajas temperaturas
- Fisiológicamente inerte (aprobado para estar en contacto con alimentos) (Elaplas, 2022)

2.3.5.2. Aplicaciones del plástico Pet en la construcción

Actualmente la construcción de ladrillos con Pet reciclado tiene una alta demanda, según Arteaga Capistrán la utilización del PET en las mezclas de mortero ofrece ventajas interesantes, como una disminución en los costos de producción respecto a los morteros convencionales debido a que se hace una sustitución parcial de los agregados.

La metodología está en proceso de patente junto con el proceso de fabricación del material determinado que ofrecerá mejores características plásticas y elásticas. Una de sus

grandes ventajas es un reciclamiento simple, es decir, se hace el proceso de calcinación o utilización de químicos especiales sino algo muy simple para poder reciclar los materiales". (Aclima, 2017)

2.3.6. Poliestireno expandido

El Poliestireno Expandido o EPS es un material plástico espumado utilizado en el sector de la Construcción, principalmente como aislamiento térmico y acústico, también es aplicado en varios rubros. (IDAE, 2007).

2.3.6.1. Propiedades del poliestireno expandido

- * Resistencia térmica y conductividad térmica
- Tolerancias dimensionales
- Estabilidad dimensional
- ❖ Deformación bajo condiciones específicas de carga a compresión y temperatura
- Resistencia a flexión
- Tensión de compresión
- Fluencia a compresión
- Resistencia a la congelación-descongelación
- Clasificación de reacción al fuego
- Factor de resistencia a la difusión del vapor de agua

(IDAE, 2007)

2.3.6.2. Funciones del poliestireno expandido

- Aislamiento térmico: Debido a la gran cantidad de aire (98 % aproximadamente)
 es un aislante.
- Relleno de peso ligero: El poliestireno en particular puede tener una densidad tan baja como 10 kg/m3, que es menos que un 1 % de los suelos y rocas. A pesar de esta propiedad; el material tiene una rigidez tal que soporta vehículos, trenes, aviones y construcciones ligeras.
- Transmisor de fluidos: Puede ser altamente permeable, si el producto final se forma o se corta de tal manera que contenga vacíos o canales para que fluyan los líquidos.
- Amortigua vibraciones: La alta relación de rigidez con respecto a densidad hace que el poliestireno amortigüe vibraciones de pequeña amplitud y sonido producido por agentes externos.

Inclusión compresible: El poliestireno puede ser colocado detrás o sobre estructuras muy rígidas. El material controla el movimiento de suelo o roca, lo cual reduce a su vez la carga sobre la estructura. (Horvath, 1999)

2.3.6.3. Aplicaciones del poliestireno en la construcción

Fachadas

- A. Aislamiento intermedio
- Doble hoja cerámica
- Trasdosado interior aislante
- B. Aislamiento por el exterior
- Bajo revoco
- Fachada ventilada
- Muros enterrados

Cubiertas

- A. Cubiertas Planas
- Plana Convencional
- Plana Invertida
- B. Cubiertas Inclinadas
- Aislamiento sobre soporte horizontal (entre tabiquillos)
- Aislamiento sobre soporte inclinado

(IDAE, 2007)

2.3.7. Conductividad térmica

Según Charca en el 2015 describe la conductividad térmica como el transporte de energía en forma de calor a través de un cuerpo con masa como resultado de un gradiente de temperatura. De acuerdo con la segunda ley de la termodinámica, el calor siempre fluye en la dirección de la temperatura más baja. La Conductividad Térmica es, por consiguiente, una propiedad específica de cada material usada para caracterizar el transporte de calor en ritmo estacionario. (Charca, 2015)

Clasificación de conductores térmicos según Torres, C. (Torres, 2004)

Valor λ (W / m.°K) Clasificación

Tabla 9 *Clasificación de conductividad térmica*

$0.024 \le \lambda \le 0.038$	Muy buenos aislantes
$0.038 < \lambda \le 0.16$	Buenos aislantes
$0.16 < \lambda \le 0.46$	Medianos Aislantes
$0.46 < \lambda \le 1.62$	Malos aislantes
$\lambda > 1.62$	Conductores

Fuente: (Contrina, 2019)

2.3.7.1. El coeficiente de conductibilidad térmica

El aislamiento térmico de un material se expresa en términos de su conductividad térmica por medio del valor "k" (o "λ" según otros autores) e indica la facilidad al paso del calor del material, la cual indica la cantidad de calor en joules por segundo (Watt) que pasa por una superficie de un material de cierta área (m2) y de espesor (e) cuando se tiene una variación de temperatura por ambas caras (ΔT) 39. Mientras menor sea el valor k de un material, más efectivo será como aislante. Los materiales aislantes se pueden usar también mezclados entre sí. (Megchum, Robles, Macias, & Osorio, 2022)

2.3.8. Aislamiento acústico

El aislamiento acústico minimiza la penetración de sonidos a través de los vacíos albergados por algún material a analizar, mientras su densidad sea menor influirá en la propiedad. (Lazo, 2017)

El ensayo de aislamiento acústico se realizara de acuerdo a la norma a UNE-EN ISO 717-1 del año 2020.

La norma chilena NCh 352 del año 2000 proporciona las condiciones de uso habitacional, el cual presenta niveles de presión sonora como se expresa en la siguiente tabla:

Tabla 10 *Niveles recomendados de ruido exterior*

Destino/Actividad	Nivel máximo de
Destino/Actividad	ruido
Dormitorios	30 a 40 db
Biblioteca silenciosa	35 a 40 db

Sala Estar	40 a 45 db
Oficinas privadas	40 a 45 db
Aulas de escuelas	40 a 45 db
Oficinas generales	45 a 50 db

Fuente: (INDECOPI E.040, 2009)

2.3.9. Costo de producción

Los costos de producción (también llamados costos de operación) son los gastos necesarios para mantener un proyecto, línea de procesamiento o un equipo en funcionamiento. (FAO, s.f.)

2.3.10. Costo directo

El costo directo es la suma de los costos de materiales, mano de obra (incluyendo leyes sociales), equipos, herramientas, y todos los elementos requeridos para la ejecución de una obra.

Estos costos directos que se analizan de cada una de las partidas conformantes de una obra pueden tener diversos grados de aproximación de acuerdo al interés propuesto. (Capeco, 2019)

2.3.11. Producción

Se entiende por producción a la adición de valor a un bien (producto o servicio) por efecto de una transformación. Producir es extraer o modificar los bienes con el objeto de volverlos aptos para satisfacer ciertas necesidades. (Tawifk, L & Chauvel, A M, 1993)

2.3.12. Partida

Se denomina así a cada uno de los rubros o partes en que se divide convencionalmente una obra para fines de medición, evaluación y pago.

De acuerdo a las tareas dentro del proceso productivo de la obra las partidas se dividen en partidas de primer, segundo, tercer y cuarto orden respectivamente; que indica asimismo, a medida que se varíe de orden, mayor precisión del trabajo a efectuarse. (Capeco, 2019)

2.3.13. Metrado

Se define así al conjunto ordenado de datos obtenidos o logrados mediante lecturas acotadas, preferentemente, y con excepción con lecturas a escala, es decir, utilizando el escalímetro. Los metrados se realizan con el objeto de calcular la cantidad de obra a realizar y

que al ser multiplicado por el respectivo costo unitario (cuyo análisis se verá en detalle en el Capítulo II) y sumados obtendremos el costo directo. (Capeco, 2019)

2.3.14. Rendimiento

Se define rendimiento de mano de obra, como la cantidad de obra de alguna actividad completamente ejecutada por una cuadrilla, compuesta por uno o varios operarios, oficiales o peones de diferente especialidad por unidad de recurso humano, normalmente expresada como Hh (hora Hombre). (Botero L., 2002)

2.3.15. Aporte unitario de materiales

Las cantidades de materiales se establecen de acuerdo acondiciones pre-establecidas físicas o geométricas dadas de acuerdo a un estudio técnico del mismo, teniendo corno referencia las publicaciones especializadas o, siendo aún mejor, elaborando los análisis con registros directos de obra, considerando en razón a ello que los análisis de costos responden a un proceso dinámico de confección.

Los insumos de materiales son expresados en unidades de comercialización, así tenemos: bolsa de cemento, metro cúbico de arena o piedra chancada, pie cuadrado de madera, kilogramo o varillas de fierros, etc. (Capeco, 2019)

2.3.16. Consumo de mano de obra

Se define como la cantidad de recurso humano en horas-Hombre, que se emplea por una cuadrilla compuesta por uno o varios operarios de diferente especialidad, para ejecutar completamente la cantidad unitaria de alguna actividad. El consumo de mano de obra se expresa normalmente en hH / um (horas – Hombre por unidad de medida) y corresponde al inverso matemático del rendimiento de mano de obra.

La eficiencia en la productividad de la mano de obra, puede variar en un amplio rango que va desde el 0%, cuando no se realiza actividad alguna, hasta el 100% si se presenta la máxima eficiencia teórica posible. (Botero L. F., 2002)

2.3.17. Propiedades físicas de los bloques de concreto

2.3.17.1. Variación dimensional

Instrumentos: Medir todas las dimensiones con una regla de acero de divisiones de 1,0 mm. Los espesores de las paredes laterales y los tabiques se medirán con Vernier.

Especímenes: se medirán tres unidades enteras para el ancho, la altura, la longitud y los espesores mínimos de las paredes laterales y tabiques.

Dimensiones: para cada unidad se tiene que registrar ancho, longitud y altura a media cara respectivamente.

El espesor mínimo de pared no debe ser menor de 13 mm, Las dimensiones (ancho, largo y alto) no deben diferir por más de +-3mm de las dimensiones estándar especificadas por el fabricante. (NTP 399.604, 2002)

2.3.17.2. Alabeo

El ensayo de alabeo tiene por objetivo verificar la distorsión del bloque, que tan convexo o cóncavo es dicho bloque, para esto la norma NTP 399.613 establece una medición, la cual es colocar una regla metálica en cada una de las caras del bloque en forma diagonal.

Después con la ayuda de una cuña graduada se medirá en la parte central y extremos de la cara. Cuando la cuña indica una medición en la zona central de una cara es porque se tiene una superficie cóncava, mientras que cuando se tenga mediciones en los extremos la superficie será convexa.

Es el ensayo de alabeo ya que los bloques pueden generar vacíos en el ancho de un muro. Esto haría que la resistencia del muro disminuya debido a que la estructura de este tendría diferentes secciones lo cual produciría que no se comporte como el esperado. Por tal motivo, la norma E070 establece los requisitos mínimos y máximo de alabeo. (NTP 399.613, 2005)

2.3.17.3. Absorción y densidad

Instrumentos: La balanza utilizada es sensible dentro del 0.5% del peso del espécimen más pequeño.

Ensayo de especímenes: Se utilizarán tres unidades enteras que hayan sido marcadas, pesadas y registradas de acuerdo con lo consignado anteriormente. Las pruebas se realizan con unidades enteras.

Procedimiento

- Saturación

Sumergir los especímenes de prueba en agua a una temperatura de 15.6 °C a 26.7 °C por 24 horas. Pesar los especímenes mientras está suspendidos por un alambre de metal y sumergidos totalmente en agua y registra Wi (Peso sumergido).

Sacar del agua y permitir el drenado por 1 minuto colocándolo en una malla de alambre más grueso de 9.5 mm, retirando el agua superficial visible con un paño húmedo; pesar y retirar como Ws (peso saturado).

- Secado

Subsecuentemente a la saturación, secar los especímenes en un horno ventilado de 100°C a 115°C por no menos de 24 horas y hasta que dos pesadas sucesivas en intervalos de 2 horas muestren un incremento de la perdida no mayor que 0.2 % del peso ultimo previamente determinado del espécimen. Registrar los pesos de los especímenes secados Wd (peso secado al horno). (INDECOPI, 2002)

• Para determinar la absorción se requiere la siguiente formula:

$$Ab(\%) = \left(\frac{Ws - Wd}{Wd}\right) x 100$$

Ab: Porcentaje de absorción, (%)

Wd: Peso secado al horno, (Kg)

Ws: Peso del espécimen saturado, (Kg)

• Para determinar la densidad de utiliza la siguiente formula:

$$D = \left(\frac{Wd}{Ws - Wi}\right) x 1000$$

D: Densidad, (Kg/m3)

Wi: Peso sumergido del espécimen, (Kg)

Wd: Peso secado al horno, (Kg)

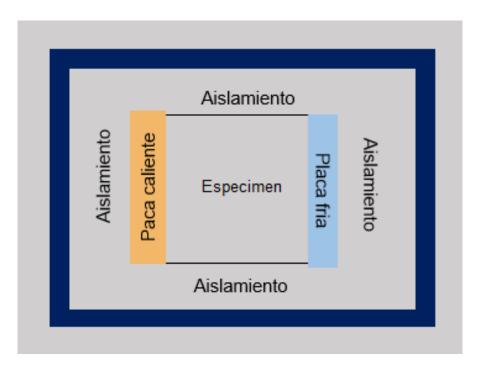
Ws: Peso del espécimen saturado, (Kg)

2.3.17.4. Conductividad térmica

El ensayo de conductividad térmica se realizó bajo la norma ASTM C117-13, en la cual se establecen los requisitos para medir el flujo de calor a través de las muestras, en este caso las bloquetas de concreto con plástico PET reciclado y poliestireno expandido.

Para la realización de la medición será necesaria la construcción del aparato de placa caliente.

Este método de prueba abarca los modos de medición de una cara y de dos caras. Se permiten los diseños de placas calefactoras tanto distribuidas como protegidas por fuente de


línea. El usuario debe consultar las prácticas estándar sobre el modo de operación de un solo lado, Práctica C1044, y sobre el aparato de fuente de línea, Práctica C1043, para obtener más detalles sobre estos diseños de calentadores. (ASTM C 117-13, 2013)

2.3.17.4.1. Aparato de placa caliente

El aparato de placa caliente protegida proporciona un medio para medir el flujo de calor en estado estacionario a través de materiales aislantes, que consisten en un calentador protegido unidad, compuesta por un área de medición central y concéntrica con protectores calentados por separado, y un opuesto, de tamaño similar a la placa de enfriamiento. Las muestras se colocan en el espacio entre placa calefactora y placa de enfriamiento para pruebas. El guardado caliente de la placa se opera como un aparato de una o dos caras. Las propiedades térmicas del aislamiento se calculan a partir del área de medición, entrada de energía, temperaturas y grosor. Se ha demostrado que la medición del flujo de calor es aplicable para la mayoría de los materiales aislantes en un amplio rango de temperatura y condiciones. (ASTM C 117-13, 2013)

Figura 2

Estructura de aparato de placa caliente

Fuente: Elaboración propia

Para determinar el coeficiente de conductividad térmica se tiene la siguiente formula:

$$\lambda = \frac{Pot * L}{A * [T(caliente) - T(fria)]}$$

Donde:

λ: Coeficiente de conductividad térmica, (W/(m. °K), J/(s.m. °K)

Pot: Potencia o flujo de calor total a través de la pared, (W, Joules)

L: Espesor que atraviesa el calor, (m)

A: Área por donde se suministra la placa caliente, (m2)

T (caliente): Temperatura de placa caliente, (°K)

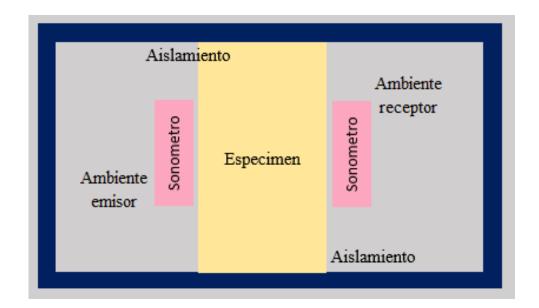
T (fría): Temperatura de placa fría, (°K)

2.3.17.5. Ensayo de Aislamiento acústico

Para el ensayo de aislamiento acústico será necesaria la creación de un módulo aislado acústicamente del exterior para la realización de la prueba.

La diferencia de nivel existente en el recinto emisor y el que se transmite al recinto receptor se define como el aislamiento acústico entre ambos recintos. Es por tanto el aislamiento real. (Menéndez, 2008)

2.3.17.5.1. Aparato para medición de aislamiento acústico


Se realiza la construcción de un módulo que será cubierto totalmente de teknopor u otro material que tengo como función aislar externamente los ruidos por todos sus lados, de igual forma procurar sellar los vértices para evitar errores en los resultados.

El modulo presentara dos ambientes; emisor y receptor, los cuales estarán divididos por el bloque.

Antes de cerrar completamente el modulo ya construido, insertamos el bloque de concreto. Luego de ello, colocamos los sonómetros en la parte central de cada ambiente, así como colocar la laptop que tiene el programa generador de sonido en el ambiente emisor. Al encender la fuente de sonido, este enviara una señal sonora en el interior de la sala emisora, midiéndose los niveles de presión sonora (L) expresados en decibeles (dB) para cada frecuencia en ambos ambientes. (Menéndez, 2008)

Figura 3

Estructura de aparato de aislamiento externo

Fuente: Elaboración propia

Para determinar el aislamiento acústico se tiene las siguientes formulas:

$$D = Lp(emisor) - Lp(receptor)$$

D: Aislamiento acústico, (dB)

Lp (emisor): nivel de presión sonora medido en el local emisor, (dB)

Lp (receptor): nivel de presión sonora medido en el local receptor, (dB)

2.3.18. Propiedad mecánica de los bloques de concreto

2.3.18.1. Resistencia a la Compresión

Máquina de ensayo: La máquina será equipada con dos bloques de soporte de acero, uno de los cuales es una rotula con plato que transmitirá la carga a la superficie superior del espécimen de albañilería, y la otra un bloque rígido plano sobre el cual descansará el espécimen.

Espécimen de prueba: De las seis unidades muestreadas, tres serán ensayadas en compresión.

Para el cálculo de resistencia a compresión se hará uso de la siguiente formula:

$$C = \frac{W}{A}$$

Donde:

C= Resistencia a la compresión del espécimen, MPa

W= Máxima carga en N, indicada por la máquina de ensayo

A= Promedio del área bruta de las superficies de contacto superior e inferior del espécimen o mm2. (NTP 399.604, 2002)

2.4. Hipótesis

2.4.1. Hipótesis general

Las bloquetas con reemplazo de plástico Pet reciclado tendrán mejores características físicas- mecánicas y menores costos de producción a comparación de las bloquetas con reemplazo de poliestireno expandido.

2.4.2. Hipótesis Específicas

Hipótesis Específicas n°01:

Las bloquetas con reemplazo 1%, 3% y 5% de plástico Pet reciclado tendrán menor variación dimensional respecto a las bloquetas con reemplazo de 1%, 3% y 5% poliestireno expandido.

Hipótesis Específicas n°02:

Las bloquetas con reemplazo 1%, 3% y 5% de poliestireno expandido tendrán menor alabeo respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado.

Hipótesis Específicas n°03:

Las bloquetas con reemplazo 1%, 3% y 5% de poliestireno expandido tendrán menor densidad respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado.

Hipótesis Especificas n°04:

Las bloquetas con reemplazo 1%, 3% y 5% de poliestireno expandido tendrán menor absorción respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado.

Hipótesis Especificas n°05:

Las bloquetas con reemplazo de 1%, 3% y 5% de poliestireno expandido tendrán menor conductividad térmica respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado.

Hipótesis especifica n°06:

Las bloquetas con reemplazo de 1%, 3% y 5% de poliestireno expandido tendrán mayor aislamiento acústico respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado.

Hipótesis especifica n°07:

Las bloquetas con reemplazo de 1%, 3% y 5% de poliestireno expandido tendrán menor resistencia a la compresión respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado.

Hipótesis especifica n°08:

Las bloquetas con reemplazo de 1%, 3% y 5% de poliestireno expandido tendrán mayor costo unitario respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado.

2.5. Variables e indicadores

2.5.1. Identificación de variables

2.5.1.1. Variables independientes

• Bloques con porcentaje de Plástico PET: Es un polímero plástico, con un alto grado de cristalinidad y termoplástico en su comportamiento.

Indicador: Unidades de bloquetas con plástico PET reciclado (UND)

• **Bloques de Poliestireno expandido**: es un material plástico espumado utilizado en diferentes sectores de construcción y plastiqueria.

Indicador: Unidades de bloquetas con Poliestireno Expandido (UND)

2.5.1.2. Variables dependientes

• Variación dimensional: Se mide la variación de longitud, ancho y largo de las bloquetas de concreto.

Indicador: Porcentaje (%)

• **Alabeo:** se mide la concavidad o convexidad de las bloquetas de concreto.

Indicador: Concavidad/Convexidad (mm)

• **Densidad:** Es la masa de un volumen unitario de agregado, en la cual el volumen incluye el volumen de las partículas individuales y el volumen de vacíos entre las partículas.

Indicador: Peso/Volumen (KG/M3)

• **Absorción:** Mide la cantidad de agua absorbida de las bloquetas de concreto.

Indicador: Volumen (%)

• **Conductividad térmica:** Mide el coeficiente de conductividad térmica, será realizada con el aparato de placa caliente.

Indicador: Λ (W/(m. $^{\circ}$ K))

• **Aislamiento acústico:** La diferencia de nivel existente en el recinto emisor y el que se transmite al recinto receptor.

Indicador: D (dB)

• Resistencia a compresión: Mide la resistencia a la compresión de las bloquetas de concreto posteriores al ensayo de flexión, esta prueba se realiza con la máquina de compresión.

Indicador: Esfuerzo (MPA)

• Costo de bloqueta con PET: Se analizará el costo por partida de la elaboración de la bloqueta con PET.

Indicador: Soles por unidad (S/.)

• Costo de bloqueta con poliestireno expandido: Se analizará el costo por partida de la elaboración de la bloqueta con poliestireno expandido.

Indicador: Soles por unidad (S/.)

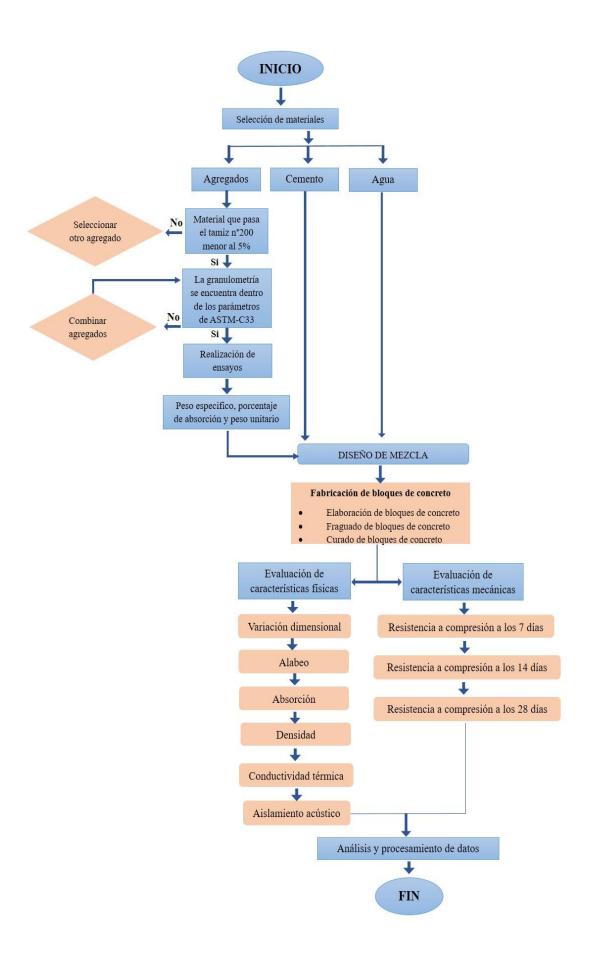
2.5.2. Operacionalización de variables

Tabla 11 *Matriz/tabla de operacionalización de variables*

Análisis comparativo de las características físico-mecánicas de bloquetas de concreto elaboradas con porcentajes de poliestireno expandido y plástico PET reciclado en la ciudad del Cusco -2023

		plastico I E I Teci	ciado en la ciudad d	ici Cusco -2023	<u> </u>	
	VARIABLE	DESCRIPCIÓN DE LA VARIABLE	NIVEL	INDICADORES	UNIDAD	INSTRUMENTOS
INDEPENDIENTE	BLOQUE CON POLESTIRENO EXPANDIDO	Es un material plástico espumado utilizado en el sector de la Construcción, principalmente como aislamiento térmico y acústico.	Reemplazo con 1% Reemplazo con 3% Reemplazo con 5%	Porcentaje de poliestireno expandido	(%)	NTP 399.600 Bloques de concreto para usos no estructurales. - Fichas de laboratorio
INDEP	BLOQUE CON PLÁSTICO PET	Es un polímero plástico, con un alto grado de cristalinidad y termoplástico en su comportamiento.	Reemplazo con 1% Reemplazo con 3% Reemplazo con 5%	Porcentaje de plastico Pet reciclado	(%)	NTP 399.600 Bloques de concreto para usos no estructurales. - Fichas de laboratorio
	VARIACION DIMENSIONAL	Variacion de longitud, Ancho y largo de bloquetas de concreto		Porcentaje de variacion dimensional	(%)	NTP 399.604 Método estándar de ensayo para variación dimensional. - Fichas de laboratorio, regla
	ALABEO	ALABEO Mide la concavidad o convexidad de la unidad de albañileria.	Concavidad, convexidad	(mm)	NTP 399.613 Método estándar de ensayo de Alabeo. - Ficha de laboratorio, regla y cuña.	
	DENSIDAD	Mide la masa de un volumen unitario de bloque de concreto		Peso unitario	(KG/M3)	NTP 399.604 Método estándar de ensayo para densidad total (peso unitario) - Ficha de laboratorio, balanza y regla.
ENTE	ABSORCIÓN	Mide la cantidad de agua absorbida de las bloquetas de concreto, saturando las muestras en agua.	Bloques con 1%, 3% y	Porcentaje de absorcion	(%)	NTP 399.604 Método estándar de ensayo de absorción Ficha de laboratorio, balanza.
DEPENDIENTE	CONDUCTIVIDAD TERMICA	Mide el coeficiente de conductividad térmica, sera realizada con el aparato de placa caliente.	5% de reemplazo de poliestireno expandido y plastico Pet reciclado	Coeficiente de conductividad de calor	(W/(m.°K))	ASTM C 117-13 -Fichas de laboratorio, Aparato de placa caliente, multimetro digital.
	AISLAMIENTO ACUSTICO	Mide el indice de aislamiento de un especimen, sera medido con el aparato para la medicion de aislamiento acustico.		Intensidad de ruido	(dB)	ASTM C 423 - UNE-EN ISO 717-1 -Fichas de laboratorio, Aparato de medicion de aislamiento acustico, sonometro.
	CARACTERISTICAS MECÁNICAS	flexión, esta prueba se realiza con la máquina de compresión.		Esfuerzo de compresión	(KG/CM2)	Norma Tecnica Peruana NTP 399.604 y máquina de ensayo de compresión. - Fichas de laboratorio, Maquina de compresion.
	COSTOS DE PRODUCCIÓN	Son los gastos necesarios para mantener un proyecto, línea de procesamiento o un equipo en funcionamiento.		Análisis de precios unitarios	SOLES (S/.)	FICHAS DE GABINETE.

Capitulo III: Método (Diseño metodológico)


3.1. Alcance del estudio

La investigación denominada "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO – 2023", será realizada bajo las normas NTP 399.604, NTP 399.613, E-070, ASTM C 117-13 y UNE-EN ISO 717-1.

3.2. Diseño de la investigación

La presente investigación es cuasi-experimental porque se producirá una consecuencia de manera intencional para analizar sus efectos (*Hernandez Sampieri*, 2006). Para temas de análisis de la investigación se hará variar las variables dependientes que son los porcentajes de perlas de poliestireno expandido y plástico PET reciclado para ver las consecuencias en las variables independientes que son las propiedades físico-mecánicas y los costos de producción.

3.3. Población

3.3.1. Descripción de la población

La presente investigación está compuesta por bloques de concreto de medidas: Altura = 20 cm, Ancho = 12 cm, Largo = 40 cm, con un espesor de = 18 mm, elaborados con arena de Pisac y Cunyac, confitillo de Senqa, cemento de la marca Yura tipo IP, perlas de poliestireno expandido y hojuelas de plástico PET reciclado.

3.3.2. Cuantificación de la población

La población utilizada para la investigación es finita, ya que consta de 301 unidades de bloques de concreto.

3.4. Muestra

3.4.1. Descripción de la muestra

La muestra está compuesta del bloqueta patrón, bloquetas con poliestireno expandido y bloquetas con plástico PET reciclado. Cabe resaltar que la muestra es por conveniencia, De acuerdo a (*Hernandez Sampieri*, 2006), el método a seguir es no probabilístico ya que la muestra y población tiene la misma cantidad de unidades de bloquetas a ensayar.

3.4.2. Cuantificación de la muestra

La cuantificación de la muestra se da en función a los ensayos a realizar, según la norma NTP 399.604, Unidades de albañilería. Métodos de muestreo y ensayo de unidades de albañilería, indica que el número de especímenes a ensayar es de 6 unidades de cada lote de 10 000 o menos. En la siguiente tabla se detalla la cuantificación de la muestra.

Tabla 12Cuantificación de la muestra

Cuantificación de la muestra							
Ensayos	Patron	ron Bloque con Poliestireno			Bloque con plastico PET reciclado		
	0.00%	1.00%	3.00%	5.00%	1.00%	3.00%	5.00%
Variación dimensional	6	6	6	6	6	6	6
Alabeo	6	6	6	6	6	6	6
Densidad y absorción	6	6	6	6	6	6	6
Conductividad termica	6	6	6	6	6	6	6
Aislamiento acustico	1	1	1	1	1	1	1
Resistencia a compresion							
7 dias	6	6	6	6	6	6	6
14 dias	6	6	6	6	6	6	6
28 dias	6	6	6	6	6	6	6
TOTAL UNIDADES A	43 und	43 und	43 und	43 und	43 und	43 und	43 und
ENSAYAR				301 und			

Nota: Para la realización de los 3 primeros ensayos se pueden utilizar solo 6 unidades ya que solo consta de medición de dimensiones en la cual no se hará modificaciones a las muestras.

3.5. Técnicas e instrumentos de recolección de datos


En la presente investigación se utilizaron fichas de laboratorio, cuadros y formulas presentadas según la normativa de los ensayos.

3.5.1. Instrumentos metodológicos

3.5.1.1. Cantidad de material fino que pasa el tamiz Nº 200 por lavado

Tabla 13

Cantidad de material fino que pasa el tamiz Nº 200 por lavado

TESISTA: LUCERO LIBERTAD CONDORI TORRES	
DETERMINACIÓN DE FINOS POR LAVADO	

$C \lambda$	NTER	۸.
CA	NIEF	A:

CHIVILIOI.					
Descripción	Simbolo	Muestra 01	Muestra 02	Muestra 03	Unidad
Peso de la muestra seca antes de	W				gr
P.M. Secada al horno despues de	Wo				gr
Perdida por lavado	W-Wo				gr
Porcentaje que pasa el tamiz N° 200	((W-Wo)/W)*100				%

3.5.1.2. Contenido de humedad del agregado

Tabla 14

Contenido de humedad del agregado

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE CONTENIDO DE HUMEDAD

Datos	Simbolo	Und	Muestra 1	Muestra 2	Muestra 3
Peso recipiente más agregado humedo	Mcaw	gr			
Peso del recipiente más el agregado seco	Mcas	gr			
Peso del recipiente	Mc	gr			
Peso del agua	Mw	gr			
Peso de la muestra seca	Ms	gr			
CONTENIDO DE HUMEDAD	W	%			
CONTENIDO DE HUMEDAD	9	6			

3.5.1.3. Análisis granulométrico del agregado

Tabla 15

Análisis granulométrico del agregado

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE GRANULOMETRÍA Muestra 01-Peso de muestra inicial: g Apertura del **TAMIZ** Peso % Retenido tamiz (mm) Especificaciones % Retenido % Que pasa retenido (gr) Acumulado # 4 4.75 #8 2.36 # 16 1.18 # 30 0.60 # 50 0.30 # 100 0.15 # 200 0.07 Fondo 0.00 Peso Muestra Final (gr) Modulo de fineza

3.5.1.4. Gravedad específica y absorción de los agregados

Tabla 16Gravedad específica y absorción de los agregados

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTAS: - LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE PESO ESPECIFICO

Datos del ensayo	Simbolo	Und	Muestra 1	Muestra 2	Muestra 3
Peso del material superficialmente seco	S	gr			
Peso del picnometro más agua	В	gr			
Peso del picnometro más agua más muestra	C	gr			
Peso del material seco a horno	A	gr			
PESO ESPECIFICO DE LA ARENA	Pem	g/cm3			
PESO ESPECIFICO DE LA ARENA	Pesss	a/am2			
SATURADA SUPERFICIALMENTE	Pesss	g/cm3			
PESO ESPECIFICO APARENTE	Pea	g/cm3			
PORCENTAJE DE ABSORCIÓN	ab	%			
PESO ESPECIFICO DE LA ARI	ENA	g/cm3			
ABSORCIÓN		%			

3.5.1.5. Peso unitario del agregado

Tabla 17

Peso unitario suelto y compactado del agregado

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE PESO UNITARIO SUELTO Y COMPACTADO

Datos del ensayo	Simbolo	Und	Muestra 1	Muestra 2	Muestra 3
Peso de la muestra compactada más	G	gr			
Peso de la muestra compactada		gr			
Peso del recipiente	T	gr			
Volumen del molde	V	cm3			
Altura	Н	cm			
Diametro	D	cm			
PESO UNITARIO COMPACTADO	M	gr/cm3			
PESO UNITARIO COMPACTADO	M	kg/m3			
PESO UNITARIO COMPACTADO	M	kg/m3			

3.5.1.6. Diseño de bloquetas de concreto

Tabla 18

Diseño de bloquetas de concreto

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: LUCERO LIBERTAD CONDORI TORRES

DISEÑO DE MEZCLA DE BLOQUETAS DE CONCRETO

Datos requeridos para diseño			
Resistencia de compresion de diseño		kg/cm2	
Resistencia de compresion requerida		kg/cm2	
Slump			
Peso especifico de Cemento		kg/cm3	
Tipo de vibrado			
Datos de los agregados	ARENA	CONFITILLO	
M.F.			
TMN			
PEM kg/m3			
% Absorción			
Cont. Humedad %			
PUS			
PUC			
Datos según tabla de diseño	ACI	Volumenes	
Relacion agua cemento			
Cantidad de agua			
Porcentaje de aire atrapado			
Cantidad de cemento			
Volumen total			

U	UNCKETU					
	Diseño seco					
	Cemento		kg			
	Agua		Lt			
	Confitillo		Kg			
	Arena		kg			

Correccion por Humedad				
Confitillo		kg		
Arena		kg		

Aporte de agua de los agregados						
Confitillo	Lt					
Arena	Lt					
Agua efectiva	Lt					
Diseño Humedo						
Cemento	Kg					
Agua	Lt					
Confitillo	Kg					
Arena	Kg					

Ensayos realizados a las bloquetas de concreto

3.5.1.7. Variación dimensional de bloques de concreto

Tabla 19

Variación dimensional de bloques de concreto

1	UN	NIVE	RSI	DAD	AN]	DIN	A DE	L C	USC	O		
*					GENIE IONAI		_					
TESIS:	''ANÁI	LISIS (COMP	ARAT	IVO D	E LAS	S CAR	ACTE	RÍSTIC	CAS FÍ	SICO-	
MECÁNIO	CAS Y	COST	OS DI	E PRO	DUCC	IÓN E	E BLO	OQUE	ΓAS D	E CON	NCRET	О
REEMP	LAZA	DAS (CON D	IFERE	ENTES	PORC	CENTA	JES D	E POI	LIESTI	RENO)
	TES	SISTAS	S: - LU	CERO	LIBE	RTAD	CONI	OORI T	ΓORRI	ES		
			VAF	RIACI	ÓN DI	MEN	SIONA	\L				
MUESTRA	LARGO (mm)			ANCHO (mm)			ALTURA (mm)			ESPESOR (mm)		
	L1	L2	L3	A1	A2	A3	H1	H2	Н3	E1	E2	E3
M1												
M2												
M3												
M4												
M5												
M6												
DDOMEDIO												

3.5.1.8. Alabeo de bloques de concreto

Tabla 20

Ensayo de alabeo de bloques de concreto

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: LUCERO LIBERTAD CONDORI TORRES

ALABEO									
MUESTRA	CARA SUPI	ERIOR (mm)	CONCAVO/ CONVEXO	CARA INFI	CONCAVO/				
	DIAGONAL 1	DIAGONAL 2		DIAGONAL 1	DIAGONAL 2	CONVEXO			
M1									
M2									
M3									
M4									
M5									
M6									
PROMEDIO									

3.5.1.9. Absorción y densidad de bloques de concreto

Tabla 21 *Absorción y densidad de bloques de concreto*

*

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO -

TESISTA: LUCERO LIBERTAD CONDORI TORRES

ABSORCIÓN Y DENSIDAD							
MUESTRA	Ws	Wd	Wi	ABSORCIÓN (%)	DENSIDAD (kg/cm3)		
M1							
M2							
M3							
M4							
M5							
M6							
PROMEDIO							

3.5.1.10. Conductividad térmica

Tabla 22

Conductividad térmica de los bloques de concreto

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

CONDUCTIVIDAD TÉRMICA							
MUESTRA	M1	M2	М3	M4	M5	M6	
Potencia de energia							
Altura de bloque de							
Largo de bloque de							
Ancho de bloque de							
Temperatura de placa caliente (°K=°C+275.15)							
` ′							
Temperatura de placa fria (°K=°C+275.15)							
Conductividad Térmica							

3.5.1.11. Aislamiento acústico

Tabla 23

Aislamiento acústico de bloques de concreto

3.5.1.12.Resistencia a la compresión de bloques de concreto

Tabla 24 *Resistencia a la compresión de bloques de concreto*

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTAS: - LUCERO LIBERTAD CONDORI TORRES

	RESISTENCIA A LA COMPRESION DEL BLOQUE									
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa		
M1										
M2										
M3										
M4										
M5										
M6										

3.5.2. Instrumentos de ingeniería

Los instrumentos de ingeniería que se utilizaron para la realización de los ensayos de especímenes de mortero para la presente investigación fueron:

- Serie de tamices ASTM (3/8", N°4, N°8, N°16, N°30, N°50, N°100 y N°200).
- Agitador mecánico de tamices.
- Balanza de precisión.
- Horno Electrónico.
- Bomba de vacíos.
- Caja térmica.
- Multímetro digital.
- Caja acústica.
- Sonómetro.
- Fiola.
- Equipo de Compresión
- Probetas graduadas.

3.6. Validez y confiabilidad de los instrumentos

Evaluar la validez y la confiabilidad es importante para certificar y garantizar que los instrumentos de recolección de datos y la información recopilada sea consistente y precisa. En ese sentido para garantizar la confiabilidad y validez de los resultados obtenidos para la presente investigación se solicitó la validez de los instrumentos de recolección de datos.

3.7. Plan de análisis de datos

3.7.1. Toma de datos

Ensayos realizados a los agregados

3.7.1.11. Cantidad de Material Fino que pasa el tamiz de 75 μ m (N° 200) por lavado

Equipos y materiales:

Recipientes

- Balanza de precisión
- Tamiz N° 200
- Horno

- Primeramente, se secó la muestra de agregado a una temperatura constante de 110°
 ± 5 °C.
- Posteriormente se tomó los pesos correspondientes de los agregados antes del lavado.
- Luego se colocó la muestra en el recipiente y se agregó de agua hasta cubrir, agitando vigorosamente la muestra con el fin de que las partículas más finas que el tamiz de 75 µm se separen de las partículas gruesas.
- Por último, se llevó la muestra lavada al horno a una temperatura constante de 110°
 ± 5 °C y se determinó el peso de la muestra seca al horno.

Figura 4Procedimiento de ensayo de determinación de finos por lavado

Figura 5 *Muestras retiradas del horno*

Tabla 25Toma de datos del ensayo Cantidad de Material Fino que pasa el tamiz de 75 μ m (Nº 200) de la cantera Pisaq

DETERMINACIÓN DE FINOS POR LAVADO								
CANTERA:	NTERA: Arena Pisaq							
Descripción	Símbolo	Muestra	Muestra	Muestra	Unidad			
Descripcion	Simbolo	01	02	03	Omuau			
Peso de la muestra seca antes de lavado	W	1530.50	1510.50	1540.30	gr			
P.M. Secada al horno después de lavado	Wo	1484.60	1469.40	1492.46	gr			

Tabla 26

Toma de datos del ensayo Cantidad de Material Fino que pasa el tamiz de 75 μ m (N° 200) de la cantera Cunyac

DETERMINACIÓN DE FINOS POR LAVADO

CANTERA:			Arena Cunyac		
Descripción	Símbolo	Muestra 01	Muestra 02	Muestra 03	Unidad
Peso de la muestra seca antes de					
lavado	\mathbf{W}	1500.00	1448.20	1440.30	gr
P.M. Secada al horno después					
de lavado	Wo	1464.60	1409.40	1402.46	gr

Tabla 27Datos del ensayo Cantidad de Material Fino que pasa el tamiz de 75 μ m (N^o 200) de la cantera Senqa

DETERMINACIÓN DE FINOS POR LAVADO								
CANTERA:		Confitillo Senqa						
Descripción	Símbolo	Muestra 01	Muestra 02	Muestra 03	Unidad			
Peso de la muestra seca antes de lavado	W	1230.50	1345.80	1340.00	gr			
P.M. Secada al horno después de lavado	Wo	1210.90	1329.40	1320.46	gr			

3.7.1.12. Contenido de humedad

Equipos y materiales:

- Balanza de precisión
- Horno de secado
- Brocha
- Cepillo metálico
- Recipientes

- Se obtiene la muestra representativa a través del cuarteo, considerando el tamaño máximo nominal.
- Se pesaron y registraron las muestras en estado natural y se llevaron al horno de secado por un periodo de 24 horas a temperatura constante.
- Pasado el tiempo de secado se pesaron y registraron las muestras.

Figura 6Procedimiento de ensayo de contenido de humedad de agregado fino y confitillo

Tabla 28Toma de datos de ensayo de contenido de humedad de agregado fino

ENSAYO DE CONTENIDO DE HUMEDAD								
CONTENIDO DE HUMEDAD 75% PISAQ + 25% CUNYAC								
Datos	Símbolo	Und	Muestra	Muestra	Muestra			
Datos	Simbolo	iibolo Chu	1	2	3			
Peso recipiente más agregado húmedo	Mcaw	gr	1000.00	1000.00	1000.00			
Peso del recipiente más el agregado seco	Mcas	gr	976.80	976.10	977.50			
Peso del recipiente	Mc	gr	346.80	308.00	293.60			
Peso del agua	Mw	gr	23.20	23.90	22.50			
Peso de la muestra seca	Ms	gr	630.00	668.10	683.90			

Tabla 29

Toma de datos de ensayo de contenido de humedad del confitillo

ENSAYO DE CONTENIDO DE HUMEDAD	
CONTENIDO DE HUMEDAD CONFITILLO SENQA	

Datos	- Símbolo	Und	Muestra 1	Muestra 2	Muestra 3
Peso recipiente más agregado húmedo	Mcaw	gr	2325.50	2336.50	2360.40
Peso del recipiente más el agregado seco	Mcas	gr	2283.80	2294.60	2318.10
Peso del recipiente	Mc	gr	642.00	660.40	661.20
Peso del agua	Mw	gr	683.70	702.30	703.50
Peso de la muestra seca	Ms	gr	1641.80	1634.20	1656.90

3.7.1.3 Análisis granulométrico del agregado fino y grueso

Equipos y materiales:

- Serie de tamices (3/8", N° 4, N° 8, N° 16, N° 30, N° 50, N° 100 y N° 200)
- Recipientes.
- Tamizadora mecánica.
- Cucharon.
- Brocha.
- Escobilla.

Procedimiento:

 Primeramente, se realizó el procedimiento de selección de la muestra representativa con el método de cuarteo.

Figura 7

Procedimiento de método de cuarteo de la arena

Figura 8Procedimiento de método de cuarteo del confitillo

- Se tomó una muestra representativa, se procedió a lavar la muestra para después ser secada en el horno a temperatura constante por un periodo de 24 horas.
- Una vez extraída la muestra del horno, se procede al tamizado de la misma y se procedió a pesar los diferentes pesos retenidos en los diversos tamices y registrar los datos.

Figura 9Procedimiento de ensayo de granulometría del agregado fino

Figura 10Procedimiento de ensayo de granulometría del agregado grueso

Figura 11Pesaje de material retenido en tamices

Tabla 30Datos de ensayo de granulometría de agregado fino de cantera Pisaq

ENSAY	ENSAYO DE GRANULOMETRÍA DE AGREGADO FINO - ARENA PISAQ							
	Apertura	1390.20 gr	1346.90 gr	1382.40 gr	1373.17 gr			
TAMIZ	del tamiz	Peso 01	Peso 02	Peso 03	Peso retenido			
	(mm)	retenido (gr)	retenido (gr)	retenido (gr)	(gr)			
# 4	4.75	0	5	0.00	1.67			
#8	2.36	63.8	50.1	70.40	61.43			
# 16	1.18	181.2	176.9	190.60	182.90			
# 30	0.60	305.5	297.8	293.30	298.87			
# 50	0.30	353.5	343.9	334.20	343.87			
# 100	0.15	258.5	255.7	262.10	258.77			
# 200	0.07	165.4	154.2	160.40	160.00			
Fondo	0.00	59.8	60.8	70.60	63.73			
	estra Final (gr)	1387.7	1344.4	1381.6	1371.23			

Tabla 31Datos de ensayo de granulometría de agregado fino de cantera Cunyac

ENSAYO	ENSAYO DE GRANULOMETRÍA DE AGREGADO FINO - ARENA CUNYAC							
	Apertura	1045.20 gr	1032.90 gr	1038.30 gr	1038.80 gr			
TAMIZ	del tamiz	Peso 01	Peso 02	Peso 03	Peso retenido			
	(mm)	retenido (gr)	retenido (gr)	retenido (gr)	(gr)			
# 4	4.75	16.40	15.50	13.90	15.27			
# 8	2.36	133.70	135.20	116.80	128.57			
# 16	1.18	310.20	306.40	308.60	308.40			
# 30	0.60	385.60	388.50	384.65	386.25			
# 50	0.30	112.50	106.20	124.70	114.47			
# 100	0.15	56.50	56.60	65.10	59.40			
# 200	0.07	21.50	15.90	14.90	17.43			
Fondo	0.00	7.60	7.20	8.40	7.73			
	uestra Final (gr)	1044.00	1031.50	1037.05	1037.52			

Tabla 32Datos de ensayo de granulometría de agregado fino, combinación de canteras 75% Pisaq + 25% Cunyac

ENS	ENSAYO DE GRANULOMETRÍA 75% PISAQ + 25% CUNYAC										
	A4	1168.20 gr	1169.00 gr	1182.50 gr	1173.23 gr						
TAMIZ	Apertura del tamiz (mm)	Peso 01 retenido (gr)	Peso 02 retenido (gr)	Peso 03 retenido (gr)	Peso retenido (gr)						
# 4	4.75	20.50	15.40	14.80	16.90						
#8	2.36	86.40	89.30	93.40	89.70						
# 16	1.18	167.60	168.20	161.20	165.67						
# 30	0.60	310.90	318.60	317.50	315.67						
# 50	0.30	260.10	242.60	260.10	254.27						
# 100	0.15	240.10	239.40	241.60	240.37						
# 200	0.07	62.40	74.10	67.90	68.13						
Fondo	0.00	18.40	19.40	24.50	20.77						
	estra Final (gr)	1166.40	1167.00	1181.00	1171.47						

Tabla 33Datos de ensayo de granulometría del confitillo de cantera Senqa

	ENSAYO DE GRANULOMETRÍA DE CONFITILLO										
	Apertura del	1072.30 gr	1030.80 gr	1108.10 gr	1070.40 gr						
TAMIZ	tamiz (mm)	Peso 01	Peso 02	Peso 03	Peso retenido						
	tamiz (mm)	retenido (gr)	retenido (gr)	retenido (gr)	(gr)						
#1/2	12.5	0.00	0.00	0.00	0.00						
#3/8	9.5	118.10	96.40	90.30	101.60						
# 4	4.75	663.30	649.60	648.10	653.67						
# 8	2.36	217.80	203.50	268.90	230.07						
# 16	1.18	70.50	78.90	97.50	82.30						
Fondo	0.00	1.80	1.50	2.10	1.80						
Peso Mu	estra Final (gr)	1071.50	1029.90	1106.90	1069.43						

3.7.1.4 Gravedad específica y absorción de los agregados finos:

Equipos y materiales:

- Balanza de precisión de 0,1 gr.
- Bomba de vacíos.
- Horno de secado.
- Estufa.
- Frasco volumétrico.
- Molde cónico y varilla para apisonado.
- Piseta
- Embudo
- Cucharón metálico.
- Espátula.
- Recipientes.

Procedimiento:

- Se cuarteó el agregado hasta obtener una muestra de más de 1 kg.
- Se colocó la muestra de agregado en un recipiente y dejo cubierto de agua por un periodo de 24 horas.
- Transcurrido ese tiempo se decantó el agua, evitando la perdida de material.
 Posteriormente se extendió el agregado sobre una bandeja y se secó en la estufa para obtener un secado uniforme, hasta que las partículas del agregado estén aparentemente secas y remover buscando la consistencia adecuada.
- Para determinar la consistencia adecuada se colocó en el molde cónico material y se golpeó 25 veces con la varilla de apisonado. Se realizó este procedimiento hasta que el agregado se derrumbe por los costados al quitar el molde.

Figura 12

Secado del agregado en la estufa

Figura 13Determinación de la consistencia en molde cónico metálico

- Luego de que el agregado adquirió la consistencia adecuada se introdujo 500 gramos al frasco volumétrico y también agua destilada hasta el límite que marca el frasco.
- Se agitó el frasco para eliminar burbujas de manera manual y luego con la bomba de vacíos.
- Por último, se retiró el agregado fino del frasco sin perder material, se llevó al horno a una temperatura de 110 ± 5 °C por un periodo de 24 horas.

Figura 14Procedimiento de ensayo de gravedad específica y absorción del agregado fino

Tabla 34

Toma de datos de gravedad específica y absorción de agregado fino

ENSAYO DE PESO ESPECIFICO											
PESO ESPECIFICO DE LA ARENA 75% PISAQ 25% CUNYAC											
Datos del ensayo	Símbolo	Und	Muestra 1	Muestra 2	Muestra 3						
Peso del material superficialmente seco	S	gr	500.00	500.00	500.00						
Peso del picnómetro más agua	В	gr	646.90	647.80	647.40						
Peso del picnómetro más agua más muestra	C	gr	953.90	955.30	955.80						
Peso del material seco a horno	A	gr	493.40	493.60	493.51						

3.7.1.5 Peso específico y absorción del agregado grueso

Equipos y materiales:

- Balanza de flotación.
- Cesta con malla de alambre.
- Horno de secado.
- Bandeja.
- Cucharón metálico.

- Se cuarteó la muestra hasta obtener una muestra de más de 2 kilos.
- Se colocó el agregado en un recipiente y se dejó reposar durante 24 horas.
- Luego del tiempo transcurrido se decantó el agua y se secó con una franela limpia hasta desaparecer el agua visible en el agregado, obteniendo así el agregado saturado superficialmente seco.
- Inmediatamente se colocó el agregado en la cesta metálica y se introdujo en agua.
- Finalmente se llevó al horno a una temperatura constante 110 ± 5 °C por un periodo de 24 horas.

Figura 15 *Procedimiento de secado superficial del confitillo*

Figura 16Procedimiento de ensayo de gravedad específica y absorción del confitillo

Figura 17Colocación del agregado en agua

Tabla 35 *Toma de datos de peso específico de confitillo*

ENSAYO DE PESO ESPECIFICO											
PESO ESPECIFICO DEL CONFITILLO											
Datos del ensayo	Símbolo	Und	Muestra 1	Muestra 2	Muestra 3						
Peso de la muestra superficialmente seca	В	gr	2120.50	2305.30	2300.40						
Peso de la muestra superficialmente seca sumergida	C	gr	1340.80	1488.10	1490.10						
Peso de la muestra seca al horno	A	gr	2099.00	2280.20	2275.10						

3.7.1.6 Peso unitario de los agregados:

Equipos y materiales:

- Balanza de precisión 0.1%.
- Varilla de apisonado.

- Regla metálica.
- Recipiente cilíndrico de 4" y 6".
- Cucharon.

- Se cuarteó la muestra de agregado para obtener una muestra representativa.
- Se tomó un tamaño de muestra de 125 % a 200 % la cantidad requerida para llenar el recipiente y se llevó al horno a temperatura constante de 110 ± 5 °C.
- En primer lugar, se tomó el peso y medidas para determinar el volumen de los recipientes. Luego se llenó el recipiente de la muestra con el cucharon a una altura no mayor de 2" y se enrazo con la regla metálica.
- Para proseguir con el peso unitario compactado, se llenó un tercio del molde con agregado y se emparejo la superficie, luego se apisono 25 veces de manera uniforme.
- El mismo procedimiento se realizó para la segunda y tercera capa restante.

Figura 18Procedimiento de pesaje del agregado más recipiente

Figura 19Procedimiento de ensayo de peso unitario de agregado fino y grueso.

Tabla 36Toma de datos de ensayo de peso unitario suelto de agregado fino

ENSAYO DE PESO UNIT	ENSAYO DE PESO UNITARIO SUELTO Y COMPACTADO										
PESO UNITARIO SUELTO DE LA ARENA 75% PISAQ 25% CUNYAC											
Datos del ensayo	Símbolo	Und	Muestra 1	Muestra 2	Muestra 3						
Peso de la muestra suelta más recipiente	G	gr	5595.00	5640.00	5650.00						
Peso de la muestra suelta		gr	1425.00	1405.00	1375.00						
Peso del recipiente	T	gr	4170.00	4235.00	4275.00						
Volumen del molde	V	cm3	958.22	958.22	958.22						
Altura	Н	cm	11.50	11.70	11.70						
Diámetro	D	cm	10.30	10.30	10.30						

Tabla 37Toma de datos de ensayo de peso unitario compactado de agregado fino

ENSAYO DE PESO UNITARIO SUELTO Y COMPACTADO										
PESO UNITARIO COMPACTADO DE LA ARENA 75% PISAQ 25% CUNYAC										
Datos del ensayo	Símbolo	Und	Muestra 1	Muestra 2	Muestra 3					
Peso de la muestra compactada más recipiente	G	gr	5860.00	5915.00	5975.00					
Peso de la muestra compactada		gr	5785.00	5783.80	5786.00					
Peso del recipiente	T	gr	4130.00	4130.00	4130.00					
Volumen del molde	V	cm3	958.22	958.22	958.22					
Altura	Н	cm	11.50	11.70	11.70					
diámetro	D	cm	10.30	10.30	10.30					

Tabla 38Toma de datos de ensayo de peso unitario suelto de confitillo

ENSAYO DE PESO UNITA	ENSAYO DE PESO UNITARIO SUELTO Y COMPACTADO										
PESO UNITARIO SUELTO DEL CONFITILLO											
Datos del ensayo Símbolo Und Muestra 1 Muestra 2											
Peso de la muestra suelta más recipiente	G	gr	5435.00	5440.80	5440.10						
Peso de la muestra suelta		gr	1305.00	1308.30	1307.10						
Peso del recipiente	T	gr	4130.00	4132.50	4133.00						
Volumen del molde	V	cm3	958.22	958.22	958.22						
Altura	Н	cm	11.50	11.50	11.50						
Diámetro	D	cm	10.30	10.30	10.30						

Tabla 39Toma de datos de ensayo de peso unitario compactado de confitillo

ENSAYO DE PESO UNITARIO SUELTO Y COMPACTADO										
PESO UNITARIO COMPACTADO DEL CONFITILLO										
Datos del ensayo Símbolo Und Muestra 1 Muestra 2 Mue										
Peso de la muestra compactada más recipiente	G	gr	5685.00	5683.00	5685.00					
Peso de la muestra compactada		gr	5785.00	5783.80	5786.00					
Peso del recipiente	T	gr	4130.00	4130.00	4130.00					
Volumen del molde	V	cm3	958.22	958.22	958.22					
Altura	Н	cm	11.50	11.50	11.50					
Diámetro	D	cm	10.30	10.30	10.30					

3.7.1.7 Ensayo de granulometría de poliestireno expandido y plástico PET reciclado:

Equipos y materiales:

- Serie de tamices (3/8", N° 4, N° 8, N° 16, N° 30, N° 50, N° 100 y N° 200)
- Recipientes.
- Tamizadora mecánica.
- Cucharon.
- Brocha.
- Escobilla.

Procedimiento:

- Primeramente, se realizó el procedimiento de selección de la muestra representativa con el método de cuarteo.
- Se procedió con el tamizado de la misma y se pesó los diferentes pesos retenidos en los diversos tamices y se registraron los datos.

Figura 20

Procedimiento de ensayo de granulometría de poliestireno expandido y plástico PET reciclado

Tabla 40Toma de datos de ensayo de granulometría de plástico PET reciclado

	ENSAYO DE GRANULOMETRÍA DE PLASTICO PET											
TAMIZ	Apertura del	982.00 gr Peso 01	1000.00 gr Peso 02	987.20 gr Peso 03	989.73 gr Peso retenido							
	tamiz (mm)	retenido (gr)	retenido (gr)	retenido (gr)	(gr)							
#1/2	12.5	0.00	0.00	0.00	0.00							
#3/8	9.5	128.00	131.50	126.50	128.67							
# 4	4.75	570.60	580.10	590.60	580.43							
# 8	2.36	202.90	208.60	200.10	203.87							
# 16	1.18	75.60	76.10	66.50	72.73							
Fondo	0.00	3.20	2.10	2.30	2.53							
Peso Mu	estra Final (gr)	980.30	998.40	986.00	988.23							

Tabla 41 *Toma de datos de ensayo de granulometría de poliestireno expandido*

ENSAYO DE GRANULOMETRÍA DE POLIESTIRENO EXPANDIDO										
	Apertura del	1003.50 gr	1019.50 gr	1024.00 gr	1015.67 gr					
TAMIZ	tamiz (mm)	Peso 01	Peso 02	Peso 03	Peso retenido					
	valle (11111)	retenido (gr)	retenido (gr)	retenido (gr)	(gr)					
#1/2	12.5	0.00	0.00	0.00	0.00					
#3/8	9.5	54.00	56.40	55.00	55.13					
# 4	4.75	672.00	684.00	690.00	682.00					
#8	2.36	200.80	203.10	207.50	203.80					
# 16	1.18	73.70	75.40	70.80	73.30					
Fondo	0.00	1.80	0.00	0.00	0.60					
Peso Muestra Final (gr)		1002.30	1018.90	1023.30	1014.83					
	(5-7									

3.7.1.8 Elaboración de bloques de concreto:

Equipos y materiales:

- Mezcladora estacionaria.
- Balanza.
- Máquina de vibro comprimido.
- Probeta graduada.
- Pala.

Procedimiento

 El primer paso que se realizó fue el pesaje de la arena, confitillo, cemento, poliestireno expandido y el plástico PET reciclado, así mismo se midió la cantidad de agua de acuerdo a la dosificación establecida.

Figura 21Procedimiento de pesaje de poliestireno expandido y plástico Pet reciclado

- Se realizó la prueba de SLUMP para medir el revenimiento luego de la mezcla de los componentes.
- Se realizó el moldeado en la máquina de vibro comprimido.
- Luego de realizar el moldeado se dejó fraguar por 24 horas para iniciar con el curado de los bloques de concreto.

Figura 22Procedimiento de elaboración de bloquetas de concreto con poliestireno expandido



Figura 23Procedimiento de elaboración de bloquetas de concreto con plástico PET

Figura 24 *Procedimiento de vibrado de bloquetas de concreto*

Figura 25Procedimiento de fraguado de bloquetas de concreto

Ensayos realizados a los bloques de concreto

3.7.1.9 Variación dimensional

Equipos y materiales:

- Regla de acero de 30 cm y 60 cm.
- Vernier

Procedimiento:

- Se tomó las medidas de largo, ancho, altura y espesor de las bloquetas de concreto patrón, bloquetas de concreto con reemplazo de poliestireno expandido y bloquetas de concreto con reemplazo de plástico PET reciclado.
- Las mediciones se realizaron 3 veces por largo, ancho, altura y espesor.

Figura 26Procedimiento de ensayo de variación dimensional de bloquetas de concreto

Toma de datos:

Tabla 42

Toma de datos de ensayo de variación dimensional del bloque patrón

	VARIACIÓN DIMENSIONAL - BLOQUE PATRÓN											
MUESTRA	LARGO (mm)			AN	ANCHO (mm)			ALTURA (mm)			ESOR	(mm)
WICESTRA	L1	L2	L3	A1	A2	A3	H1	H2	Н3	E1	E2	E3
M1	400.0	401.0	400.0	120.0	119.0	119.0	200.0	201.0	200.0	18.0	18.0	18.0
M2	401.0	401.0	401.0	119.0	119.0	119.0	200.0	200.0	200.0	17.0	17.0	17.0
M3	400.0	400.0	400.0	120.0	120.0	121.0	202.0	201.0	202.0	18.0	17.0	18.0
M4	400.0	401.0	401.0	120.0	120.0	120.0	200.0	200.0	201.0	18.0	18.0	18.0
M5	400.0	400.0	400.0	120.0	120.0	120.0	200.0	200.0	200.0	18.0	18.0	18.0
M6	401.0	402.0	402.0	120.0	120.0	120.0	201.0	201.0	201.0	18.0	18.0	18.0

Tabla 43Toma de datos de ensayo de variación dimensional del bloque con 1% de poliestireno

VARI	VARIACIÓN DIMENSIONAL - BLOQUE POLIESTIRENO EXPANDIDO 1.0%												
MUESTRA	LARGO (mm)			AN	ANCHO (mm)			ALTURA (mm)			ESPESOR (mm)		
WICESTRA	L1	L2	L3	A1	A2	A3	H1	H2	НЗ	E1	E2	E3	
M1	401.0	401.0	401.0	120.0	121.0	121.0	200.0	200.0	200.0	18.0	18.0	18.0	
M2	401.0	401.0	402.0	121.0	120.0	120.0	199.0	200.0	199.0	18.0	18.0	17.0	
M3	400.0	401.0	401.0	121.0	121.0	120.0	200.0	200.0	200.0	17.0	18.0	18.0	
M4	400.0	400.0	401.0	121.0	121.0	121.0	200.0	199.0	199.0	18.0	18.0	18.0	
M5	400.0	400.0	400.0	121.0	121.0	120.0	200.0	200.0	200.0	18.0	18.0	17.0	
M6	400.0	401.0	401.0	120.0	120.0	120.0	199.0	200.0	199.0	17.0	18.0	18.0	

Tabla 44Toma de datos de ensayo de variación dimensional del bloque con 3% de poliestireno

VARIA	VARIACIÓN DIMENSIONAL - BLOQUE POLIESTIRENO EXPANDIDO 3.0%											
MUESTRA	LA	RGO (n	nm)	AN	CHO (n	nm)	AL	TURA (1	nm)	ESPESOR (mm)		
WIUESIKA	L1	L2	L3	A1	A2	A3	H1	H2	Н3	E1	E2	E3
M1	400.0	402.0	402.0	120.0	121.0	120.0	200.0	201.0	201.0	18.0	18.0	18.0
M2	401.0	400.0	401.0	119.0	120.0	119.0	201.0	202.0	201.0	18.0	18.0	18.0
M3	401.0	400.0	401.0	121.0	121.0	121.0	201.0	201.0	201.0	17.0	18.0	18.0
M4	401.0	402.0	401.0	120.0	121.0	121.0	202.0	202.0	202.0	18.0	18.0	19.0
M5	401.0	402.0	402.0	121.0	121.0	121.0	202.0	202.0	201.0	18.0	18.0	18.0
M6	401.0	402.0	402.0	120.0	121.0	121.0	202.0	201.0	202.0	18.0	19.0	19.0

Tabla 45 *Toma de datos de ensayo de variación dimensional del bloque con 5% de poliestireno*

VARIA	CIÓN I	DIMEN	ISIONA	L - BL	OQUE	POLII	ESTIRI	ENO EX	KPAND	IDO :	5.0%	
MUESTRA	LA	RGO (n	nm)	AN	CHO (n	nm)	ALT	ΓURA (1	nm)	ESPESOR (mm)		
MUESTRA	L1	L2	L3	A1	A2	A3	H1	H2	НЗ	E1	E2	E3
M1	402.0	401.0	401.0	120.0	120.0	120.0	200.0	201.0	201.0	17.0	18.0	18.0
M2	402.0	402.0	402.0	121.0	121.0	120.0	200.0	200.0	201.0	18.0	18.0	19.0
M3	402.0	401.0	401.0	119.0	119.0	120.0	201.0	201.0	200.0	18.0	18.0	18.0
M4	401.0	402.0	402.0	119.0	120.0	120.0	200.0	201.0	201.0	18.0	18.0	18.0
M5	402.0	401.0	402.0	121.0	120.0	121.0	199.0	199.0	200.0	18.0	18.0	19.0
M6	402.0	401.0	402.0	121.0	120.0	120.0	200.0	200.0	200.0	18.0	19.0	19.0

Tabla 46Toma de datos de ensayo de variación dimensional del bloque con 1% de plástico PET reciclado

V	ARIAC	IÓN D	IMENS	SIONA	L - BL	OQUE	PLAST	TICO P	ET 1.0	1%		
MUESTRA	LA	RGO (n	nm)	ANCHO (mm)			ALT	TURA (1	nm)	ESPESOR (mm)		
MUESTRA	L1	L2	L3	A1	A2	A3	H1	H2	Н3	E1	E2	E3
M1	401.0	402.0	401.0	121.0	120.0	120.0	200.0	200.0	199.0	18.0	19.0	19.0
M2	401.0	400.0	401.0	119.0	120.0	120.0	199.0	200.0	199.0	17.0	17.0	17.0
M3	400.0	401.0	401.0	120.0	120.0	120.0	200.0	200.0	200.0	17.0	18.0	18.0
M 4	400.0	400.0	400.0	120.0	120.0	121.0	200.0	200.0	200.0	18.0	18.0	18.0
M5	400.0	401.0	400.0	120.0	120.0	120.0	200.0	201.0	200.0	18.0	17.0	17.0
M6	402.0	400.0	400.0	121.0	121.0	122.0	201.0	200.0	200.0	18.0	18.0	18.0
PROMEDIO		400.61			120.28			199.94			17.78	

Tabla 47Toma de datos de ensayo de variación dimensional del bloque con 3% de plástico PET reciclado

	VARIA	CIÓN	DIME	NSION	AL - BI	LOQUI	E PLAS	TICO	PET 3.0)%		
MUESTRA	LARGO (mm)			ANCHO (mm)			AL	TURA (1	mm)	ESPI	ESOR	(mm)
MUESTRA	L1	L2	L3	A1	A2	A3	H1	H2	Н3	E1	E2	E3
M1	400.0	400.0	400.0	120.0	121.0	121.0	200.0	200.0	200.0	17.0	17.0	17.0
M2	401.0	401.0	400.0	120.0	120.0	120.0	200.0	200.0	199.0	17.0	18.0	18.0
M3	400.0	401.0	401.0	120.0	120.0	120.0	200.0	201.0	201.0	18.0	18.0	18.0

M4	400.0	402.0	402.0	120.0	119.0	119.0	202.0	200.0	202.0	18.0	18.0	19.0
M5	403.0	402.0	402.0	120.0	120.0	120.0	199.0	200.0	200.0	17.0	17.0	17.0
M6	400.0	401.0	401.0	121.0	121.0	121.0	200.0	200.0	200.0	17.0	17.0	18.0

Tabla 48

Toma de datos de ensayo de variación dimensional del bloque con 5% de plástico PET reciclado

	VARIA	CIÓN	DIME	NSION	AL - Bl	LOQUI	E PLAS	TICO	PET 5.0)%		
MUESTRA	LA	RGO (n	nm)	ANCHO (mm)			ALT	ΓURA (1	nm)	ESPI	ESOR	(mm)
MUESTRA	L1	L2	L3	A1	A2	A3	H1	H2	Н3	E1	E2	E3
M1	401.0	401.0	401.0	119.0	119.0	119.0	200.0	200.0	200.0	18.0	18.0	18.0
M2	400.0	401.0	401.0	120.0	120.0	120.0	200.0	199.0	199.0	18.0	17.0	18.0
M3	402.0	402.0	402.0	120.0	120.0	120.0	200.0	200.0	201.0	18.0	18.0	18.0
M4	401.0	401.0	401.0	119.0	120.0	120.0	201.0	201.0	201.0	17.0	18.0	18.0
M5	399.0	400.0	400.0	120.0	120.0	120.0	200.0	200.0	200.0	18.0	18.0	18.0
M6	400.0	400.0	400.0	121.0	121.0	121.0	201.0	201.0	201.0	18.0	18.0	18.0

3.7.1.10 Ensayo de alabeo

Equipos y materiales:

- Regla metálica de 60 cm.
- Cuña graduada.
- Brocha.

- En primer lugar, se limpió con una brocha el polvo adherido.
- Luego se procedió con la identificación de la superficie cóncava o convexa, colocando la regla metálica a lo largo de la diagonal medida.
- Después de ser identificada la distorsión se procede con la medición del alabeo con ayuda de la cuña graduada.

Figura 27Procedimiento de ensayo de alabeo

Tabla 49 *Toma de datos de alabeo de bloque patrón*

		ALABEC) - BLOQUE	PATRON		
	CARA SUPI	ERIOR (mm)	CONCAVO/	CARA INFE	ERIOR (mm)	CONCAVO/
MUESTRA	DIAGONAL	DIAGONAL	CONVEXO	DIAGONAL	DIAGONAL	CONVEXO
	1	2		1	2	
M1	3.0	-	Cóncavo	-	4.0	Convexo
M2	3.0	-	Convexo	4.0	-	Cóncavo
M3	-	5.0	Convexo	-	-	-
M4	-	4.0	Convexo	-	3.0	Cóncavo
M5	5.0	-	Convexo	-	5.0	Convexo
M6	5.0	4.0	Convexo	-	-	-

Tabla 50Toma de datos de alabeo de bloqueta de concreto con reemplazo de 1% de poliestireno expandido

	ALABE	O - BLOQUE	POLIESTIRE	NO EXPANDI	DO 1.0%	
	CARA SUPI	ERIOR (mm)	CONCAVO/	CARA INFI	ERIOR (mm)	CONCAVO/
MUESTRA	DIAGONAL	DIAGONAL	CONVEXO	DIAGONAL	DIAGONAL	CONVEXO
	1	2		1	2	
M1	-	4.0	Cóncavo	-	4.0	Convexo
M2	-	6.0	Convexo	-	5.0	Cóncavo
M3	4.0	-	Convexo	-	3.0	Cóncavo
M4	-	8.0	Cóncavo	-	6.0	Cóncavo
M5	4.0	-	Convexo	-	-	-
M6	4.0	-	Convexo	-	-	-

Tabla 51Toma de datos de alabeo de bloqueta de concreto con reemplazo de 3% de poliestireno expandido

MUESTRA CARA SUPERIOR (mm) CONCAVO/ CONVEXO CARA INFERIOR (mm) CONCAVO/ CONVEXO M1 4.0 - Convexo - - - M2 5.0 - Convexo - - - M3 - 5.0 Convexo - 5.0 Convexo M4 - - - 5.0 Convexo M5 - - - 4.0 3.0 Cóncavo M6 3.0 3.0 Convexo - - - -		ALABE	O - BLOQUE	POLIESTIRE	NO EXPANDI	DO 3.0%	
M1 4.0 - Convexo -		CARA SUPI	ERIOR (mm)	CONCAVO/	CARA INFI	ERIOR (mm)	CONCAVO/
M1 4.0 - Convexo - - - M2 5.0 - Convexo - - - M3 - 5.0 Convexo - 5.0 Convexo M4 - - - - 5.0 Convexo M5 - - - 4.0 3.0 Cóncavo	MUESTRA	DIAGONAL	DIAGONAL	CONVEXO	DIAGONAL	DIAGONAL	CONVEXO
M2 5.0 - Convexo - - - M3 - 5.0 Convexo - 5.0 Convexo M4 - - - - 5.0 Convexo M5 - - - 4.0 3.0 Cóncavo		1	2		1	2	
M3 - 5.0 Convexo - 5.0 Convexo M4 - - - - 5.0 Convexo M5 - - - 4.0 3.0 Cóncavo	M1	4.0	-	Convexo	-	-	-
M4 - - - 5.0 Convexo M5 - - 4.0 3.0 Cóncavo	M2	5.0	-	Convexo	-	-	-
M5 4.0 3.0 Cóncavo	M3	-	5.0	Convexo	-	5.0	Convexo
	M4	-	-	-	-	5.0	Convexo
M6 3.0 3.0 Convexo	M5	-	-	-	4.0	3.0	Cóncavo
	M6	3.0	3.0	Convexo	-	-	-

Tabla 52Toma de datos de alabeo de bloqueta de concreto con reemplazo de 5% de poliestireno expandido

	ALABE	O - BLOQUE	POLIESTIRE	NO EXPANDI	DO 5.0%	
	CARA SUPI	ERIOR (mm)	CONCAVO/	CARA INFI	ERIOR (mm)	CONCAVO/
MUESTRA	DIAGONAL	DIAGONAL	CONVEXO	DIAGONAL	DIAGONAL	CONVEXO
	1	2		1	2	
M1	5.0	-	Convexo	-	-	-
M2	6.0	-	Convexo	-	-	-
М3	-	3.0	Convexo	-	4.0	Cóncavo
M4	6.0	-	Convexo	5.0	-	Cóncavo
M5	-	-	-	-	6.0	Convexo
M6	-	5.0	Cóncavo	-	-	-

Tabla 53Toma de datos de alabeo de bloqueta de concreto con reemplazo de 1% de plástico PET

	1	ALABEO - BL	OQUE PLAST	TICO PET 1.0%	%	
	CARA SUPI	ERIOR (mm)	CONCAVO/	CARA INFI	ERIOR (mm)	CONCAVO/
MUESTRA	DIAGONAL	DIAGONAL	CONVEXO	DIAGONAL	DIAGONAL	CONVEXO
	1	2		1	2	
M1	6.0	-	Cóncavo	-	-	-
M2	-	-	-	3.0	-	Convexo
M3	-	8.0	Convexo	2.0	-	Convexo
M4	-	-	-	3.0	-	Convexo
M5	7.0	-	Cóncavo	5.0	5.0	Convexo
M6	-	-	-	-	-	-

Tabla 54Toma de datos de alabeo de bloqueta de concreto con reemplazo de 3% de plástico PET

	ALABEO - BLOQUE PLASTICO PET 3.0%										
	CADA CUDI	ZDIOD (mm)	CONCAVO/	CADA INEI	EDIOD (*****)	CONCAVO/					
MURATRA	CARA SUPI	ERIOR (mm)	CONVEXO	CARA INFI	ERIOR (mm)	CONVEXO					
MUESTRA	DIAGONAL	DIAGONAL DIAGONAL		DIAGONAL	DIAGONAL						
	1	2		1	2						
M1	5.0	-	Cóncavo	2.0	-	Convexo					

4.0 Cóncavo	-	Convexo	5.0	-	M2
	-	Convexo	4.0	-	M3
2.0 Cóncavo	2.0	Convexo	-	5.0	M4
	-	Convexo	5.0	-	M5
	-	-	-	-	M6
2.0 Cóncav	2.0	Convexo Convexo	5.0	5.0	M4 M5

Tabla 55Toma de datos de alabeo de bloqueta de concreto con reemplazo de 5% de plástico PET

ALABEO - BLOQUE PLASTICO PET 5.0%										
MUESTRA	CARA SUPI	ERIOR (mm)	CARA INFERIOR (mm)		ERIOR (mm)	CONCAVO/				
	DIAGONAL	DIAGONAL	CONVEXO	DIAGONAL	DIAGONAL	CONVEXO				
	1	2		1	2					
M1	-	5.0	Convexo	2.0	3.0	Cóncavo				
M2	5.0	-	Convexo	-	2.0	Cóncavo				
M3	5.0	4.0	Convexo	-	-	-				
M4	-	3.0	Convexo	2.0	-	Cóncavo				
M5	5.0	-	Convexo	-	-	-				
M6	6.0	-	Convexo	-	-	-				

3.7.1.11Ensayo de absorción y densidad de bloques de concreto

Equipos y materiales:

- Balanza de flotación.
- Horno de secado.

- Se saturaron los bloques de concreto durante 24 horas.
- Se tomó el peso sumergido de los especímenes en la balanza de flotación.
- Luego se retiraron los especímenes del agua y se secó el agua visible de los bloques con una franela húmeda.

• Finalmente, las muestras fueron llevadas al horno durante 24 horas a temperatura constante de 100°C a 105°C.

Figura 28

Procedimiento de ensayo de absorción y densidad de bloquetas de concreto

Figura 29Bloque de concreto retirado del agua para ensayo de absorción

Tabla 56Toma de datos de ensayo de absorción y densidad de bloque patrón

ABS	ABSORCIÓN Y DENSIDAD - BLOQUE PATRÓN								
MUESTRA	Ws (Kg)	Wd (Kg)	Wi (Kg)	ABSORCIÓN (%)	DENSIDAD (kg/cm3)				
M1	9.565	9.109	7.506	5.01	4424.23				
M2	9.601	9.108	7.500	5.41	4334.78				
M3	9.589	9.110	7.484	5.26	4327.38				
M4	9.566	9.101	7.495	5.11	4392.85				
M5	9.589	9.115	7.511	5.19	4386.83				
M6	9.600	9.116	7.487	5.32	4313.19				

Tabla 57Toma de datos de ensayo de absorción y densidad de bloqueta con reemplazo de 1% de poliestireno expandido

ABSORCIÓN Y DENSIDAD - BLOQUE POLIESTIRENO EXPANDIDO 1.0%

MUESTRA	Ws (Kg)	Wd (Kg)	Wi (Kg)	ABSORCIÓN (%)	DENSIDAD (kg/cm3)
M1	6.265	5.968	4.292	4.97	3025.65
M2	6.303	6.032	4.289	4.49	2996.13
М3	6.279	5.981	4.290	4.98	3007.24
M4	6.175	5.898	4.300	4.69	3146.50
M5	6.278	5.987	4.301	4.86	3027.05
M6	6.301	6.002	4.294	4.97	2991.58

Tabla 58Toma de datos de ensayo de absorción y densidad de bloqueta con reemplazo de 3% de poliestireno expandido

ABSORCIÓN Y DENSIDAD - BLOQUE POLIESTIRENO EXPANDIDO 3.0%

MUESTRA	Ws (Kg)	Wd (Kg)	Wi (Kg)	ABSORCIÓN	DENSIDAD
				(%)	(kg/cm3)
M1	5.84	5.60	3.89	4.26	2871.46
M2	5.80	5.57	3.89	4.13	2922.85
М3	5.82	5.59	3.90	4.14	2909.65
M4	5.84	5.60	3.90	4.28	2889.67
M5	5.84	5.60	3.90	4.20	2890.32
M6	5.80	5.57	3.89	4.13	2918.45

Tabla 59Toma de datos de ensayo de absorción y densidad de bloqueta con reemplazo de 5% de poliestireno expandido

ABSORCIÓN	ABSORCIÓN Y DENSIDAD - BLOQUE POLIESTIRENO EXPANDIDO									
	5.0%									
MUESTRA	MUESTRA Ws (Kg) Wd (Kg) Wi (Kg) ABSORCIÓN DENSIDAI									
Welstan	(11g)	vvu (11g)	vvi (iig)	(%)	(kg/cm3)					
M1	4.359	4.201	2.800	3.76	2695.07					
M2	4.350	4.190	2.804	3.83	2710.27					
M3	4.357	4.191	2.795	3.96	2682.20					
M4	4.353	4.191	2.801	3.85	2702.15					
M5	4.351	4.190	2.790	3.83	2685.21					
M6	4.353	4.189	2.796	3.91	2690.37					

Tabla 60Toma de datos de ensayo de absorción y densidad de bloqueta con reemplazo de 1% de plástico PET reciclado

ABSORCIÓN Y DENSIDAD - BLOQUE PLASTICO PET 1.0%								
MUESTRA	Ws (Kg)	Wd (Kg)	Wi (Kg)	ABSORCIÓN	DENSIDAD			
WICESTRA	ws (Kg)	wu (Kg)	WI (Kg)	(%)	(kg/cm3)			
M1	6.300	6.020	4.751	4.65	3884.38			
M2	6.295	6.016	4.740	4.65	3868.18			
M3	6.302	6.024	4.752	4.60	3888.77			
M4	6.290	6.013	4.751	4.60	3907.85			
M5	6.295	6.019	4.746	4.59	3886.73			

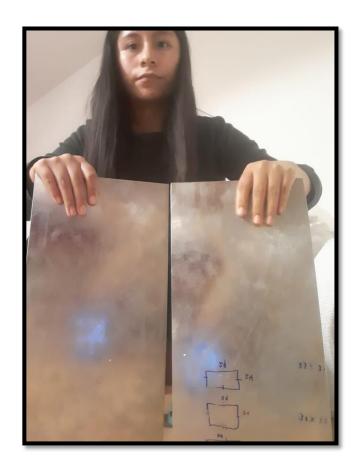
M6	6.294	6.015	4.751	4.63	3898.13
-----------	-------	-------	-------	------	---------

Tabla 61Toma de datos de ensayo de absorción y densidad de bloqueta con reemplazo de 3% de plástico PET reciclado

ABSORC	ABSORCIÓN Y DENSIDAD - BLOQUE PLASTICO PET 3.0%								
MUESTRA	Ws	Wd	Wi	ABSORCIÓN	DENSIDAD				
WIUESIKA	(Kg)	(Kg)	(Kg)	(%)	(kg/cm3)				
M1	6.081	5.821	4.401	4.47	3465.47				
M2	6.100	5.841	4.399	4.44	3432.68				
M3	6.099	5.839	4.397	4.46	3430.18				
M4	6.105	5.841	4.398	4.53	3419.99				
M5	6.115	5.849	4.390	4.55	3390.45				
M6	6.075	5.816	4.400	4.45	3472.27				

Tabla 62Toma de datos de ensayo de absorción y densidad de bloqueta con reemplazo de 5% de plástico PET reciclado

ABSORCIÓN Y DENSIDAD - BLOQUE PLASTICO PET 5.0%								
MUESTRA	Ws (Kg)	Wd (Kg)	Wi (Kg)	ABSORCIÓN	DENSIDAD			
				(%)	(kg/cm3)			
M1	5.901	5.670	4.100	4.08	3148.26			
M2	5.881	5.654	4.100	4.01	3174.32			
M3	5.891	5.660	4.099	4.07	3158.65			
M4	5.882	5.654	4.091	4.03	3156.24			
M5	5.900	5.667	4.090	4.11	3131.17			
M6	5.903	5.661	4.091	4.26	3124.63			


3.7.1.12 Ensayo de conductividad térmica de bloquetas de concreto

Equipos y materiales

• Caja térmica.

- Regla metálica de 60 cm.
- Multímetro digital.
- Termocupla tipo K.
- Procedimiento:
- Se inició con la medición de largo, ancho y altura de las bloquetas de concreto.
- Para la construcción de la caja térmica se basó en la norma ASTM C 117-13, el cual tiene un ambiente interior totalmente aislado.
- Se colocaron los sensores de temperatura a la placa caliente como a la placa fría.
- Luego se colocaron las placas y los especímenes dentro de la caja térmica para iniciar con el calentamiento.
- Finalmente se registraron los datos de temperatura de la placa fría y la placa caliente.

Figura 30Cortado de placas para ensayo de conductividad térmica

Figura 31Procedimiento de ensayo de conductividad térmica de bloquetas de concreto

Tabla 63Toma de datos de ensayo de conductividad térmica de bloqueta patrón

CONDUCTIVIDAD TÉRMICA - BLOQUE PATRÓN										
MUESTRA	M1	M2	M3	M4	M5	M6				
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00				
Altura de bloque de concreto (m)	0.200	0.200	0.200	0.200	0.202	0.199				
Largo de bloque de concreto (m)	0.400	0.400	0.401	0.400	0.401	0.400				
Ancho de bloque de concreto (m)	0.120	0.121	0.120	0.120	0.120	0.120				
Temperatura de placa caliente (°K=°C+275.15)	568.15	565.15	565.15	566.15	569.15	565.15				
Temperatura de placa fría (°K=°C+275.15)	328.15	325.15	329.15	325.15	327.15	321.15				

Tabla 64Toma de datos de ensayo de conductividad térmica de bloqueta con reemplazo de 1% de poliestireno expandido

CONDUCTIVIDAD TÉRMICA - BLOQUE POLIESTIRENO EXPANDIDO										
1.0%										
MUESTRA	M1	M2	M3	M4	M5	M6				
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00				
Altura de bloque de concreto (m)	0.199	0.201	0.200	0.200	0.202	0.200				
Largo de bloque de concreto (m)	0.401	0.402	0.401	0.400	0.400	0.400				
Ancho de bloque de concreto (m)	0.120	0.121	0.121	0.120	0.121	0.120				
Temperatura de placa caliente (°K=°C+275.15)	567.15	567.15	569.15	566.15	569.15	568.15				
Temperatura de placa fría (°K=°C+275.15)	304.15	305.15	309.15	305.15	304.15	303.15				

Tabla 65Toma de datos de ensayo de conductividad térmica de bloqueta con reemplazo de 3% de poliestireno expandido

CONDUCTIVIDAD TÉRMICA - BLOQUE POLIESTIRENO EXPANDIDO										
3.0%										
MUESTRA	M1	M2	M3	M4	M5	M6				
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00				
Altura de bloque de concreto (m)	0.201	0.202	0.199	0.200	0.202	0.200				
Largo de bloque de concreto (m)	0.402	0.400	0.400	0.399	0.401	0.400				
Ancho de bloque de concreto (m)	0.120	0.121	0.120	0.120	0.119	0.119				
Temperatura de placa caliente (°K=°C+275.15)	563.15	564.15	565.15	563.15	566.15	563.15				
Temperatura de placa fría (°K=°C+275.15)	290.15	292.15	289.15	288.15	290.15	292.15				

Tabla 66Toma de datos de ensayo de conductividad térmica de bloqueta con reemplazo de 5% de poliestireno expandido

CONDUCTIVIDAD TÉRMICA - BLOQUE POLIESTIRENO EXPANDIDO									
5.0%									
MUESTRA	M1	M2	M3	M4	M5	M6			
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00			
Altura de bloque de concreto (m)	0.200	0.201	0.200	0.200	0.202	0.199			
Largo de bloque de concreto (m)	0.399	0.401	0.401	0.400	0.401	0.400			
Ancho de bloque de concreto (m)	0.120	0.121	0.119	0.120	0.120	0.120			
Temperatura de placa caliente (°K=°C+275.15)	565.15	566.15	564.15	564.15	564.15	566.15			
Temperatura de placa fría (°K=°C+275.15)	280.15	285.15	284.15	280.15	286.15	283.15			

Tabla 67Toma de datos de ensayo de conductividad térmica de bloqueta con reemplazo de 1% de plástico PET reciclado

CONDUCTIVIDAD TÉRMICA - BLOQUE PLASTICO PET RECICLADO						
1.0%						
MUESTRA	M1	M2	М3	M4	M5	M6
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00
Altura de bloque de concreto (m)	0.199	0.200	0.200	0.202	0.202	0.199
Largo de bloque de concreto (m)	0.399	0.401	0.400	0.400	0.402	0.400
Ancho de bloque de concreto (m)	0.121	0.120	0.120	0.119	0.120	0.121
Temperatura de placa caliente (°K=°C+275.15)	567.15	565.15	565.15	568.15	570.15	569.15

Temperatura de placa fría (°K=°C+275.15)

318.15 317.15 310.15 312.15 315.15 311.15

Tabla 68Toma de datos de ensayo de conductividad térmica de bloqueta con reemplazo de 3% de plástico PET reciclado

CONDUCTIVIDAD TÉRMICA - BLOQUE PLASTICO PET RECICLADO						
3.0%						
MUESTRA	M1	M2	М3	M4	M5	M6
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00
Altura de bloque de concreto (m)	0.200	0.202	0.200	0.200	0.200	0.199
Largo de bloque de concreto (m)	0.400	0.401	0.399	0.401	0.400	0.402
Ancho de bloque de concreto (m)	0.121	0.121	0.120	0.121	0.121	0.120
Temperatura de placa caliente (°K=°C+275.15)	570.15	568.15	570.15	569.15	566.15	569.15
Temperatura de placa fría (°K=°C+275.15)	294.15	293.15	298.15	300.15	290.15	292.15

Tabla 69Toma de datos de ensayo de conductividad térmica de bloqueta con reemplazo de 5% de plástico PET reciclado

CONDUCTIVIDAD TERMICA - BLOQUE PLASTICO PET RECICLADO 5.0%						
MUESTRA	M1	M2	М3	M4	M5	M6
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00
Altura de bloque de concreto (m)	0.199	0.200	0.200	0.199	0.200	0.199
Largo de bloque de concreto (m)	0.400	0.402	0.400	0.400	0.401	0.400
Ancho de bloque de concreto (m)	0.120	0.121	0.120	0.121	0.199	0.121

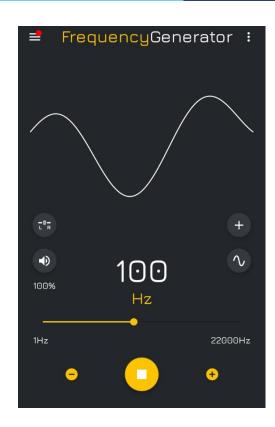
Temperatura de placa caliente $({}^{\circ}K = {}^{\circ}C + 275.15)$ Temperatura de placa fría $({}^{\circ}K = {}^{\circ}C + 275.15)$

564.15 569.15 570.15 567.15 565.15 570.15

285.15 280.15 281.15 281.15 281.15 286.15

3.7.1.13 Ensayo de aislamiento acústico de bloquetas de concreto

Equipos y materiales:


- Caja acústica aislada
- Laptop para emisión de sonido.
- Sonómetro.

Procedimiento:

- En primer lugar, se armó la caja acústica totalmente aislada con espacios para insertar la laptop y el sonómetro.
- La caja acústica consta de 2 ambientes separados por el bloque de concreto, en ambos ambientes se puso el sonómetro para medir el sonido en la parte emisora y receptora.
- Finalmente se cerró la caja y se registraron las mediciones en decibeles.
- Para la emisión de sonido se usó el software generador de sonido Frequency
 Generator y 2 teléfonos celulares los cuales tengan instalado el aplicativo de sonómetro de la empresa Bosch Engineering & Business Solutions®
- En el generador de sonido se va incrementando la frecuencia en Hertz y se procede a hacer la medición con el sonómetro en ambos ambientes. Al encender la fuente de sonido, este enviara una señal sonora en el interior de la sala emisora, midiéndose los niveles de presión sonora expresados en decibeles (dB) para cada frecuencia en ambos ambientes.

Figura 32

Software generador de sonido

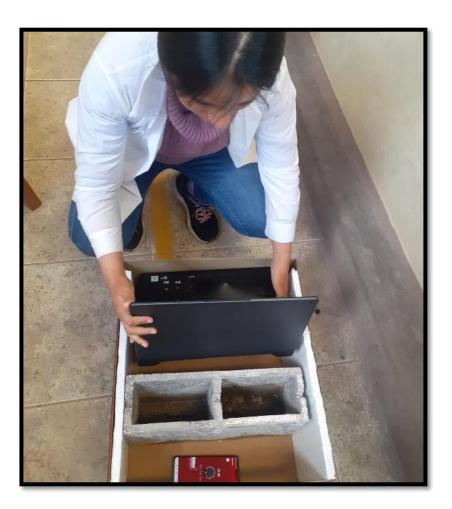


Figura 33 *Aplicativo de sonómetro*

Figura 34 *Ensayo de aislamiento acústico*

Tabla 70Toma de datos de ensayo de aislamiento acústico de bloqueta patrón

AISLAMIENTO ACÚSTICO - BLOQUE PATRÓN					
FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)		
100.00	85.00	68.20			
125.00	97.20	78.30			
160.00	102.50	82.40			
200.00	98.50	81.50			
250.00	90.30	80.20			
315.00	98.50	80.00			
400.00	91.20	71.30			
500.00	98.40	79.40			

630.00	100.40	81.20	
800.00	100.50	90.00	
1000.00	99.50	74.20	
1250.00	104.80	92.40	
1600.00	103.20	90.20	
2000.00	104.50	91.30	
2500.00	105.60	92.40	
3150.00	110.40	93.00	

Tabla 71Toma de datos de ensayo de aislamiento acústico de bloqueta con reemplazo de 1 % de poliestireno expandido

AISLAMIE	ENTO ACÚSTICO - E	BLOQUE POLIESTII	RENO 1.0%
FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)
100.00	91.30	70.00	
125.00	99.80	72.50	
160.00	101.20	76.50	
200.00	100.40	80.10	
250.00	95.30	72.40	
315.00	89.00	69.40	
400.00	98.60	75.50	
500.00	99.40	73.20	
630.00	100.20	79.00	
800.00	100.00	81.10	
1000.00	99.80	73.20	
1250.00	98.60	70.90	
1600.00	97.40	79.20	
2000.00	100.50	80.50	
2500.00	103.00	81.00	
3150.00	105.00	85.00	

Tabla 72Toma de datos de ensayo de aislamiento acústico de bloqueta con reemplazo de 3% de poliestireno expandido

	ENTO ACÚSTICO - E		
FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)
100.00	93.30	61.40	
125.00	98.50	60.50	
160.00	99.40	59.80	
200.00	101.60	65.40	
250.00	100.50	66.20	
315.00	99.90	60.10	
400.00	100.20	64.80	
500.00	98.00	58.60	
630.00	102.40	64.20	
800.00	103.90	59.90	
1000.00	99.50	61.00	
1250.00	102.00	62.90	
1600.00	105.80	63.00	
2000.00	105.60	59.80	
2500.00	99.80	60.40	
3150.00	100.90	62.50	

Tabla 73Toma de datos de ensayo de aislamiento acústico de bloqueta con reemplazo de 5% de poliestireno expandido

AISLAMIENTO ACÚSTICO - BLOQUE POLIESTIRENO 5.0%					
FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)		
100.00	82.40	53.40			
125.00	88.90	50.80			
160.00	90.30	50.60			
200.00	86.60	49.60			
250.00	91.00	48.50			
315.00	94.50	50.90			
400.00	90.40	51.10			

500.00	98.60	48.80	
630.00	100.20	54.20	
800.00	99.80	47.90	
1000.00	101.50	55.10	
1250.00	100.90	51.50	
1600.00	99.90	49.50	
2000.00	102.30	54.50	
2500.00	104.10	50.90	
3150.00	100.60	51.10	

Tabla 74Toma de datos de ensayo de aislamiento acústico de bloqueta con reemplazo de 1% de plástico PET reciclado

FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)
100.00	90.10	60.20	
125.00	82.50	68.80	
160.00	79.90	64.90	
200.00	84.80	65.60	
250.00	89.40	74.00	
315.00	90.50	70.40	
400.00	91.20	70.80	
500.00	89.90	65.60	
630.00	98.00	72.50	
800.00	100.20	78.30	
1000.00	96.70	79.20	
1250.00	100.80	80.70	
1600.00	101.40	81.30	
2000.00	100.90	79.80	
2500.00	102.80	80.40	
3150.00	100.30	81.90	

Tabla 75Toma de datos de ensayo de aislamiento acústico de bloqueta con reemplazo de 3% de plástico PET reciclado

FREC (Hz)	ENTO ACÚSTICO - I Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)
100.00	86.40	62.10	
125.00	89.30	65.40	
160.00	88.80	60.20	
200.00	94.60	61.20	
250.00	98.00	63.50	
315.00	88.40	64.30	
400.00	95.60	69.40	
500.00	96.60	68.60	
630.00	99.10	70.20	
800.00	100.40	69.90	
1000.00	99.50	60.40	
1250.00	100.50	72.40	
1600.00	102.60	75.50	
2000.00	105.10	70.40	
2500.00	99.80	70.80	
3150.00	100.80	71.50	

Tabla 76Toma de datos de ensayo de aislamiento acústico de bloqueta con reemplazo de 5% de plástico PET reciclado

AISLAMIENTO ACÚSTICO - BLOQUE PLASTICO PET 5.0%					
FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)		
100.00	78.90	51.40			
125.00	80.40	58.30			
160.00	92.10	60.40			
200.00	85.60	53.50			
250.00	86.70	58.40			
315.00	93.20	59.70			
400.00	90.00	62.80			

5 00.00	
500.00 96.40 60.40	
630.00 96.30 60.80	
800.00 100.10 60.10	
1000.00 99.50 59.40	
1250.00 96.30 53.50	
1600.00 100.40 59.30	
2000.00 102.80 60.90	
2500.00 99.90 70.00	
3150.00 105.30 71.40	

3.7.1.14 Ensayo de resistencia a la compresión de bloquetas de concreto

Equipos y materiales:

- Regla metálica de 60 cm.
- Equipo de compresión axial.
- Placas de acero.

Procedimiento:

- Primero se inició con el refrentado de las bloquetas que consta de yeso, cemento y agua y se dejó secar por 24 horas.
- Antes de iniciar con el ensayo de compresión de los bloques, se tomaron las medidas de largo y altura.
- Finalmente se colocaron los bloques alineados de forma vertical en el centro de la máquina de ensayo.

Figura 35 *Refrentado de bloques*

Figura 36 *Ensayo de resistencia a la compresión a los bloques de concreto*

Figura 37Colocación de bloques en la compresión a los bloques de concreto

Figura 38 *Ruptura de bloques de concreto*

Tabla 77Toma de datos de ensayo de compresión de bloqueta patrón a los 7 días

				BLOQUE	PATRÓN							
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 7 DÍAS												
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa				
M1	400	120	48000	6800								
M2	400	120	48048	6950								
M3	400	119	47600	6300								
M4	400	120	47906	6640								
M5	400	120	48012	6500								
M6	400	120	47960	6580								

Tabla 78Toma de datos de ensayo de compresión de bloqueta con reemplazo de 1% de poliestireno expandido a los 7 días

		F	BLOQUE	POLIEST	TRENO 1	.0%							
	RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 7 DÍAS												
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa					
M1	400	120	48036	4080.00									
M2	400	121	48412	3900.00									
M3	400	121	48400	4350.00									
M4	400	120	48024	3770.00									
M5	400	119	47612	4130.00									
M6	400	120	48012	3600.00									

Tabla 79

Toma de datos de ensayo de compresión de bloqueta con reemplazo de 3% de poliestireno expandido a los 7 días

	BLOQUE POLIESTIRENO 3.0%												
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 7 DÍAS													
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa					
M1	400	119	47624	2800.00									
M2	400	122	48812	2570.00									
M3	400	121	48412	2700.00									
M4	400	119	47600	2790.00									
M5	400	120	48024	2660.00									
M6	400	121	48412	2450.00									

Tabla 80Toma de datos de ensayo de compresión de bloqueta con reemplazo de 5% de poliestireno expandido a los 7 días

		F	BLOQUE	POLIEST	TRENO 5	.0%						
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 7 DÍAS												
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa				
M1	400	122	48849	2250.00								
M2	400	120	48024	1930.00								
M3	400	121	48400	2010.00								
M4	400	121	48212	1890.00								
M5	400	121	48424	2300.00								
M6	400	121	48520	1990.00								

Tabla 81Toma de datos de ensayo de compresión de bloquetas con reemplazo de 1% de plástico PET reciclado a los 7 días

	BLOQUE PLASTICO PET 1.0%									
	RESIST	ENCIA A	LA COM	PRESION	DEL BLO	OQUE A L	OS 7 DÍAS			
			AREA	CARGA	CARGA	ECELIED70	ESFUERZO	PROMEDIO		
MUESTRA	LARGO	ANCHO		MAXIMA	MAXIMA					
			BRUTA	(kgf)	Pmax (KN)	Kgf/m2	(f'b) Mpa	(f'b) Mpa		

M1	400	121	48448	4050.00
M2	400	121	48360	4550.00
M3	400	122	48837	4190.00
M4	400	121	48442	4360.00
M5	400	121	48400	4400.00
M6	400	122	48784	4450.00

Tabla 82Toma de datos de ensayo de compresión de bloquetas con reemplazo de 3% de plástico PET reciclado a los 7 días

		I	BLOQUE	PLASTIC	CO PET 3.	0%						
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 7 DÍAS												
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa				
M1	400	120	48024	3010.00								
M2	400	121	48400	3050.00								
M3	400	121	48412	2900.00								
M4	400	120	48024	2800.00								
M5	400	119	47624	2750.00								
M6	400	120	48000	3015.00								

Tabla 83Toma de datos de ensayo de compresión de bloquetas con reemplazo de 5% de plástico PET reciclado a los 7 días

	BLOQUE PLASTICO PET 5.0%												
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 7 DÍAS													
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa					
M1	400	120	48000	2100.00									
M2	400	121	48224	2380.00									
M3	400	121	48448	2250.00									
M4	400	121	48412	2300.00									

M5	400	120	48024	1900.00
M6	400	120	47926	2200.00

Tabla 84Toma de datos de ensayo de compresión de bloquetas patrón a los 14 días

			В	LOQUE PA	TRÓN							
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 14 DÍAS												
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa				
M1	400	119	47600	9750								
M2	400	119	47624	9540								
M3	400	120	48012	9710								
M4	400	120	48012	9580								
M5	400	120	48012	9620								
M6	400	120	48000	9670								

Tabla 85Toma de datos de ensayo de compresión de bloquetas con reemplazo de 1% de poliestireno expandido a los 14 días

			BLOQU	E POLIEST	TIRENO 1.	0%						
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 14 DÍAS												
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa				
M1	400	119	47600	6950								
M2	400	119	47600	7150								
M3	400	119	47612	7030								
M4	400	120	48000	7120								
M5	400	121	48412	7080								
M6	400	121	48412	6970								

Tabla 86Toma de datos de ensayo de compresión de bloquetas con reemplazo de 3% de poliestireno expandido a los 14 días

	BLOQUE POLIESTIRENO 3.0%										
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 14 DÍAS											
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa			
M1	400	120	48024	6670.00							
M2	400	121	48412	6500.00							
M3	400	120	48012	6580.00							
M4	400	120	48012	6590.00							
M5	400	120	48000	6600.00							
M6	400	121	48412	6530.00							

Tabla 87Toma de datos de ensayo de compresión de bloquetas con reemplazo de 5% de poliestireno expandido a los 14 días

	BLOQUE POLIESTIRENO 5.0% RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 14 DÍAS										
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa			
M1	400	120	48012	6290.00				,			
M2	400	120	48000	6335.00							
M3	400	120	48080	6200.00							
M4	400	120	48040	6310.00							
M5	400	120	48052	6270.00							
M6	400	120	48000	6300.00							

Tabla 88Toma de datos de ensayo de compresión de bloquetas con reemplazo de 1% de plástico PET reciclado a los 14 días

			BLOQU	JE PLASTIC	CO PET 1.0)%					
	RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 14 DÍAS										
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) 14 días	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa			
M1	400	118	47224	7300.00							
M2	400	119	47624	7270.00							
M3	400	118	47200	7350.00							
M4	400	118	47212	7250.00							
M5	400	119	47612	7400.00							
M6	400	120	48000	7390.00							

Tabla 89Toma de datos de ensayo de compresión de bloquetas con reemplazo de 3% de plástico PET reciclado a los 14 días

	BLOQUE PLASTICO PET 3.0% RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 14 DÍAS										
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) 14 días	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa			
M1	400	119	47600	7010.00							
M2	400	120	48024	7120.00							
M3	400	120	48000	7090.00							
M4	400	120	48012	7180.00							
M5	400	120	48000	7070.00							
M6	400	119	47612	7100.00							

Tabla 90Toma de datos de ensayo de compresión de bloquetas con reemplazo de 5% de plástico PET reciclado a los 14 días

	BLOQUE PLASTICO PET 5.0% RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 14 DÍAS										
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa			
M1	400	120	48012	6970							
M2	400	121	48412	6960							
M3	400	120	48024	6880							
M4	400	120	48000	6940							
M5	400	121	48412	6900							
M6	400	120	48024	6910							

Tabla 91Toma de datos de ensayo de compresión de bloquetas patrón a los 28 días

			Bl	LOQUE PA	TRÓN						
	RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS										
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa			
M1	400	121	48424	13590							
M2	400	120	48012	13400							
M3	400	121	48424	13760							
M4	400	120	48000	13970							
M5	400	120	48000	14020							
M6	400	120	48000	13750							

Tabla 92

Toma de datos de ensayo de compresión de bloquetas con reemplazo de 1% de poliestireno expandido a los 28 días

BLOQUE POLIESTIRENO 1.0%	
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS	

MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa
M1	400	121	48400	11100				
M2	400	121	48400	11200				
M3	400	120	48012	10180				
M4	400	121	48400	11090				
M5	400	120	48012	11110				
M6	400	120	48012	11020				

Tabla 93Toma de datos de ensayo de compresión de bloquetas con reemplazo de 3% de poliestireno expandido a los 28 días

	BLOQUE POLIESTIRENO 3.0% RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS										
-											
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa			
M1	400	120	48012	10050.00							
M2	400	120	48012	9990.00							
M3	400	121	48400	10100.00							
M4	400	120	48012	10070.00							
M5	400	121	48400	9890.00							
M6	400	121	48400	9970.00							

Tabla 94Toma de datos de ensayo de compresión de bloquetas con reemplazo de 5% de poliestireno expandido a los 28 días

	BLOQUE POLIESTIRENO 5.0%										
	RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS										
MUESTRA	MUESTRA LARGO ANCHO AREA BRUTA CARGA CARGA MAXIMA MAXIMA (kgf) Pmax (KN) CARGA CARGA ESFUERZO ESFUERZO PROMEDIO Kgf/m2 (f'b) Mpa (f'b) Mpa										
M1	400	121	48412	9790.00							
M2	400	120	48000	9840.00							

M3	400	120	48000	9750.00
M4	400	120	48000	9840.00
M5	400	120	48024	9950.00
M6	400	120	48024	9880.00

Tabla 95Toma de datos de ensayo de compresión de bloquetas con reemplazo de 1% de plástico
PET a los 28 días

	BLOQUE PLASTICO PET 1.0% RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS										
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa			
M1	400	121	48424	12030.00							
M2	400	119	47624	11970.00							
M3	400	119	47600	12080.00							
M4	400	121	48412	11990.00							
M5	400	119	47600	11860.00							
M6	400	121	48400	11900.00							

Tabla 96Toma de datos de ensayo de compresión de bloquetas con reemplazo de 3% de plástico PET a los 28 días

	BLOQUE PLASTICO PET 3.0%								
	RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS								
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa	
M1	400	119	47600	10750.00					
M2	400	121	48424	10490.00					
M3	400	118	47212	10680.00					
M4	400	120	48024	10700.00					
M5	400	120	48012	10540.00					
M6	400	120	48000	10560.00					

Tabla 97Toma de datos de ensayo de compresión de bloquetas con reemplazo de 5% de plástico PET a los 28 días

	BLOQUE PLASTICO PET 5.0%									
	RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS									
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa		
M1	400	121	48412	9790						
M2	400	119	47600	9910						
M3	400	120	48000	9780						
M4	400	121	48412	9890						
M5	400	121	48424	9900						
M6	400	120	48024	9870						

3.7.2. Procesamiento de datos

Ensayos realizados a los agregados

3.7.2.1 Cantidad de Material Fino que pasa el tamiz de 75 μ m (N° 200) por lavado

Cálculos:

Para realizar el cálculo de material fino que pasa el tamiz 75 μ m (N° 200) por lavado se utilizó la siguiente formula:

$$A = \frac{(W - Wo) * 100}{Wo}$$

Donde:

A = Porcentaje del material fino que pasa el tamiz de $N^{\circ}200$ (75 µm) por lavado

W = Peso seco de la muestra original, en gramos.

Wo = Peso seco de la muestra después de lavado, en gramos.

Tabla 98Procesamiento de datos del ensayo cantidad de material fino que pasa el tamiz de 75 μ m (N^o 200) por lavado de Arena Pisaq

DETERMINACIÓN DE FINOS POR LAVADO								
CANTERA:	ERA: Arena Pisaq							
Dozoula si śr	Muestra		Muestra	Muestra	Timidad			
Descripción	Símbolo	01	02	03	Unidad			
Peso de la muestra seca antes de lavado	W	1530.50	1510.50	1540.30	gr			
P.M. Secada al horno después de lavado	Wo	1484.60	1469.40	1492.46	gr			
Perdida por lavado	W-Wo	45.90	41.10	47.84	gr			
Porcentaje que pasa el tamiz N° 200		3.00	2.72	3.11	%			
Porcentaje que pasa el tamiz N° 200								
en promedio			2.94		%			

Tabla 99Procesamiento de datos del ensayo cantidad de material fino que pasa el tamiz de 75 μ m (N^o 200) por lavado de Arena Cunyac

DETERMINACIÓN DE FINOS POR LAVADO								
CANTERA: Arena Cunyac								
		Muestra	Muestra	Muestra				
Descripción	Símbolo	01	02	03	Unidad			
Peso de la muestra seca antes de lavado	W	1500.00	1448.20	1440.30	gr			
P.M. Secada al horno después de lavado	Wo	1464.60	1409.40	1402.46	gr			
Perdida por lavado	W-Wo	35.40	38.80	37.84	gr			
Porcentaje que pasa el tamiz N° 200		2.36	2.68	2.63	%			
Porcentaje que pasa el tamiz N° 200								
en promedio			2.56		%			

Tabla 100 $Procesamiento \ de \ datos \ del \ ensayo \ cantidad \ de \ material \ fino \ que \ pasa \ el \ tamiz \ de \ 75 \ \mu m$ $(N^o\ 200)$ por lavado \ del \ confitillo

DETERMINACIÓN DE FINOS POR LAVADO

CANTERA:		C			
		Muestra	Muestra	Muestra	
Descripción	Símbolo	01	02	03	Unidad
Peso de la muestra seca antes de lavado	W	1230.50	1345.80	1340.00	gr
P.M. Secada al horno después de					
lavado	Wo	1210.90	1329.40	1320.46	gr
Perdida por lavado	W-Wo	19.60	16.40	19.54	gr
Porcentaje que pasa el tamiz N° 200		1.59	1.22	1.46	%
Porcentaje que pasa el tamiz N° 200					
en promedio			1.42		%

3.7.2.2.Contenido de Humedad

Cálculos:

$$W = \frac{Peso\ humedo\ de\ la\ muestra - Peso\ seco\ de\ la\ muestra}{Peso\ seco\ de\ la\ muestra}$$

Tabla 101Procesamiento de datos del ensayo de contenido de humedad de la arena

ENSAYO DE CONTENIDO DE HUMEDAD								
CONTENIDO DE HUMEDAD ARENA								
Símbolo	Und	Muestra	Muestra	Muestra				
Simbolo	Onu	1	2	3				
Mcaw	gr	1000.00	1000.00	1000.00				
Mcas	gr	976.80	976.10	977.50				
Mc	gr	346.80	308.00	293.60				
Mw	gr	23.20	23.90	22.50				
Ms	gr	630.00	668.10	683.90				
W	%	3.68	3.58	3.29				
%			3.52					
	Símbolo Meaw Meas Meas Me Mw Ms	E HUMEDAD A Símbolo Und Mcaw gr Mcas gr Mc gr Mw gr Mw gr Ms gr W %	E HUMEDAD ARENA Símbolo Und Muestra 1 Mcaw gr 1000.00 Mcas gr 976.80 Mc gr 346.80 Mw gr 23.20 Ms gr 630.00 W % 3.68	E HUMEDAD ARENA Símbolo Und Muestra 1 Muestra 2 Mcaw gr 1000.00 1000.00 Mcas gr 976.80 976.10 Mc gr 346.80 308.00 Mw gr 23.20 23.90 Ms gr 630.00 668.10 W % 3.68 3.58				

Tabla 102Procesamiento de datos del ensayo de contenido de humedad del confitillo

ENSAYO DE CONTENIDO DE HUMEDAD	
CONTENIDO DE HUMEDAD CONFITILLO	

Datos	- Símbolo	Und	Muestra	Muestra	Muestra
			1	2	3
Peso recipiente más agregado húmedo	Mcaw	gr	2325.50	2336.50	2360.40
Peso del recipiente más el agregado seco	Mcas	gr	2283.80	2294.60	2318.10
Peso del recipiente	Mc	gr	642.00	660.40	661.20
Peso del agua	Mw	gr	683.70	702.30	703.50
Peso de la muestra seca	Ms	gr	1641.80	1634.20	1656.90
CONTENIDO DE HUMEDAD	W	%	2.54	2.56	2.55
CONTENIDO DE HUMEDAD	%			2.55	

3.7.2.3. Análisis granulométrico de agregados gruesos y finos

Cálculos:

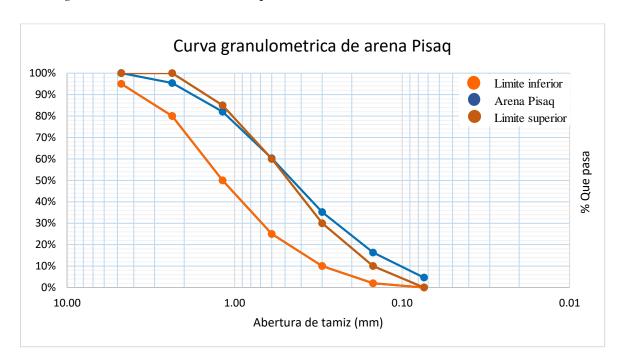

 $Modulo \ de \ fineza \\ = \frac{\sum \% \ Retenido \ Acumulado \ Tamiz \ N^{\circ} \ 4, 8, 16, 30, 50 \ y \ 100}{100}$

Tabla 103Procesamiento de datos del ensayo granulometría de arena Pisaq

	Apertura	Arena	Pisaq - Peso de	muestra ini	cial 1373.17 g	5
TAMIZ	del tamiz (mm)	Peso retenido (gr)	Peso correg retenido (gr)	% Retenido	% Retenido Acumulado	% Que pasa
# 4	4.75	1.67	1.94	0.14	0.14	100
#8	2.36	61.43	61.71	4.49	4.64	95.36
# 16	1.18	182.90	183.18	13.34	17.98	82.02
# 30	0.60	298.87	299.14	21.78	39.76	60.24
# 50	0.30	343.87	344.14	25.06	64.82	35.18
# 100	0.15	258.77	259.04	18.86	83.69	16.31
# 200	0.07	160.00	160.28	11.67	95.36	4.64
Fondo	0.00	63.73	63.73	4.64	100.00	0.00
Peso Mue	stra Final (gr)	1371.23	1373.17			
Módulo	o de fineza			2.11		

Figura 39Curva granulométrica de arena Pisaq

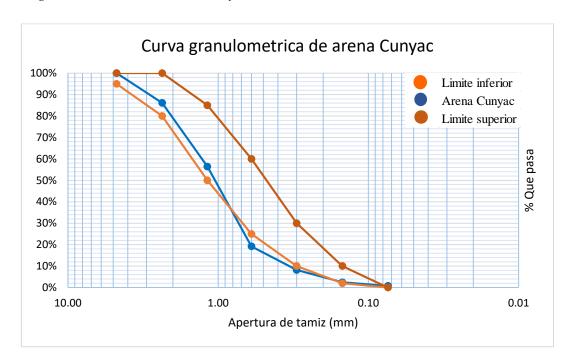


Tabla 104Procesamiento de datos del ensayo granulometría de arena Cunyac

ENSA	ENSAYO DE GRANULOMETRÍA DE AGREGADO FINO - ARENA CUNYAC								
	A 4 11	Arena Cunyac - Peso de muestra inicial 1038.80 g							
TAMIZ	Apertura del tamiz (mm)	Peso retenido (gr)	Peso correg retenido (gr)	% Retenido	% Retenido Acumulado	% Que pasa			
# 4	4.75	15.27	15.45	1.49	1.49	100			
# 8	2.36	128.57	128.75	12.39	13.88	86.12			
# 16	1.18	308.40	308.58	29.71	43.59	56.41			
# 30	0.60	386.25	386.43	37.20	80.79	19.21			
# 50	0.30	114.47	114.65	11.04	91.82	8.18			
# 100	0.15	59.40	59.58	5.74	97.56	2.44			
# 200	0.07	17.43	17.62	1.70	99.26	0.74			
Fondo	0.00	7.73	7.73	0.74	100.00	0.00			
Peso Mu	estra Final (gr)	1037.52	1038.80						
Módu	lo de fineza			3.29					

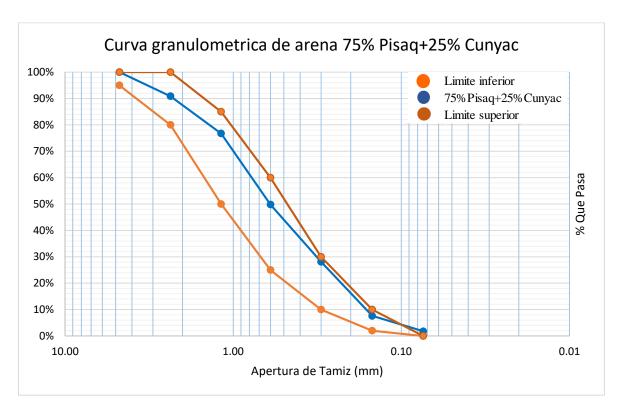

Figura 40Curva granulométrica de arena Cunyac

Tabla 105Procesamiento de datos del ensayo granulometría de arena 75% Pisaq + 25% Cunyac

	ENSAYO D	E GRANUL	OMETRÍA 75	% PISAQ + 25	5% CUNYAC		
		Arena 75%	Pisaq + 25% Cu	ınyac - Peso de	muestra inicial	1173.23	
	Apertura	${f g}$					
TAMIZ	del tamiz (mm)	Peso retenido (gr)	Peso correg retenido (gr)	% Retenido	% Retenido Acumulado	% Que pasa	
# 4	4.75	16.90	17.15	1.46	1.46	100	
#8	2.36	89.70	89.95	7.67	9.13	90.87	
# 16	1.18	165.67	165.92	14.14	23.27	76.73	
# 30	0.60	315.67	315.92	26.93	50.20	49.80	
# 50	0.30	254.27	254.52	21.69	71.89	28.11	
# 100	0.15	240.37	240.62	20.51	92.40	7.60	
# 200	0.07	68.13	68.38	5.83	98.23	1.77	
Fondo	0.00	20.77	20.77	1.77	100.00	0.00	
	estra Final (gr)	1171.47	1173.23				
Módulo	de fineza			2.48			

Figura 41Curva granulométrica de arena 75% Pisaq + 25% Cunyac

Según la tabla N°103 de datos granulométrico de la arena Pisaq no cumple con lo establecido según la Norma Técnica E 0.70 ya que al observar la curva granulométrica el porcentaje que pasa está fuera de los límites máximos y mínimos.

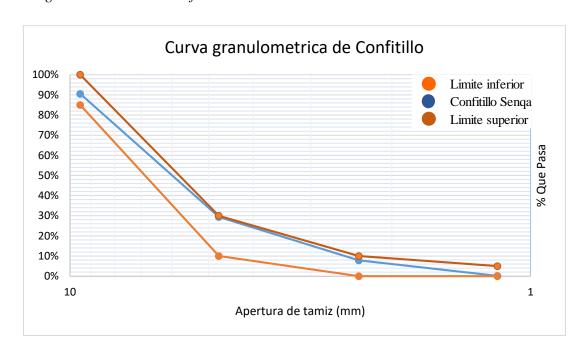

Debido a esto se procedió a combinar las canteras de Pisaq y Cunyac probando en diferentes porcentajes hasta obtener una arena que cumpla con los requisitos establecidos en la norma E-070, por lo cual se obtuvo como resultado una arena con 75% de Pisaq y 25% de Cunyac como se observa en la tabla N° 105.

Tabla 106Procesamiento de datos del ensayo granulometría de Confitillo

ENSAYO DE GRANULOMETRÍA DE CONFITILLO Confitillo Senqa - Peso de muestra inicial : 1070.40 g							
TAMIZ	del tamiz (mm)	Peso retenido (gr)	Peso correg retenido (gr)	% Retenido	% Retenido Acumulado	% Que pasa	
#1/2	0	0.00	0.00	0.00	0.00	100.00	
#3/8	9.5	101.60	101.84	9.51	9.51	90.49	
# 4	4.75	653.67	653.91	61.09	70.60	29.40	
#8	2.36	230.07	230.31	21.52	92.12	7.88	

# 16	1.18	82.30	82.54	7.71	99.83	0.17
Fondo	0.00	1.80	1.80	0.17	100.00	0.00
Peso Muestra Final (gr)		1069.43	1070.40			
Módulo de fineza			2.72			

Figura 42Curva granulométrica de confitillo

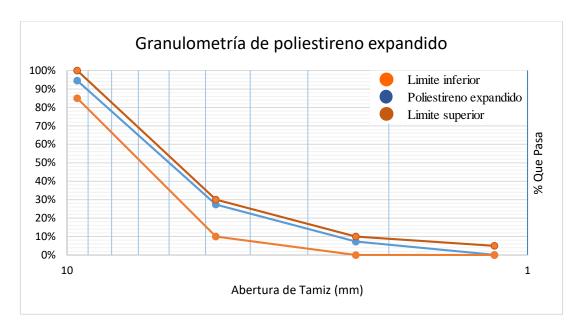


Tabla 107Procesamiento de datos del ensayo granulometría de poliestireno expandido

TAMIZ	Apertura del tamiz (mm)	Poliestireno expandido - Peso de muestra inicial : 1015.67 g					
		Peso retenido (gr)	Peso correg retenido (gr)	% Retenido	% Retenido Acumulado	% Que pasa	
#1/2		0.00	0.00	0.00	0.00	100.00	
#3/8	9.5	55.13	55.34	5.45	5.45	94.55	
# 4	4.75	682.00	682.21	67.17	72.62	27.38	
#8	2.36	203.80	204.01	20.09	92.70	7.30	
# 16	1.18	73.30	73.51	7.24	99.94	0.06	
Fondo	0.00	0.60	0.60	0.06	100.00	0.00	
Peso Muestra Final (gr)		1014.83	1015.67				
Módulo de fineza			<u> </u>	2.71	·		

Figura 43Curva granulométrica de poliestireno expandido

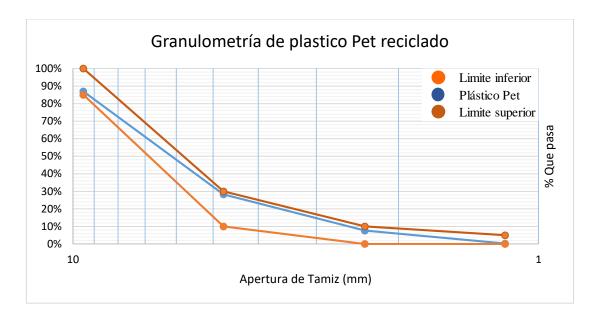


Tabla 108Procesamiento de datos del ensayo granulometría de plástico Pet reciclado

TAMIZ	Apertura del tamiz (mm)	Plástico Pet - Peso de muestra inicial: 989.73 g					
		Peso retenido (gr)	Peso correg retenido (gr)	% Retenido	% Retenido Acumulado	% Que pasa	
#1/2		0.00	0.00	0.00	0.00	100.00	
#3/8	9.5	128.67	129.04	13.04	13.04	86.96	
# 4	4.75	580.43	580.81	58.68	71.72	28.28	
# 8	2.36	203.87	204.24	20.64	92.36	7.64	
# 16	1.18	72.73	73.11	7.39	99.74	0.26	
Fondo	0.00	2.53	2.53	0.26	100.00	0.00	
Peso Muestra Final (gr) 93		988.23	989.73				
Módulo de fineza			2.77				

Figura 44Curva granulométrica de plástico Pet reciclado

3.7.2.4. Gravedad específica y absorción de los agregados

Cálculos:

Para determinar la gravedad o peso específico y absorción de los agregados se determinó mediante las siguientes formulas:

$$Pem = \frac{A}{B + S - C}$$

Donde:

Pem: Peso especifica de la masa, (gr/cm3)

A = Peso de la muestra seca en el aire, (gr)

B = Peso de la muestra saturada superficialmente seca en el aire, (gr)

C = Peso en el agua de la muestra saturada, (gr)

S = Masa de la muestra de saturado superficialmente seca, (gr)

Peso específico de masa saturada con superficie seca (Pesss)

$$Pesss = \frac{B}{(B-C)}$$

Peso específico aparente (Pea)

$$Pea = \frac{A}{(A-C)}$$

Absorción (Ab)

$$Ab = \frac{(B-A)}{A} * 100$$

Tabla 109Procesamiento de datos del ensayo de Peso específico de la arena

ENSAYO DE PESO ESPECIFICO								
PESO ESPECIFICO DE LA ARENA 75% PISAQ 25% CUNYAC								
Datos del ensayo	Símbolo	Und	Muestra 1	Muestra 2	Muestra 3			
Peso del material superficialmente seco	S	gr	500.00	500.00	500.00			
Peso del picnómetro más agua	В	gr	646.90	647.80	647.40			
Peso del picnómetro más agua más muestra	C	gr	953.90	955.30	955.80			
Peso del material seco a horno	A	gr	493.40	493.60	493.51			
PESO ESPECIFICO DE LA ARENA PESO ESPECIFICO DE LA ARENA	Pem	g/cm3	2.56	2.56	2.58			
SATURADA SUPERFICIALMENTE SECA	Pesss	g/cm3	2.59	2.60	2.61			
PESO ESPECIFICO APARENTE	Pea	g/cm3	2.65	2.65	2.67			
PORCENTAJE DE ABSORCIÓN	ab	%	1.34	1.30	1.32			
PESO ESPECIFICO DE LA AREN	I A	g/cm3		2.57				
ABSORCIÓN		%		1.32				

Tabla 110Procesamiento de datos del ensayo de Peso específico del confitillo

ENSAYO DE PESO ESPECIFICO								
PESO ESPECIFICO DEL CONFITILLO								
Datos del ensayo	Símbolo	Und	Muestra 1	Muestra 2	Muestra 3			
Peso de la muestra superficialmente seca	В	gr	2120.50	2305.30	2300.40			
Peso de la muestra superficialmente seca sumergida	C	gr	1340.80	1488.10	1490.10			
Peso de la muestra seca al horno	A	gr	2099.00	2280.20	2275.10			
PESO ESPECIFICO DEL CONFITILLO	Pem	gr/cm3	2.69	2.79	2.81			
PESO ESPECIFICO DEL CONFITILLO SATURADA SUPERFICIALMENTE SECA	Pesss	gr/cm3	2.72	2.82	2.84			
PESO ESPECIFICO APARENTE	Pea	gr/cm3	2.77	2.88	2.90			
PORCENTAJE DE ABSORCIÓN	Ab	%	1.02	1.10	1.11			
PESO ESPECIFICO DEL CONFITI	LLO	g/cm3		2.76				

ABSORCIÓN

%

1.08

3.7.2.5. Peso unitario de los agregados

Cálculos:

Para determinar el peso unitario suelto y compactado de los agregados se utilizó la siguiente formula:

$$M = \frac{G - T}{V}$$

Donde:

M = Peso unitario del agregado, (kg/m3)

G = Peso del recipiente de medida más el agregado, (kg)

T = Peso del recipiente de medida, (kg)

V = Volumen del recipiente de medida, (m3)

Tabla 111Procesamiento de datos del ensayo de Peso unitario suelto de la arena

ENSAYO DE PESO UNITARIO SUELTO Y COMPACTADO								
PESO UNITARIO SUELTO DE LA ARENA 75% PISAQ 25% CUNYAC								
Datos del ensayo	Símbolo	Und	Muestra 1	Muestra 2	Muestra 3			
Peso de la muestra suelta más recipiente	G	gr	5595.00	5640.00	5650.00			
Peso de la muestra suelta		gr	1425.00	1405.00	1375.00			
Peso del recipiente	T	gr	4170.00	4235.00	4275.00			
Volumen del molde	V	cm3	958.22	958.22	958.22			
Altura	Н	cm	11.50	11.70	11.70			
Diámetro	D	cm	10.30	10.30	10.30			
PESO UNITARIO SUELTO	M	gr/cm3	1.49	1.47	1.43			
PESO UNITARIO SUELTO	M	kg/m3	1487.14	1466.26	1434.95			
PESO UNITARIO SUELTO	M	kg/m3		1462.78				

Tabla 112Procesamiento de datos del ensayo de Peso unitario compactado de la arena

ENSAYO DE PESO UNITARIO SUELTO Y COMPACTADO

PESO UNITARIO COMPACTADO DE LA ARENA 75% PISAO 25% CUNTA	MPACTADO DE LA ARENA 75% PISAQ 25% CUNY	YAC
--	---	-----

Datos del ensayo	Símbolo	Und	Muestra 1	Muestra 2	Muestra 3
Peso de la muestra compactada más recipiente	G	gr	5860.00	5915.00	5975.00
Peso de la muestra compactada		gr	5785.00	5783.80	5786.00
Peso del recipiente	T	gr	4130.00	4130.00	4130.00
Volumen del molde	V	cm3	958.22	958.22	958.22
Altura	H	cm	11.50	11.70	11.70
Diámetro	D	cm	10.30	10.30	10.30
PESO UNITARIO COMPACTADO	M	gr/cm3	1.81	1.86	1.93
PESO UNITARIO COMPACTADO	M	kg/m3	1805.43	1862.83	1925.45
PESO UNITARIO COMPACTADO	M	kg/m3		1864.57	

Tabla 113Procesamiento de datos del ensayo de Peso unitario suelto del confitillo

ENSAYO DE PESO UNITARIO SUELTO Y COMPACTADO								
PESO UNITARIO SUELTO DEL CONFITILLO								
			Muestra	Muestra	Muestra			
Datos del ensayo	Símbolo	Und	1	2	3			
Peso de la muestra suelta más recipiente	G	gr	5435.00	5440.80	5440.10			
Peso de la muestra suelta		gr	1305.00	1308.30	1307.10			
Peso del recipiente	T	gr	4130.00	4132.50	4133.00			
Volumen del molde	V	cm3	958.22	958.22	958.22			
Altura	Н	cm	11.50	11.50	11.50			
Diámetro	D	cm	10.30	10.30	10.30			
PESO UNITARIO SUELTO	M	gr/cm3	1.36	1.37	1.36			
PESO UNITARIO SUELTO	M	kg/m3	1361.91	1365.34	1364.09			
PESO UNITARIO SUELTO	M	kg/m3		1363.78				

Tabla 114Procesamiento de datos del ensayo de Peso unitario compactado del confitillo

ENSAYO DE PESO UNITARIO SUELTO Y COMPACTADO

PESO UNITARIO COMPACTADO DEL CONFITILLO								
			Muestra	Muestra	Muestra			
Datos del ensayo	Símbolo	Und	1	2	3			
Peso de la muestra compactada más	~		5685.00	5683.00	5685.00			
recipiente	G	gr						
Peso de la muestra compactada		gr	5785.00	5783.80	5786.00			
Peso del recipiente	T	gr	4130.00	4130.00	4130.00			
Volumen del molde	V	cm3	958.22	958.22	958.22			

Altura	Н	cm	11.50	11.50	11.50
Diámetro	D	cm	10.30	10.30	10.30
PESO UNITARIO COMPACTADO	M	gr/cm3	1.62	1.62	1.62
PESO UNITARIO COMPACTADO	M	kg/m3	1622.80	1620.71	1622.80
PESO UNITARIO COMPACTADO	M	kg/m3		1622.10	

3.7.2.6. Diseño de bloquetas de concreto

- Para la realización del diseño de bloquetas de concreto se utilizó la norma ACI 211.
- Luego de los ensayos realizados a los agregados previamente se procedió con la realización del diseño de mezcla siguiendo los pasos establecidos en la norma ACI 211.
- Para este diseño se realizó con la consistencia seca, debida a que el tipo de vibración utilizada en muy alto.

Tabla 115Asentamientos recomendados para los tipos de consistencia

CONSISTENCIA	ASENTAMIENTO
Seca	0" a 2"
Plástica	3" a 4"
Fluida	≥ 5"

Fuente: (ACI, 2011)

• Para determinar la cantidad de agua según la tabla de Volumen unitario de agua se tomó en cuenta el tamaño máximo nominal del agregado en este caso es de 3/8".

Tabla 116 *Volumen unitario de agua*

Asentamiento	Agua, e	en m3, pa			aáx. nomina cia indicado		regado	grueso
	3/8"	1/2"	3/4"	1"	1 1/2"	2"	3"	6"
		Con	creto sin	aire incor	porado			
1" a 2"	207	199	190	179	166	154	130	113
3" a 4"	228	216	205	193	181	169	145	124
6" a 7"	243	228	216	202	190	178	160	
		Cone	creto con	aire inco	rporado			
1" a 2"	181	175	168	160	150	142	122	107
3" a 4"	202	193	184	175	165	157	133	119

6" a 7"	216	205	197	184	174	166	154	

Fuente: (ACI, 2011)

• Para determinar la relación agua-cemento se utilizó la siguiente tabla teniendo en cuenta la resistencia a compresión requerida.

Tabla 117 *Relación agua cemento*

Resistencia a	Relación Agua - Cemento de diseño en					
compresión a los 28 días (f'cr) (Kg/cm2)	Concreto sin aire incorporado	Concreto con aire incorporado				
450	0.38					
400	0.43					
350	0.48	0.4				
300	0.55	0.46				
250	0.62	0.53				
200	0.7	0.61				
150	0.8	0.71				

Fuente: (ACI, 2011)

Para determinar el contenido de aire atrapado se utilizó la siguiente tabla de acuerdo al tamaño máximo nominal en este caso es de 3/8":

Tabla 118

Contenido de aire atrapado

Tamaño Máximo Nominal	Aire Atrapado
3/8"	3.0%
1/2"	2.5%
3/4"	2.0%
1"	1.5%
1 1/2"	1.0%
2"	0.5%
3"	0.3%
6"	0.2%

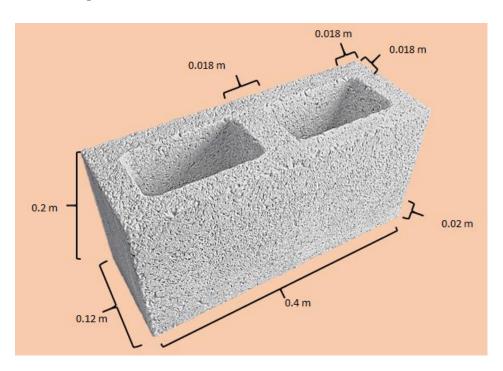
Fuente: (ACI, 2011)

Tabla 119Procesamiento de datos de diseño de mezclas

En la siguiente tabla de observa el diseño de mezcla patrón que se realizó según el método ACI. Los datos se obtuvieron de los ensayos previamente realizados a los agregados.

DISEÑO DE MEZO	DISEÑO DE MEZCLA DE BLOQUETAS									
Datos requeridos par	a diseño		Dise	ño seco						
Resistencia a compresion de diseño	175.00	kg/cm2	Cemento	329.62	kg					
Resistencia a compresion requerida	245.00	kg/cm2	Agua	207.00	Lt					
Slump		0-2"	Confitillo	798.08	Kg					
Peso especifico de Cemento	2850.00	kg/cm3	Arena	919.81	kg					
Tipo de vibrado	Alto-	Muy alto								
Datos de los agregados	Correccion	por Hume	dad							
M.F.	2.48	2.72	Confitillo	818.44	kg					
TMN		3/8"	Arena	952.16	kg					
PEM kg/m3	2565.45	2763.35								
% Absorción	0.013	0.011	Aporte de agua	a de los agr	egados					
Cont. Humedad %	0.035	0.026	Confitillo	11.76	Lt					
PUS	1462.78	1363.78	Arena	20.25	Lt					
PUC	1864.57	1622.11	Agua efectiva	175.00	Lt					
Datos según tabla de diseño A	ACI	Volumenes	Diseño	Humedo						
Relacion agua cemento	0.49		Cemento	329.62	Kg					
Cantidad de agua	207.00	0.21	Agua	175.00	Lt					
Porcentaje de aire atrapado	0.03	0.03	Confitillo	818.44	Kg					
Cantidad de cemento	330.00	0.12	Arena	952.16	Kg					
Volumen total		0.35								

De acuerdo a la dosificación mostrada anteriormente se reemplazara el 1%, 3% y 5% del peso del confitillo, por lo que se observara disminución del peso del confitillo para cada porcentaje. En la siguiente tabla se observa el diseño de mezcla para cada uno de los porcentajes en los que disminuye el peso de confitillo y aumenta el peso de poliestireno expandido y plástico Pet reciclado.


Tabla 120Peso de reemplazo de poliestireno expandido y plástico Pet reciclado por metro cubico que será reemplazado

DISEÑO DE MEZCLA	PESO POR M3	UNIDAD	1.00%	3.00%	5.00%
Cemento	329.62	kg	329.6	329.6	329.6
Agua	175.00	L	175.0	175.0	175.0
Confitillo	818.44	kg	808.9	789.9	770.8
Arena	952.16	kg	952.2	952.2	952.2
Poliestireno en perlas		kg	9.5	28.6	47.6
Plastico PET reciclado		kg	9.5	28.6	47.6

3.7.2.7. Cantidad de material por tipo de bloque elaborado.

Figura 45Dimensiones de bloqueta de concreto

Para el cálculo de las cantidades a mezclar para cada tipo de los bloques de concreto primero se hizo el Metrado de la bloqueta como se observa en la siguiente tabla.

Tabla 121Volumen de concreto por bloqueta

	CONCRETO POR BLOQUETA											
Dimensiones	Largo	Ancho	Altura	Cantidad	Volumen							
Total	0.4	0.12	0.2	1	0.0096							
Parte Hueca	0.173	0.084	0.18	2	0.0052							
Volumen total 0.004												

Ya que cada uno de los tipos de bloquetas tiene 43 unidades según la tabla N°12, se obtiene un total de 0.19 m3 de concreto, lo cual fue redondeado a 0.2 m3 para cada tipo.

Se hizo el redondeo ya que al momento de realizar la pasta se adhiere a las paredes en la mezcladora estacionaria al tener cantidades pequeñas. Para la producción de grandes cantidades de debe tener en cuenta la cantidad exacta y evitar el redondeo ya que puede haber variaciones en cuanto a costo y cantidad.

De acuerdo al volumen total por tipo de bloque se calculó las cantidades mezcladas para cada tipo de bloqueta teniendo así la siguiente tabla.

Tabla 122Cantidad de material a mezclar por porcentaje de reemplazo

-		Porce	ntajes de reen	nlazo	
Materiales	Patrón	1.00%	3.00%	5.00%	Unidad
Cemento	65.92	65.92	65.92	65.92	Kg
Confitillo	163.69	161.78	157.98	154.16	kg
Arena	190.43	190.43	190.43	190.43	Kg
Agua	35.00	35.00	35.00	35.00	Litros
Poliestireno o	plástico Pet	1.90	5.72	9.52	Kg

Ensayos realizados a los bloques de concreto

3.7.2.8. Variación dimensional

Tabla 123Procesamiento de ensayo de variación dimensional de bloqueta de concreto patrón

	VARIACIÓN DIMENSIONAL - BLOQUE PATRÓN														
MUESTRA	LA	RGO (n	nm)	AN	CHO (n	nm)	AL	ΓURA (1	mm)	ESPE	ESOR	(mm)			
WICESTRA	L1 L2 L3			A1	A2	A3	H1	H2	НЗ	E1	E2	E3			
M1	400.0	401.0	400.0	120.0	119.0	119.0	200.0	201.0	200.0	18.0	18.0	18.0			
M2	401.0	401.0	401.0	119.0	119.0	119.0	200.0	200.0	200.0	17.0	17.0	17.0			
M3	400.0	400.0	400.0	120.0	120.0	121.0	202.0	201.0	202.0	18.0	17.0	18.0			
M4	400.0	401.0	401.0	120.0	120.0	120.0	200.0	200.0	201.0	18.0	18.0	18.0			
M5	400.0	400.0	400.0	120.0	120.0	120.0	200.0	200.0	200.0	18.0	18.0	18.0			
M6	401.0	402.0	402.0	120.0	120.0	120.0	201.0	201.0	201.0	18.0	18.0	18.0			
PROMEDIO		400.61		119.78				200.56		17.78					

Tabla 124Procesamiento de ensayo de variación dimensional de bloqueta de concreto con 1% de reemplazo de poliestireno expandido

VARIAC	VARIACIÓN DIMENSIONAL - BLOQUE POLIESTIRENO EXPANDIDO 1.0%													
MUESTRA	LA	RGO (n	nm)	AN	ANCHO (mm)			TURA (1	nm)	ESPESOR (mm)				
MCESTRA	L1	L2	L3	A1	A2	A3	H1	H2	НЗ	E1	E2	E3		
M1	401.0	401.0	401.0	120.0	121.0	121.0	200.0	200.0	200.0	18.0	18.0	18.0		
M2	401.0	401.0	402.0	121.0	120.0	120.0	199.0	200.0	199.0	18.0	18.0	17.0		
M3	400.0	401.0	401.0	121.0	121.0	120.0	200.0	200.0	200.0	17.0	18.0	18.0		
M4	400.0	400.0	401.0	121.0	121.0	121.0	200.0	199.0	199.0	18.0	18.0	18.0		
M5	400.0	400.0	400.0	121.0	121.0	120.0	200.0	200.0	200.0	18.0	18.0	17.0		
M6	400.0	401.0	401.0	120.0	120.0	120.0	199.0	200.0	199.0	17.0	18.0	18.0		
PROMEDIO	400.67			120.56				199.67	17.78					

Tabla 125Procesamiento de ensayo de variación dimensional de bloqueta de concreto con 3% de reemplazo de poliestireno expandido

VARIAC	VARIACIÓN DIMENSIONAL - BLOQUE POLIESTIRENO EXPANDIDO 3.0%													
MUESTRA	LA	RGO (n	nm)	AN	ANCHO (mm)			TURA (1	nm)	ESPESOR (mm)				
WICESTRA	L1 L2 L3			A1	A2	A3	H1	H2	Н3	E1	E2	E3		
M1	400.0	402.0	402.0	120.0	121.0	120.0	200.0	201.0	201.0	18.0	18.0	18.0		
M2	401.0	400.0	401.0	119.0	120.0	119.0	201.0	202.0	201.0	18.0	18.0	18.0		
M3	401.0	400.0	401.0	121.0	121.0	121.0	201.0	201.0	201.0	17.0	18.0	18.0		
M4	401.0	402.0	401.0	120.0	121.0	121.0	202.0	202.0	202.0	18.0	18.0	19.0		
M5	401.0	402.0	402.0	121.0	121.0	121.0	202.0	202.0	201.0	18.0	18.0	18.0		
M6	401.0	402.0	402.0	120.0	121.0	121.0	202.0	201.0	202.0	18.0	19.0	19.0		
PROMEDIO		401.22		120.50				201.39		18.11				

Tabla 126Procesamiento de ensayo de variación dimensional de bloqueta de concreto con 5% de reemplazo de poliestireno expandido

VARIAC	VARIACIÓN DIMENSIONAL - BLOQUE POLIESTIRENO EXPANDIDO 5.0%														
MUESTRA	LA	RGO (n	nm)	AN	CHO (n	nm)	ALT	ΓURA (1	mm)	ESPESOR (mm)					
MUESTRA	L1	L2	L3	A1	A2	A3	H1	H2	Н3	E1	E2	E3			
M1	402.0	401.0	401.0	120.0	120.0	120.0	200.0	201.0	201.0	17.0	18.0	18.0			
M2	402.0	402.0	402.0	121.0	121.0	120.0	200.0	200.0	201.0	18.0	18.0	19.0			
M3	402.0	401.0	401.0	119.0	119.0	120.0	201.0	201.0	200.0	18.0	18.0	18.0			

M4	401.0	402.0	402.0	119.0	120.0	120.0	200.0	201.0	201.0	18.0	18.0	18.0
M5	402.0	401.0	402.0	121.0	120.0	121.0	199.0	199.0	200.0	18.0	18.0	19.0
M6	402.0	401.0	402.0	121.0	120.0	120.0	200.0	200.0	200.0	18.0	19.0	19.0
PROMEDIO		401.61			120.11			200.28			18.17	

Tabla 127Procesamiento de ensayo de variación dimensional de bloqueta de concreto con 1% de reemplazo de plástico PET reciclado

v	VARIACIÓN DIMENSIONAL - BLOQUE PLASTICO PET 1.0%													
MUESTRA	LA	RGO (n	nm)	AN	CHO (n	nm)	ALT	ΓURA (1	mm)	ESPI	ESOR	(mm)		
MUESTRA	L1	L2	L3	A1	A2	A3	H1	H2	Н3	E1	E2	E3		
M1	401.0	402.0	401.0	121.0	120.0	120.0	200.0	200.0	199.0	18.0	19.0	19.0		
M2	401.0	400.0	401.0	119.0	120.0	120.0	199.0	200.0	199.0	17.0	17.0	17.0		
M3	400.0	401.0	401.0	120.0	120.0	120.0	200.0	200.0	200.0	17.0	18.0	18.0		
M4	400.0	400.0	400.0	120.0	120.0	121.0	200.0	200.0	200.0	18.0	18.0	18.0		
M5	400.0	401.0	400.0	120.0	120.0	120.0	200.0	201.0	200.0	18.0	17.0	17.0		
M6	402.0	400.0	400.0	121.0	121.0	122.0	201.0	200.0	200.0	18.0	18.0	18.0		
PROMEDIO	400.61			120.28			199.94			17.78				

Tabla 128Procesamiento de ensayo de variación dimensional de bloqueta de concreto con 3% de reemplazo de plástico PET reciclado

	VARIA	ARIACIÓN DIMENSIONAL - BLOQUE PLASTICO PET 3.0%													
MUESTRA	LA	RGO (m	m)	AN	ANCHO (mm)			ΓURA (1	mm)	ESPE	ESOR	(mm)			
WICESTRA	L1	L2	L3	A1	A2	A3	H1	H2	Н3	E1	E2	E3			
M1	400.0	400.0	400.0	120.0	121.0	121.0	200.0	200.0	200.0	17.0	17.0	17.0			
M2	401.0	401.0	400.0	120.0	120.0	120.0	200.0	200.0	199.0	17.0	18.0	18.0			
M 3	400.0	401.0	401.0	120.0	120.0	120.0	200.0	201.0	201.0	18.0	18.0	18.0			
M4	400.0	402.0	402.0	120.0	119.0	119.0	202.0	200.0	202.0	18.0	18.0	19.0			
M 5	403.0	402.0	402.0	120.0	120.0	120.0	199.0	200.0	200.0	17.0	17.0	17.0			
M6	400.0	401.0	401.0	121.0	121.0	121.0	200.0	200.0	200.0	17.0	17.0	18.0			
PROMEDIO	·	400.94		120.17				200.22		17.56					

Tabla 129Procesamiento de ensayo de variación dimensional de bloqueta de concreto con 5% de reemplazo de plástico PET reciclado

	ARIAC	IÓN D	IMENS	SIONA	L - BL	OQUE	PLAST	TICO P	ET 5.0	%		
MUESTRA	LA	RGO (n	nm)	AN	NCHO (mm) AL		ALT	ΓURA (1	mm)	ESPESOR (mm)		
- WICESTRA	L1	L2	L3	A1	A2	A3	H1	H2	Н3	E1	E2	E3
M1	401.0	401.0	401.0	119.0	119.0	119.0	200.0	200.0	200.0	18.0	18.0	18.0
M2	400.0	401.0	401.0	120.0	120.0	120.0	200.0	199.0	199.0	18.0	17.0	18.0
M3	402.0	402.0	402.0	120.0	120.0	120.0	200.0	200.0	201.0	18.0	18.0	18.0
M4	401.0	401.0	401.0	119.0	120.0	120.0	201.0	201.0	201.0	17.0	18.0	18.0
M5	399.0	400.0	400.0	120.0	120.0	120.0	200.0	200.0	200.0	18.0	18.0	18.0
M6	400.0	400.0	400.0	121.0	121.0	121.0	201.0	201.0	201.0	18.0	18.0	18.0
PROMEDIO		400.72			119.94			200.28			17.89	-

3.7.2.9. Alabeo

Tabla 130Procesamiento de ensayo de alabeo de bloqueta patrón

	ALABEO - BLOQUE PATRÓN							
MUEGEDA	CARA SUPI	ERIOR (mm)	CONCAVO/	CARA INFI	CONCAVO/			
MUESTRA	DIAGONAL 1	DIAGONAL 2	CONVEXO	DIAGONAL 1	DIAGONAL 2	CONVEXO		
M1	3.0	-	Cóncavo	-	4.0	Convexo		
M2	3.0	-	Convexo	4.0	-	Cóncavo		
M3	-	5.0	Convexo	-	-	-		
M4	-	4.0	Convexo	-	3.0	Cóncavo		
M5	5.0	-	Convexo	-	5.0	Convexo		
M6	5.0	4.0	Convexo	-	-	-		
PROMEDIO	4.0	4.3	Convexo	4.0	4.0	Convexo		

Tabla 131Procesamiento de ensayo de alabeo de bloqueta con 1% de reemplazo de poliestireno expandido

ALABEO - BLOQUE POLIESTIRENO EXPANDIDO 1.0%						
	CARA SUPERIOR (mm)	CONCAVO/	CARA INFERIOR (mm	CONCAVO/		
MUESTRA	DIAGONAL DIAGONAL 1 2	CONVEXO	DIAGONAL DIAGONA 1 2	AL CONVEXO		

M1	-	4.0	Cóncavo	-	4.0	Convexo
M2	-	6.0	Convexo	-	5.0	Cóncavo
M3	4.0	-	Convexo	-	3.0	Cóncavo
M4	-	8.0	Cóncavo	-	6.0	Cóncavo
M5	4.0	-	Convexo	-	-	-
M6	4.0	-	Convexo	-	-	-
PROMEDIO	4.0	6.0	Convexo	-	4.5	Cóncavo

Tabla 132Procesamiento de ensayo de alabeo de bloqueta con 3% de reemplazo de poliestireno expandido

	ALABEO - BLOQUE POLIESTIRENO EXPANDIDO 3.0%							
	CARA SUPERIOR (mm)		CONCAVO/	CARA INFI	CONCAVO/			
MUESTRA	DIAGONAL	DIAGONAL	CONVEXO	DIAGONAL	DIAGONAL	CONVEXO		
	1	2		1	2			
M1	4.0	-	Convexo	-	-	-		
M2	5.0	-	Convexo	-	-	-		
M3	-	5.0	Convexo	-	5.0	Convexo		
M4	-	-	-	-	5.0	Convexo		
M5	-	-	-	4.0	3.0	Cóncavo		
M6	3.0	3.0	Convexo	-	-	-		
PROMEDIO	4.0	4.0	Convexo	4.0	4.3	Convexo		

Tabla 133Procesamiento de ensayo de alabeo de bloqueta con 5% de reemplazo de poliestireno expandido

	ALABEO - BLOQUE POLIESTIRENO EXPANDIDO 5.0%							
	CARA SUPI	ERIOR (mm)	CONCAVO/	CARA INFI	CONCAVO/			
MUESTRA	DIAGONAL 1	DIAGONAL 2	CONVEXO	DIAGONAL 1	DIAGONAL 2	CONVEXO		
M1	5.0	-	Convexo	-	-	-		
M2	6.0	-	Convexo	-	-	-		
M3	-	3.0	Convexo	-	4.0	Cóncavo		
M4	6.0	-	Convexo	5.0	-	Cóncavo		
M5	-	-	-	-	6.0	Convexo		
M6	-	5.0	Cóncavo	-	-	-		
PROMEDIO	5.7	4.0	Convexo	5.0	5.0	Cóncavo		

Tabla 134Procesamiento de ensayo de alabeo de bloqueta con 1% de reemplazo de plástico PET reciclado

	ALABEO - BLOQUE PLASTICO PET 1.0%							
	CARA SUPERIOR (mm)		CONCAVO/	CARA INFI	CONCAVO/			
MUESTRA	DIAGONAL 1	DIAGONAL 2		DIAGONAL 1	DIAGONAL 2	CONVEXO		
M1	6.0	-	Cóncavo	_	_	-		
M2	-	-	-	3.0	-	Convexo		
M3	-	8.0	Convexo	2.0	-	Convexo		
M4	-	-	-	3.0	-	Convexo		
M5	7.0	-	Cóncavo	5.0	5.0	Convexo		
M6	-	-	-	-	-	-		
PROMEDIO	6.5	8.0	Cóncavo	3.3	5.0	Convexo		

Tabla 135Procesamiento de ensayo de alabeo de bloqueta con 3% de reemplazo de plástico PET reciclado

	ALABEO - BLOQUE PLASTICO PET 3.0%								
MUESTRA	CARA SUPERIOR (mm)		CONCAVO/ CONVEXO	CARA INFI	CONCAVO/ CONVEXO				
MUESTRA	DIAGONAL	DIAGONAL		DIAGONAL	DIAGONAL				
	1	2		1	2				
M1	5.0	-	Cóncavo	2.0	-	Convexo			
M2	-	5.0	Convexo	-	4.0	Cóncavo			
M3	-	4.0	Convexo	-	-	-			
M4	5.0	-	Convexo	2.0	2.0	Cóncavo			
M5	-	5.0	Convexo	-	-	-			
M6	-	-	-	-	-	-			
PROMEDIO	5.0	4.7	Convexo	2.0	3.0	Cóncavo			

Tabla 136Procesamiento de ensayo de alabeo de bloqueta con 5% de reemplazo de plástico PET reciclado

ALABEO - BLOQUE PLASTICO PET 5.0%							
MUESTRA	CARA SUPERIOR (mm)	CONCAVO/ CONVEXO	CARA INFERIOR (mm)	CONCAVO/ CONVEXO			

	DIAGONAL	DIAGONAL		DIAGONAL	DIAGONAL	
	1	2		1	2	
M1	-	5.0	Convexo	2.0	3.0	Cóncavo
M2	5.0	-	Convexo	-	2.0	Cóncavo
M3	5.0	4.0	Convexo	-	-	-
M4	-	3.0	Convexo	2.0	-	Cóncavo
M5	5.0	-	Convexo	-	-	-
M6	6.0	-	Convexo	-	-	-
PROMEDIO	5.3	4.0	Convexo	2.0	2.5	Cóncavo

3.7.2.10. Absorción y densidad

Cálculos:

Para determinar la absorción y densidad de las bloquetas de concreto se determinó mediante las siguientes formulas:

$$Ab(\%) = \frac{(Ws - Wd)}{Wd} * 100$$

$$D = \left(\frac{Wd}{Ws - Wi}\right) x 1000$$

Ab: Absorción (%)

D: Densidad, (Kg/m3)

Wi: Peso sumergido del espécimen, (Kg)

Wd: Peso secado al horno, (Kg)

Ws: Peso del espécimen saturado, (Kg)

Tabla 137Procesamiento de ensayo de absorción y densidad de bloquetas de concreto patrón

ABSORCIÓN Y DENSIDAD - BLOQUE PATRÓN							
MUESTRA	Ws (Kg)	Wd (Kg)	Wi (Kg)	ABSORCIÓN (%)	DENSIDAD (kg/cm3)		
M1	9.565	9.109	7.506	5.01	4424.23		
M2	9.601	9.108	7.500	5.41	4334.78		
M3	9.589	9.110	7.484	5.26	4327.38		
M4	9.566	9.101	7.495	5.11	4392.85		
M5	9.589	9.115	7.511	5.19	4386.83		
M6	9.600	9.116	7.487	5.32	4313.19		
PROMEDIO	9.58	9.11	7.50	5.22	4363.21		

Tabla 138Procesamiento de ensayo de absorción y densidad de bloquetas de concreto con 1% de reemplazo de poliestireno expandido

ABSORCIÓN	ABSORCIÓN Y DENSIDAD - BLOQUE POLIESTIRENO EXPANDIDO 1.0%							
MUESTRA	Ws (Kg)	Wd (Kg)	Wi (Kg)	ABSORCIÓN (%)	DENSIDAD (kg/cm3)			
M1	6.265	5.968	4.292	4.97	3025.65			
M2	6.303	6.032	4.289	4.49	2996.13			
M3	6.279	5.981	4.290	4.98	3007.24			
M4	6.175	5.898	4.300	4.69	3146.50			
M5	6.278	5.987	4.301	4.86	3027.05			
M6	6.301	6.002	4.294	4.97	2991.58			
PROMEDIO	6.27	5.98	4.29	4.83	3032.36			

Tabla 139Procesamiento de ensayo de absorción y densidad de bloquetas de concreto con 3% de reemplazo de poliestireno expandido

ABSORCIÓN	Y DENSI	DAD - BL	OQUE PO	LIESTIRENO EX	XPANDIDO 3.0%
MUESTRA	Ws (Kg)	Wd (Kg)	Wi (Kg)	ABSORCIÓN (%)	DENSIDAD (kg/cm3)
M1	5.84	5.60	3.89	4.26	2871.46
M2	5.80	5.57	3.89	4.13	2922.85
M3	5.82	5.59	3.90	4.14	2909.65
M4	5.84	5.60	3.90	4.28	2889.67
M5	5.84	5.60	3.90	4.20	2890.32
M6	5.80	5.57	3.89	4.13	2918.45
PROMEDIO	5.82	5.59	3.90	4.19	2900.40

Tabla 140Procesamiento de ensayo de absorción y densidad de bloquetas de concreto con 5% de reemplazo de poliestireno expandido

ABSORCIÓN	Y DENSI	DAD - BL	OQUE PO	LIESTIRENO EX	KPANDIDO 5.0%
MUESTRA	Ws (Kg)	Wd (Kg)	Wi (Kg)	ABSORCIÓN (%)	DENSIDAD (kg/cm3)
M1	4.359	4.201	2.800	3.76	2695.07
M2	4.350	4.190	2.804	3.83	2710.27

PROMEDIO	4.35	4.19	2.80	3.85	2694.21
M6	4.353	4.189	2.796	3.91	2690.37
M5	4.351	4.190	2.790	3.83	2685.21
M4	4.353	4.191	2.801	3.85	2702.15
M3	4.357	4.191	2.795	3.96	2682.20

Tabla 141Procesamiento de ensayo de absorción y densidad de bloquetas de concreto con 1% de reemplazo de plástico PET reciclado

ABSO	ABSORCIÓN Y DENSIDAD - BLOQUE PLASTICO PET 1.0%								
MUESTRA	Ws (Kg)	Wd (Kg)	Wi (Kg)	ABSORCIÓN (%)	DENSIDAD (kg/cm3)				
M1	6.300	6.020	4.751	4.65	3884.38				
M2	6.295	6.016	4.740	4.65	3868.18				
M3	6.302	6.024	4.752	4.60	3888.77				
M4	6.290	6.013	4.751	4.60	3907.85				
M5	6.295	6.019	4.746	4.59	3886.73				
M6	6.294	6.015	4.751	4.63	3898.13				
PROMEDIO	6.30	6.02	4.75	4.62	3889.01				

Tabla 142Procesamiento de ensayo de absorción y densidad de bloquetas de concreto con 3% de reemplazo de plástico PET reciclado

ABSORCIÓN Y DENSIDAD - BLOQUE PLASTICO PET 3.0%								
MUESTRA	ΓRA Ws (Kg) Wd (Kg) Wi (I		Wi (Kg)	ABSORCIÓN (%)	DENSIDAD (kg/cm3)			
M1	6.081	5.821	4.401	4.47	3465.47			
M2	6.100	5.841	4.399	4.44	3432.68			
M3	6.099	5.839	4.397	4.46	3430.18			
M4	6.105	5.841	4.398	4.53	3419.99			
M5	6.115	5.849	4.390	4.55	3390.45			
M6	6.075	5.816	4.400	4.45	3472.27			
PROMEDIO	6.10	5.83	4.40	4.48	3435.17			

Tabla 143Procesamiento de ensayo de absorción y densidad de bloquetas de concreto con 5% de reemplazo de plástico PET reciclado

ABSORCIÓN Y DENSIDAD - BLOQUE PLASTICO PET 5.0%								
MUESTRA	Ws (Kg)	Wd (Kg)	Wi (Kg)	ABSORCIÓN (%)	DENSIDAD (kg/cm3)			
M1	5.901	5.670	4.100	4.08	3148.26			
M2	5.881	5.654	4.100	4.01	3174.32			
M3	5.891	5.660	4.099	4.07	3158.65			
M4	5.882	5.654	4.091	4.03	3156.24			
M5	5.900	5.667	4.090	4.11	3131.17			
M6	5.903	5.661	4.091	4.26	3124.63			
PROMEDIO	5.89	5.66	4.09	4.09	3148.88			

3.7.2.11. Conductividad térmica

Cálculos:

Para determinar la conductividad térmica se tomaron en cuenta la siguiente formula:

$$\lambda = \frac{Pot * L}{A * [T(caliente) - T(fria)]}$$

Donde:

 λ : Coeficiente de conductividad térmica, (W/(m. °K), J / (s.m. °K)

Pot: Potencia o flujo de calor total a través de la pared, (W, Joules)

L: Espesor que atraviesa el calor, (m)

A: Área por donde se suministra la placa caliente, (m2)

T (caliente): Temperatura de placa caliente, (°K)

T (fría): Temperatura de placa fría, (°K)

 Tabla 144

 Procesamiento de ensayo de conductividad térmica de bloqueta de concreto patrón

CONDUCTIVIDA	CONDUCTIVIDAD TERMICA - BLOQUE PATRON							
MUESTRA	M1	M2	М3	M4	M5	M6		
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00		
Altura de bloque de concreto (m)	0.200	0.200	0.200	0.200	0.202	0.199		
Largo de bloque de concreto (m)	0.400	0.400	0.401	0.400	0.401	0.400		
Ancho de bloque de concreto (m)	0.120	0.121	0.120	0.120	0.120	0.120		

Conductividad Térmica	0.188	0.189	0.190	0.187	0.184	0.185
Temperatura de placa fría (°K=°C+275.15)	328.15	325.15	329.15	325.15	327.15	321.15
Temperatura de placa caliente (°K=°C+275.15)	568.15	565.15	565.15	566.15	569.15	565.15

Tabla 145Procesamiento de ensayo de conductividad térmica de bloqueta de concreto con 1% de reemplazo de poliestireno expandido

CONDUCTIVIDAD TÉRMICA - BLOQUE POLIESTIRENO EXPANDIDO 1.0%							
MUESTRA	M1	M2	M3	M4	M5	M6	
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00	
Altura de bloque de concreto (m)	0.199	0.201	0.200	0.200	0.202	0.200	
Largo de bloque de concreto (m)	0.401	0.402	0.401	0.400	0.400	0.400	
Ancho de bloque de concreto (m)	0.120	0.121	0.121	0.120	0.121	0.120	
Temperatura de placa caliente (°K=°C+275.15)	567.15	567.15	569.15	566.15	569.15	568.15	
Temperatura de placa fría (°K=°C+275.15)	304.15	305.15	309.15	305.15	304.15	303.15	
Conductividad Térmica	0.172	0.171	0.174	0.172	0.170	0.170	

Tabla 146Procesamiento de ensayo de conductividad térmica de bloqueta de concreto con 3% de reemplazo de poliestireno expandido

CONDUCTIVIDAD TÉRMICA - BLOQUE POLIESTIRENO EXPANDIDO 3.0%						
MUESTRA	M1	M2	M3	M4	M5	M6
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00
Altura de bloque de concreto (m)	0.201	0.202	0.199	0.200	0.202	0.200
Largo de bloque de concreto (m)	0.402	0.400	0.400	0.399	0.401	0.400
Ancho de bloque de concreto (m)	0.120	0.121	0.120	0.120	0.119	0.119
Temperatura de placa caliente (°K=°C+275.15)	563.15	564.15	565.15	563.15	566.15	563.15
Temperatura de placa fría (°K=°C+275.15)	290.15	292.15	289.15	288.15	290.15	292.15
Conductividad Térmica	0.163	0.165	0.164	0.164	0.160	0.165

Tabla 147Procesamiento de ensayo de conductividad térmica de bloqueta de concreto con 5% de reemplazo de poliestireno expandido

CONDUCTIVIDAD TÉRMICA - B	LOQUE	POLIES	STIREN	O EXPA	ANDID(5.0%
MUESTRA	M1	M2	M3	M4	M5	M6
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00
Altura de bloque de concreto (m)	0.200	0.201	0.200	0.200	0.202	0.199
Largo de bloque de concreto (m)	0.399	0.401	0.401	0.400	0.401	0.400
Ancho de bloque de concreto (m)	0.120	0.121	0.119	0.120	0.120	0.120
Temperatura de placa caliente (°K=°C+275.15)	565.15	566.15	564.15	564.15	564.15	566.15
Temperatura de placa fría (°K=°C+275.15)	280.15	285.15	284.15	280.15	286.15	283.15
Conductividad Térmica	0.158	0.160	0.159	0.158	0.160	0.160

Tabla 148Procesamiento de ensayo de conductividad térmica de bloqueta de concreto con 1% de reemplazo de plástico PET reciclado

CONDUCTIVIDAD TÉRMICA - BLOQUE PLASTICO PET RECICLADO 1.0%							
MUESTRA	M1	M2	M3	M4	M5	M6	
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00	
Altura de bloque de concreto (m)	0.199	0.200	0.200	0.202	0.202	0.199	
Largo de bloque de concreto (m)	0.399	0.401	0.400	0.400	0.402	0.400	
Ancho de bloque de concreto (m)	0.121	0.120	0.120	0.119	0.120	0.121	
Temperatura de placa caliente (°K=°C+275.15)	567.15	565.15	565.15	568.15	570.15	569.15	
Temperatura de placa fría (°K=°C+275.15)	318.15	317.15	310.15	312.15	315.15	311.15	
Conductividad Térmica	0.184	0.181	0.176	0.173	0.174	0.177	

Tabla 149Procesamiento de ensayo de conductividad térmica de bloqueta de concreto con 3% de reemplazo de plástico PET reciclado

CONDUCTIVIDAD TÉRMICA - BLOQUE PLASTICO PET RECICLADO 3.0%						
MUESTRA	M1	M2	M3	M4	M5	M6
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00

Altura de bloque de concreto (m)	0.200	0.202	0.200	0.200	0.200	0.199
Largo de bloque de concreto (m)	0.400	0.401	0.399	0.401	0.400	0.402
Ancho de bloque de concreto (m)	0.121	0.121	0.120	0.121	0.121	0.120
Temperatura de placa caliente (°K=°C+275.15)	570.15	568.15	570.15	569.15	566.15	569.15
Temperatura de placa fría (°K=°C+275.15)	294.15	293.15	298.15	300.15	290.15	292.15
Conductividad Térmica	0.164	0.163	0.166	0.168	0.164	0.162

Tabla 150Procesamiento de ensayo de conductividad térmica de bloqueta de concreto con 5% de reemplazo de plástico PET reciclado

CONDUCTIVIDAD TÉRMICA - BLOQUE PLASTICO PET RECICLADO 5.0%						
MUESTRA	M1	M2	M3	M4	M5	M6
Potencia de energía eléctrica (W)	30.00	30.00	30.00	30.00	30.00	30.00
Altura de bloque de concreto (m)	0.199	0.200	0.200	0.199	0.200	0.199
Largo de bloque de concreto (m)	0.400	0.402	0.400	0.400	0.401	0.400
Ancho de bloque de concreto (m)	0.120	0.121	0.120	0.121	0.199	0.121
Temperatura de placa caliente (°K=°C+275.15)	564.15	569.15	570.15	567.15	565.15	570.15
Temperatura de placa fría (°K=°C+275.15)	285.15	280.15	281.15	281.15	281.15	286.15
Conductividad Térmica	0.162	0.156	0.156	0.159	0.262	0.161

3.7.2.12. Aislamiento acústico

Cálculos:

Para determinar el aislamiento acústico se tomó en cuenta la siguiente formula.

$$D = Lp(emisor) - Lp(receptor)$$

D: Aislamiento acústico, (dB)

Lp (emisor): nivel de presión sonora medido en el local emisor, (dB)

Lp (receptor): nivel de presión sonora medido en el local receptor, (dB)

Tabla 151Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón

AISLAN	AISLAMIENTO ACÚSTICO - BLOQUE PATRÓN					
FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)			
100.00	85.00	68.20	16.80			
125.00	97.20	78.30	18.90			
160.00	102.50	82.40	20.10			
200.00	98.50	81.50	17.00			
250.00	90.30	80.20	10.10			
315.00	98.50	80.00	18.50			
400.00	91.20	71.30	19.90			
500.00	98.40	79.40	19.00			
630.00	100.40	81.20	19.20			
800.00	100.50	90.00	10.50			
1000.00	99.50	74.20	25.30			
1250.00	104.80	92.40	12.40			
1600.00	103.20	90.20	13.00			
2000.00	104.50	91.30	13.20			
2500.00	105.60	92.40	13.20			
3150.00	110.40	93.00	17.40			
PROMEDIO		16.53				

Tabla 152Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón con 1% de reemplazo de poliestireno expandido

AISLAMIENT	AISLAMIENTO ACÚSTICO - BLOQUE POLIESTIRENO 1.0%					
FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)			
100.00	91.30	70.00	21.30			
125.00	99.80	72.50	27.30			
160.00	101.20	76.50	24.70			
200.00	100.40	80.10	20.30			
250.00	95.30	72.40	22.90			
315.00	89.00	69.40	19.60			
400.00	98.60	75.50	23.10			
500.00	99.40	73.20	26.20			
630.00	100.20	79.00	21.20			
800.00	100.00	81.10	18.90			
1000.00	99.80	73.20	26.60			
1250.00	98.60	70.90	27.70			
1600.00	97.40	79.20	18.20			
2000.00	100.50	80.50	20.00			

PROMEDIO		22.50	
3150.00	105.00	85.00	20.00
2500.00	103.00	81.00	22.00

Tabla 153Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón con 3% de reemplazo de poliestireno expandido

AISLAMIENT	O ACÚSTICO -	BLOQUE POLIE	CSTIRENO 3.0%
FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)
100.00	93.30	61.40	31.90
125.00	98.50	60.50	38.00
160.00	99.40	59.80	39.60
200.00	101.60	65.40	36.20
250.00	100.50	66.20	34.30
315.00	99.90	60.10	39.80
400.00	100.20	64.80	35.40
500.00	98.00	58.60	39.40
630.00	102.40	64.20	38.20
800.00	103.90	59.90	44.00
1000.00	99.50	61.00	38.50
1250.00	102.00	62.90	39.10
1600.00	105.80	63.00	42.80
2000.00	105.60	59.80	45.80
2500.00	99.80	60.40	39.40
3150.00	100.90	62.50	38.40
PROMEDIO		38.80	

Tabla 154Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón con 5% de reemplazo de poliestireno expandido

AISLAMIENTO ACÚSTICO - BLOQUE POLIESTIRENO 5.0%					
FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)		
100.00	82.40	53.40	29.00		
125.00	88.90	50.80	38.10		
160.00	90.30	50.60	39.70		
200.00	86.60	49.60	37.00		
250.00	91.00	48.50	42.50		
315.00	94.50	50.90	43.60		
400.00	90.40	51.10	39.30		
500.00	98.60	48.80	49.80		

630.00	100.20	54.20	46.00
800.00	99.80	47.90	51.90
1000.00	101.50	55.10	46.40
1250.00	100.90	51.50	49.40
1600.00	99.90	49.50	50.40
2000.00	102.30	54.50	47.80
2500.00	104.10	50.90	53.20
3150.00	100.60	51.10	49.50
PROMEDIO		44.60	

Tabla 155Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón con 1% de reemplazo de plástico PET reciclado

AISLAM	IENTO ACÚSTI	ICO - PLASTICO	PET 1.0%
FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)
100.00	90.10	60.20	29.90
125.00	82.50	68.80	13.70
160.00	79.90	64.90	15.00
200.00	84.80	65.60	19.20
250.00	89.40	74.00	15.40
315.00	90.50	70.40	20.10
400.00	91.20	70.80	20.40
500.00	89.90	65.60	24.30
630.00	98.00	72.50	25.50
800.00	100.20	78.30	21.90
1000.00	96.70	79.20	17.50
1250.00	100.80	80.70	20.10
1600.00	101.40	81.30	20.10
2000.00	100.90	79.80	21.10
2500.00	102.80	80.40	22.40
3150.00	100.30	81.90	18.40
PROMEDIO		20.31	

Tabla 156Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón con 3% de reemplazo de plástico PET reciclado

AISLAMIENTO ACÚSTICO - BLOQUE PLASTICO PET 3.0%				
 FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)	
100.00	86.40	62.10	24.30	

PROMEDIO		29.36	
3150.00	100.80	71.50	29.30
2500.00	99.80	70.80	29.00
2000.00	105.10	70.40	34.70
1600.00	102.60	75.50	27.10
1250.00	100.50	72.40	28.10
1000.00	99.50	60.40	39.10
800.00	100.40	69.90	30.50
630.00	99.10	70.20	28.90
500.00	96.60	68.60	28.00
400.00	95.60	69.40	26.20
315.00	88.40	64.30	24.10
250.00	98.00	63.50	34.50
200.00	94.60	61.20	33.40
160.00	88.80	60.20	28.60
125.00	89.30	65.40	23.90

Tabla 157Procesamiento de ensayo de aislamiento acústico de bloqueta de concreto patrón con 5% de reemplazo de plástico PET reciclado

AISLAMIENT	O ACÚSTICO -	BLOQUE PLAST	FICO PET 5.0%
FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)
100.00	78.90	51.40	27.50
125.00	80.40	58.30	22.10
160.00	92.10	60.40	31.70
200.00	85.60	53.50	32.10
250.00	86.70	58.40	28.30
315.00	93.20	59.70	33.50
400.00	90.00	62.80	27.20
500.00	96.40	60.40	36.00
630.00	96.30	60.80	35.50
800.00	100.10	60.10	40.00
1000.00	99.50	59.40	40.10
1250.00	96.30	53.50	42.80
1600.00	100.40	59.30	41.10
2000.00	102.80	60.90	41.90
2500.00	99.90	70.00	29.90
3150.00	105.30	71.40	33.90
PROMEDIO		33.98	

3.7.2.13. Resistencia a compresión

Cálculos:

Para determinar el esfuerzo a compresión de determino mediante las siguientes formulas.

$$Area \ bruta = L * A$$

Donde:

L= Largo, mm.

A= Ancho. mm.

$$C = \frac{W}{A}$$

Donde:

C= Resistencia a la compresión del espécimen, MPa

W= Máxima carga en N, indicada por la máquina de ensayo

A= Promedio del área bruta de las superficies de contacto superior e inferior del espécimen o mm2.

Tabla 158Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto patrón a los 7 días

			BI	LOQUE I	PATRÓN					
RESISTENCIA A LA COMPRESIÓN DEL BLOQUE A LOS 7 DÍAS										
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa		
M1	400	120	48000.00	6800	66.67	141666.67	1.39			
M2	400	120	48047.60	6950	68.14	144648.21	1.42			
M3	400	119	47600.00	6300	61.76	132352.94	1.30	1.36		
M4	400	120	47905.99	6640	65.10	138604.80	1.36	1.30		
M5	400	120	48012.00	6500	63.73	135382.82	1.33			
M6	400	120	47960.00	6580	64.51	137197.66	1.35			

Tabla 159Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 1% de reemplazo de poliestireno expandido a los 7 días

]	BLOQU	E POLIES	STIRENC	1.0%				
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 7 DÍAS										
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa		
M1	400	120	48036	4080.00	40.00	84936.30	0.83			
M2	400	121	48412	3900.00	38.24	80558.37	0.79			
M3	400	121	48400	4350.00	42.65	89876.03	0.88	0.81		
M4	400	120	48024	3770.00	36.96	78502.42	0.77	0.01		
M5	400	119	47612	4130.00	40.49	86743.02	0.85			
M6	400	120	48012	3600.00	35.29	74981.25	0.74			

Tabla 160Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 3% de reemplazo de poliestireno expandido a los 7 días

		-	BLOQU	E POLIES	STIRENO	3.0%					
]	RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 7 DÍAS										
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa			
M1	400	119	47624	2800.00	27.45	58794.13	0.58				
M2	400	122	48812	2570.00	25.20	52650.77	0.52				
M3	400	121	48412	2700.00	26.47	55771.18	0.55	0.54			
M4	400	119	47600	2790.00	27.35	58613.45	0.57	0.54			
M5	400	120	48024	2660.00	26.08	55388.97	0.54				
M6	400	121	48412	2450.00	24.02	50607.18	0.50				

Tabla 161Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 5% de reemplazo de poliestireno expandido a los 7 días

]	BLOQU	E POLIES	STIRENO	5.0%		
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 7 DÍAS							AS	
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa
M1	400	122	48849	2250.00	22.06	46060.50	0.45	0.42

M2	400	120	48024	1930.00	18.92	40188.24	0.39
M3	400	121	48400	2010.00	19.71	41528.93	0.41
M4	400	121	48212	1890.00	18.53	39201.82	0.38
M5	400	121	48424	2300.00	22.55	47496.91	0.47
M6	400	121	48520	1990.00	19.51	41014.01	0.40

Tabla 162Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 1% de reemplazo de plástico PET a los 7 días

			BLOQU	E PLAST	ICO PET	1.0%					
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 7 DÍAS											
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa			
M1	400	121	48448	4050.00	39.71	83594.09	0.82				
M2	400	121	48360	4550.00	44.61	94086.02	0.92				
M3	400	122	48837	4190.00	41.08	85796.31	0.84	0.88			
M4	400	121	48442	4360.00	42.75	90003.76	0.88	0.66			
M5	400	121	48400	4400.00	43.14	90909.09	0.89				
M6	400	122	48784	4450.00	43.63	91217.72	0.89				

Tabla 163Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 3% de reemplazo de plástico PET a los 7 días

	BLOQUE PLASTICO PET 3.0%										
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 7 DÍAS											
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa			
M1	400	120	48024	3010.00	29.51	62676.99	0.61				
M2	400	121	48400	3050.00	29.90	63016.53	0.62				
M3	400	121	48412	2900.00	28.43	59902.38	0.59	0.60			
M4	400	120	48024	2800.00	27.45	58304.18	0.57	0.00			
M5	400	119	47624	2750.00	26.96	57744.24	0.57				
M6	400	120	48000	3015.00	29.56	62812.50	0.62				

Tabla 164Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 5% de reemplazo de plástico PET a los 7 días

	BLOQUE PLASTICO PET 5.0%										
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 7 DÍAS											
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa			
M1	400	120	48000	2100.00	20.59	43750.00	0.43				
M2	400	121	48224	2380.00	23.33	49352.92	0.48				
M3	400	121	48448	2250.00	22.06	46441.16	0.46	0.45			
M4	400	121	48412	2300.00	22.55	47508.78	0.47	0.43			
M5	400	120	48024	1900.00	18.63	39563.55	0.39				
M6	400	120	47926	2200.00	21.57	45904.11	0.45				

Tabla 165Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto patrón a los 14 días

			В	LOQUE I	PATRÓN					
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 14 DÍAS										
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa		
M1	400	119	47600	9750	95.59	204831.93	2.01			
M2	400	119	47624	9540	93.53	200320.01	1.96			
M3	400	120	48012	9710	95.20	202241.11	1.98	1.00		
M4	400	120	48012	9580	93.92	199533.45	1.96	1.98		
M5	400	120	48012	9620	94.31	200366.58	1.96			
M6	400	120	48000	9670	94.80	201458.33	1.98			

Tabla 166Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 1% de reemplazo de poliestireno expandido a los 14 días

			BLOQU	E POLIES	STIRENO	1.0%		
	RESISTI	ENCIA A	LA CON	IPRESIO	N DEL BL	OQUE A L	OS 14 DÍA	S
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa
M1	400	119	47600	6950	68.14	146008.40	1.43	1.44

M2	400	119	47600	7150	70.10	150210.08	1.47
M3	400	119	47612	7030	68.92	147652.16	1.45
M4	400	120	48000	7120	69.80	148333.33	1.45
M5	400	121	48412	7080	69.41	146244.43	1.43
M6	400	121	48412	6970	68.33	143972.27	1.41

Tabla 167Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 3% de reemplazo de poliestireno expandido a los 14 días

			BLOQU	E POLIES	STIRENO	3.0%			
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 14 DÍAS									
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa	
M1	400	120	48024	6670.00	65.39	138888.89	1.36		
M2	400	121	48412	6500.00	63.73	134263.95	1.32		
M3	400	120	48012	6580.00	64.51	137049.07	1.34	1.34	
M4	400	120	48012	6590.00	64.61	137257.35	1.35	1.34	
M5	400	120	48000	6600.00	64.71	137500.00	1.35		
M6	400	121	48412	6530.00	64.02	134883.63	1.32		

Tabla 168Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 5% de reemplazo de poliestireno expandido a los 14 días

			BLOQU	E POLIES	STIRENO	5.0%			
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 14 DÍAS									
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa	
M1	400	120	48012	6290.00	61.67	131008.91	1.28		
M2	400	120	48000	6335.00	62.11	131979.17	1.29		
M3	400	120	48080	6200.00	60.78	128951.75	1.26	1.28	
M4	400	120	48040	6310.00	61.86	131348.88	1.29	1.20	
M5	400	120	48052	6270.00	61.47	130483.62	1.28		
M6	400	120	48000	6300.00	61.76	131250.00	1.29		

Tabla 169Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 1% de reemplazo de plástico PET a los 14 días

			BLO	QUE PLAS	TICO PET	1.0%		
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 14 DÍAS								
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa
M1	400	118	47224	7300.00	71.57	154583.73	1.52	
M2	400	119	47624	7270.00	71.27	152654.77	1.50	
M3	400	118	47200	7350.00	72.06	155720.34	1.53	1.51
M4	400	118	47212	7250.00	71.08	153563.30	1.51	1.51
M5	400	119	47612	7400.00	72.55	155423.33	1.52	
M6	400	120	48000	7390.00	72.45	153958.33	1.51	

Tabla 170Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 3% de reemplazo de plástico PET a los 14 días

			BLOQU	E PLAST	ICO PET	3.0%		
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 14 DÍAS								
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa
M1	400	119	47600	7010.00	68.73	147268.91	1.44	
M2	400	120	48024	7120.00	69.80	148259.20	1.45	
M3	400	120	48000	7090.00	69.51	147708.33	1.45	1.45
M4	400	120	48012	7180.00	70.39	149545.95	1.47	1.43
M5	400	120	48000	7070.00	69.31	147291.67	1.44	
M6	400	119	47612	7100.00	69.61	149122.38	1.46	

Tabla 171Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 5% de reemplazo de plástico PET a los 14 días

BLOQUE PLASTICO PET 5.0%									
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 14 DÍAS									
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa	
M1	400	120	48012	6970	68.33	145172.04	1.42	1.41	

M2	400	121	48412	6960	68.24	143765.71	1.41
M3	400	120	48024	6880	67.45	143261.70	1.40
M4	400	120	48000	6940	68.04	144583.33	1.42
M5	400	121	48412	6900	67.65	142526.35	1.40
M6	400	120	48024	6910	67.75	143886.39	1.41

Tabla 172Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto patrón a los 28 días

BLOQUE PATRÓN RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS									
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa	
M1	400	121	48424	13590	133.24	280644.80	2.75		
M2	400	120	48012	13400	131.37	279096.89	2.74		
M3	400	121	48424	13760	134.90	284155.44	2.79	2.00	
M4	400	120	48000	13970	136.96	291041.67	2.85	2.80	
M5	400	120	48000	14020	137.45	292083.33	2.86		
M6	400	120	48000	13750	134.80	286458.33	2.81		

Tabla 173Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 1% de reemplazo de poliestireno expandido a los 28 días

			BLOQU	E POLIES	STIRENO	1.0%			
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS									
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa	
M1	400	121	48400	11100	108.82	229338.84	2.25		
M2	400	121	48400	11200	109.80	231404.96	2.27		
M3	400	120	48012	10180	99.80	212030.33	2.08	2.23	
M4	400	121	48400	11090	108.73	229132.23	2.25	2.23	
M5	400	120	48012	11110	108.92	231400.48	2.27		
M6	400	120	48012	11020	108.04	229525.95	2.25		

Tabla 174Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 3% de reemplazo de poliestireno expandido a los 28 días

			BLOQU	E POLIES	TIRENO	3.0%			
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS									
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa	
M1	400	120	48012	10050.00	98.53	209322.67	2.05		
M2	400	120	48012	9990.00	97.94	208072.98	2.04		
M3	400	121	48400	10100.00	99.02	208677.69	2.05	2.04	
M4	400	120	48012	10070.00	98.73	209739.23	2.06	2.04	
M5	400	121	48400	9890.00	96.96	204338.84	2.00		
M6	400	121	48400	9970.00	97.75	205991.74	2.02		

Tabla 175Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 5% de reemplazo de poliestireno expandido a los 28 días

			BLOQU	E POLIES	STIRENO	5.0%			
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS									
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa	
M1	400	121	48412	9790.00	95.98	202222.17	1.98		
M2	400	120	48000	9840.00	96.47	205000.00	2.01		
M3	400	120	48000	9750.00	95.59	203125.00	1.99	2.01	
M4	400	120	48000	9840.00	96.47	205000.00	2.01	2.01	
M5	400	120	48024	9950.00	97.55	207188.07	2.03		
M6	400	120	48024	9880.00	96.86	205730.47	2.02		

Tabla 176Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 1% de reemplazo de plástico PET a los 28 días

BLOQUE PLASTICO PET 1.0% RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS								
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa
M1	400	121	48424	12030.00	117.94	248429.50	2.44	2.44

M2	400	119	47624	11970.00	117.35	251344.92	2.46
M3	400	119	47600	12080.00	118.43	253781.51	2.49
M4	400	121	48412	11990.00	117.55	247665.36	2.43
M5	400	119	47600	11860.00	116.27	249159.66	2.44
M6	400	121	48400	11900.00	116.67	245867.77	2.41

Tabla 177Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 3% de reemplazo de plástico PET a los 28 días

BLOQUE PLASTICO PET 3.0%								
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS								
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa
M1	400	119	47600	10750.00	105.39	225840.34	2.21	
M2	400	121	48424	10490.00	102.84	216627.22	2.12	
M3	400	118	47212	10680.00	104.71	226214.63	2.22	2.17
M4	400	120	48024	10700.00	104.90	222805.26	2.18	2.17
M5	400	120	48012	10540.00	103.33	219528.45	2.15	
M6	400	120	48000	10560.00	103.53	220000.00	2.16	

Tabla 178Procesamiento de ensayo de resistencia a compresión de bloqueta de concreto con 5% de reemplazo de plástico PET a los 28 días

BLOQUE PLASTICO PET 5.0%								
RESISTENCIA A LA COMPRESION DEL BLOQUE A LOS 28 DÍAS								
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PROMEDIO (f'b) Mpa
M1	400	121	48412	9790	95.98	202222.17	1.98	
M2	400	119	47600	9910	97.16	208193.28	2.04	
M3	400	120	48000	9780	95.88	203750.00	2.00	2.01
M4	400	121	48412	9890	96.96	204287.77	2.00	2.01
M5	400	121	48424	9900	97.06	204443.23	2.00	
M6	400	120	48024	9870	96.76	205522.24	2.01	

Capitulo IV: Resultados de la investigación

4.1. Resultados respecto a los objetivos específicos

4.1.1. Variación dimensional

Tabla 179 *Resultados del ensayo de variación dimensional*

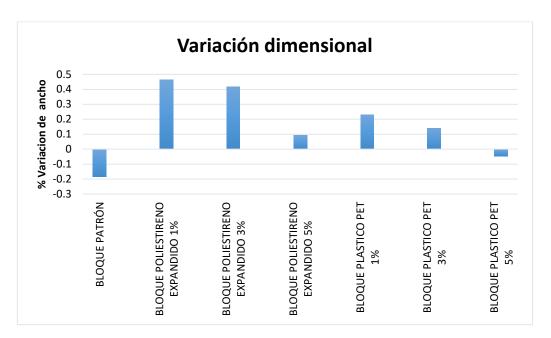

VARIACIÓN DIMENSIONAL (%)								
Muestra	Largo	Ancho	Altura	Espesor				
BLOQUE PATRÓN	0.153	0.19	0.278	1.23				
BLOQUE POLIESTIRENO EXPANDIDO 1%	0.167	0.463	0.17	1.23				
BLOQUE POLIESTIRENO EXPANDIDO 3%	0.306	0.417	0.694	2.47				
BLOQUE POLIESTIRENO EXPANDIDO 5%	0.403	0.093	0.139	0.926				
BLOQUE PLASTICO PET 1%	0.153	0.231	0.03	1.23				
BLOQUE PLASTICO PET 3%	0.236	0.139	0.111	2.47				
BLOQUE PLASTICO PET 5%	0.181	0.05	0.139	0.62				

Figura 46Comparación del largo de bloques de concreto

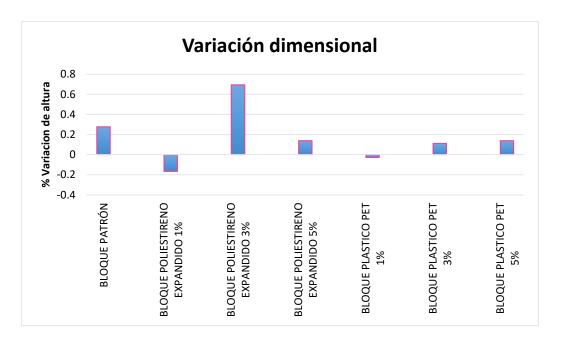


Figura 47Comparación del ancho de bloques de concreto

Figura 48 *Comparación de altura de bloques de concreto*

Figura 49Comparación de espesor de bloques de concreto

Interpretación: Según la norma E-070 (Tabla N° 1) el máximo valor de variación dimensional es de +-6% para dimensiones hasta 150 mm, +-4% para dimensiones mayores a 150 mm, se obtuvieron resultados de variación dimensional de hasta 2.47% en todas las dimensiones: largo, ancho, altura y espesor para todos los tipos de bloques analizados por tanto se cumple con lo indicado en la norma para bloques No Portantes.

Por otra parte la variación dimensional es mayor en los bloques con reemplazo de poliestireno expandido y plástico Pet reciclado debido a que ambos materiales tienen texturas diferentes que se hacen notorios en los bordes de los bloques de concreto.

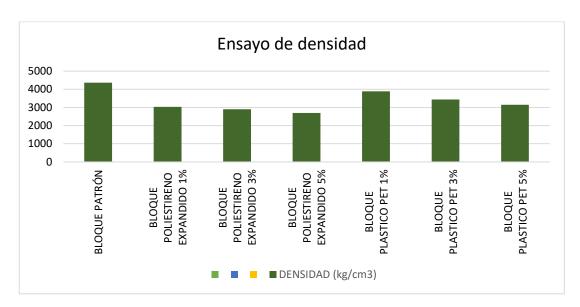
4.1.2. AlabeoTabla 180Resultados del ensayo de alabeo

		ALA	BEO			
MURCEDA	CARA SUPERIOR (mm)		CONCAVO/	CARA INFERIOR (mm)		CONCAVO/
MUESTRA	DIAGONAL 1	DIAGONAL 2	CONVEXO	DIAGONAL 1	DIAGONAL 2	CONVEXO
BLOQUE PATRÓN	4.0	4.3	Convexo	4.0	4.0	Convexo
BLOQUE POLIESTIRENO EXPANDIDO 1%	4.0	6.0	Convexo	0.0	4.5	Cóncavo
BLOQUE POLIESTIRENO EXPANDIDO 3%	4.0	4.0	Convexo	4.0	4.3	Convexo
BLOQUE POLIESTIRENO EXPANDIDO 5%	5.7	4.0	Convexo	5.0	5.0	Cóncavo
BLOQUE PLASTICO PET 1%	6.5	8.0	Cóncavo	3.3	5.0	Convexo

BLOQUE PLASTICO PET 3%	5.0	4.7	Convexo	2.0	3.0	Cóncavo
BLOQUE PLASTICO PET 5%	5.3	4.0	Convexo	2.0	2.5	Cóncavo

Interpretación: Según la norma E-070 (Tabla N $^{\circ}$ 1) el máximo valor alabeo es de \pm 8mm, según los resultados se obtuvieron resultados menores a 8.0 mm en todos los casos, demostrándose así que cumplen con lo establecido en la norma.

4.1.3. Absorción y densidad


Tabla 181Resultados del ensayo de absorción y densidad

ABSORCIÓN Y DENSIDAD					
MUESTRA	ABSORCIÓN (%)	DENSIDAD (kg/cm3)			
BLOQUE PATRÓN	5.22	4363.21			
BLOQUE POLIESTIRENO EXPANDIDO 1%	4.83	3032.36			
BLOQUE POLIESTIRENO EXPANDIDO 3%	4.19	2900.40			
BLOQUE POLIESTIRENO EXPANDIDO 5%	3.85	2694.21			
BLOQUE PLASTICO PET 1%	4.62	3889.01			
BLOQUE PLASTICO PET 3%	4.48	3435.17			
BLOQUE PLASTICO PET 5%	4.09	3148.88			

Figura 50Comparación de absorción en los bloques de concreto

Figura 51Comparación de densidad en los bloques de concreto

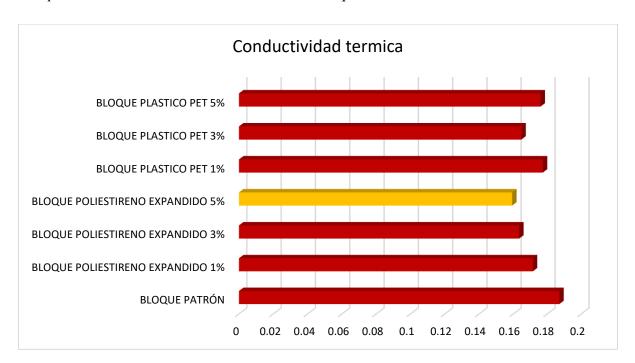
Interpretación: Según la norma E - 070 las unidades de concreto, tendrán una absorción no mayor que 15%, según los resultados se obtuvieron resultados de hasta 5.22%, lo que indica que se cumple lo que indica la norma.

Respecto a la densidad de puede observar que a medida que se reemplaza mayor porcentaje de perlas de poliestireno expandido baja la densidad, de igual modo sucede con los bloques reemplazados por Pet reciclado.

4.1.3.1. Peso de los bloques de concreto

Tabla 182Resultados del ensayo de absorción y densidad

PESO PROMEDIO						
MUESTRA	PESO PROMEDIO (Kg)					
BLOQUE PATRÓN	9.58					
BLOQUE POLIESTIRENO EXPANDIDO 1%	6.27					
BLOQUE POLIESTIRENO EXPANDIDO 3%	5.82					
BLOQUE POLIESTIRENO EXPANDIDO 5%	4.35					
BLOQUE PLASTICO PET 1%	6.30					
BLOQUE PLASTICO PET 3%	6.10					
BLOQUE PLASTICO PET 5%	5.89					


Interpretación: En la tabla se observa el mayor peso para un bloque patrón; sin embargo, a medida que se hace el reemplazo con poliestireno expandido y plástico Pet reciclado disminuye de manera considerable, obteniéndose un menor peso en los bloques de poliestireno expandido con 5% de reemplazo.

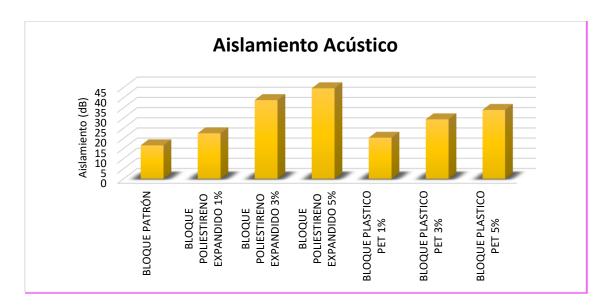
4.1.4. Conductividad térmica

Tabla 183 *Resultados del ensayo de conductividad térmica*

CONDUCTIVIDAD TÉRMICA							
MUESTRA	PROMEDIO (W/m. °K)						
BLOQUE PATRÓN	0.187						
BLOQUE POLIESTIRENO EXPANDIDO 1%	0.171						
BLOQUE POLIESTIRENO EXPANDIDO 3%	0.163						
BLOQUE POLIESTIRENO EXPANDIDO 5%	0.159						
BLOQUE PLASTICO PET 1%	0.177						
BLOQUE PLASTICO PET 3%	0.165						
BLOQUE PLASTICO PET 5%	0.176						

Figura 52Comparación de conductividad térmica en los bloques de concreto

Interpretación: Según la ASTM C117-13 indica que las unidades entre 0.16 y 0.46 son medianos conductores (Tabla 5: Clasificación de conductividad térmica), teniendo todos nuestros valores hallados en este rango.


También se puede observar que a mayor porcentaje de poliestireno expandido disminuye la conductividad térmica, obteniendo menor conductividad en el bloque con reemplazo de 5% de perlas de poliestireno expandido. Sin embargo en el caso de los bloques con reemplazo de plástico Pet reciclado tiene su menor valor con 3% de reemplazo y aumenta para los bloques con 5% de reemplazo.

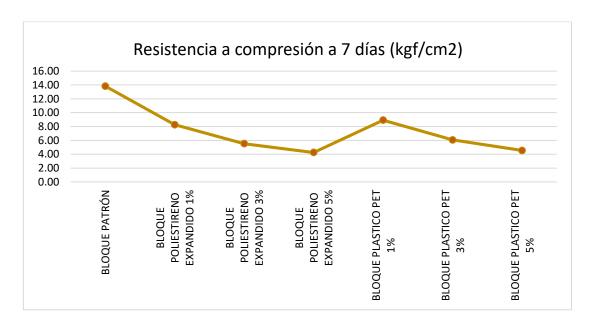
4.1.5. Aislamiento acústico

Tabla 184 *Resultados del ensayo de aislamiento acústico*

AISLAMIENTO ACÚSTICO					
MUESTRA	PROMEDIO (dB)				
BLOQUE PATRÓN	16.53				
BLOQUE POLIESTIRENO EXPANDIDO 1%	22.50				
BLOQUE POLIESTIRENO EXPANDIDO 3%	38.80				
BLOQUE POLIESTIRENO EXPANDIDO 5%	44.60				
BLOQUE PLASTICO PET 1%	20.31				
BLOQUE PLASTICO PET 3%	29.36				
BLOQUE PLASTICO PET 5%	33.98				

Figura 53Comparación de aislamiento acústico en los bloques de concreto

Interpretación: El aislamiento acústico de los bloques de concreto aumenta en proporción al incremento de porcentaje de reemplazo del confitillo.


Según la gráfica se observa mayor aislamiento acústico en los bloques con 3% y 5% de reemplazo de poliestireno expandido.

4.1.6. Resistencia a compresión

Tabla 185Resultados del ensayo de resistencia a compresión a 7 días

RESISTENCIA A COMPRESIÓN A LOS 7 DIAS	5	
MUESTRA	kgf/cm2	Mpa
BLOQUE PATRÓN	13.83	1.36
BLOQUE POLIESTIRENO EXPANDIDO 1%	8.26	0.81
BLOQUE POLIESTIRENO EXPANDIDO 3%	5.53	0.54
BLOQUE POLIESTIRENO EXPANDIDO 5%	4.26	0.42
BLOQUE PLASTICO PET 1%	8.92	0.88
BLOQUE PLASTICO PET 3%	6.07	0.60
BLOQUE PLASTICO PET 5%	4.54	0.45

Figura 54Comparación de resistencia a compresión a los 7 días

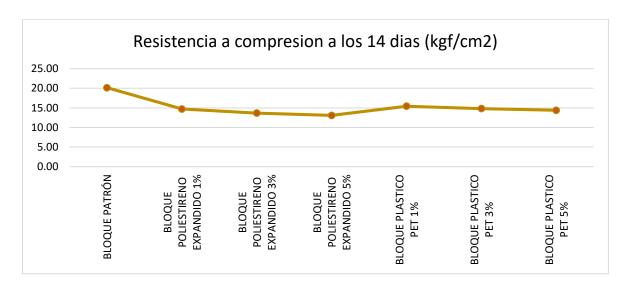


Tabla 186Resultados del ensayo de resistencia a compresión a 14 días

RESISTENCIA A COMPRESIÓN A LOS 14	DIAS	
MUESTRA	(kgf/cm2)	Mpa
BLOQUE PATRÓN	20.14	1.98
BLOQUE POLIESTIRENO EXPANDIDO 1%	14.70	1.44
BLOQUE POLIESTIRENO EXPANDIDO 3%	13.66	1.34
BLOQUE POLIESTIRENO EXPANDIDO 5%	13.08	1.28
BLOQUE PLASTICO PET 1%	15.43	1.51
BLOQUE PLASTICO PET 3%	14.82	1.45
BLOQUE PLASTICO PET 5%	14.38	1.41

Figura 55Comparación de resistencia a compresión a los 14 días

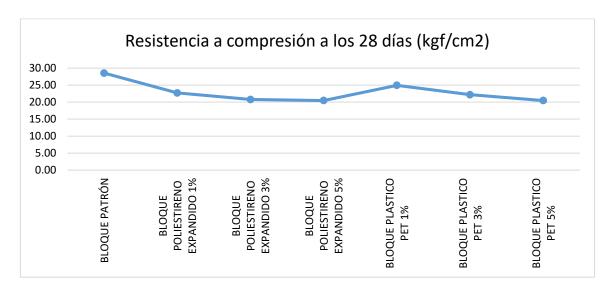


Tabla 187Resultados del ensayo de resistencia a compresión a 28 días

RESISTENCIA A COMPRESIÓN A LOS 28 DÍAS					
MUESTRA	(kgf/cm2)	Mpa			
BLOQUE PATRÓN	28.55	2.80			
BLOQUE POLIESTIRENO EXPANDIDO 1%	22.71	2.23			
BLOQUE POLIESTIRENO EXPANDIDO 3%	20.76	2.04			
BLOQUE POLIESTIRENO EXPANDIDO 5%	20.47	2.01			
BLOQUE PLASTICO PET 1%	24.93	2.44			
BLOQUE PLASTICO PET 3%	22.18	2.17			
BLOQUE PLASTICO PET 5%	20.47	2.01			

Figura 56Comparación de resistencia a compresión a los 28 días

Interpretación: La Norma Técnica E.070 (Tabla N° 1) indica que el mínimo valor de resistencia a la compresión f'b es de 2.0 MPa, ya que en la presente investigación se realizó el ensayo a los 7, 14 y 28 días de elaborados las bloquetas, con la finalidad de verificar la evolución de la resistencia a compresión, según las tablas se observa que se llegó a la resistencia indicada en la norma en todos los bloques.

También se observa que a mayor porcentaje de reemplazo de poliestireno expandido y plástico Pet reciclado disminuye la resistencia a compresión, por lo tanto, son inversamente proporcionales.

4.1.7. Costos de producción

Tabla 188Resultados costo de producción de bloqueta patrón

Análisis de costos unitarios de bloqueta patrón						
Rendimiento	400.00	Bloques/día	Jornada	8.00	horas	
Cuadrilla		2 opera	arios + 1 peór	ı		
Recurso	Unidad	Cuadrilla	Cantidad	Precio	Parcial	
Mano de obra					0.6750	
Operario	hh	2	0.04	12.50	0.5000	
Peón	hh	1	0.02	8.75	0.1750	
Materiales					1.1339	
Cemento	bls		0.034	27.00	0.9180	
Arena	m3		0.00163	92.50	0.1508	
Confitillo	m3		0.00130	50.00	0.0650	
Agua	m3		0.00076	0.10	0.0001	

Equipos					0.3603
Mezcladora estacionaria	hm	1	0.02	12.00	0.2400
Vibrocomprimidora	hm	1	0.02	5.00	0.1000
Herramientas manuales	%M.O		0.03	0.68	0.0203
Costo por	unidad de b	loqueta en se	oles		2.169

Tabla 189Resultados costo de producción de bloqueta con 1 % de reemplazo de poliestireno expandido

Análisis de costos unitar	_	ieta con 1% de pandido	e reemplazo	de poliest	tireno
Rendimiento	400.00	Bloques/día	Jornada	8.00	horas
Cuadrilla		2 opera	arios + 1 peór	1	
Recurso	Unidad	Cuadrilla	Cantidad	Precio	Parcia
Mano de obra					0.6750
Operario	hh	2	0.04	12.50	0.5000
Peón	hh	1	0.02	8.75	0.1750
Materiales					1.3434
Cemento	bls		0.034	27.00	0.9180
Arena	m3		0.00163	92.50	0.1508
Confitillo	m3		0.00129	50.00	0.0645
Poliestireno	kg		0.042	5.00	0.2100
Agua	m3		0.00076	0.10	0.000
Equipos					0.3603
Mezcladora estacionaria	hm	1	0.02	12.00	0.2400
Vibrocomprimidora	hm	1	0.02	5.00	0.1000
Herramientas manuales	%M.O		0.03	0.68	0.0203
Costo por	unidad de	bloqueta en so	les		2.38

Tabla 190Resultados costo de producción de bloqueta con 3 % de reemplazo de poliestireno expandido

Análisis de costos unitarios de bloqueta con 3% de reemplazo de poliestireno expandido							
Rendimiento	400.00	Bloques/día	Jornada	8.00	horas		
Cuadrilla		2 opera	arios + 1 peór	ı			
Recurso	Unidad	Cuadrilla	Cantidad	Precio	Parcial		
Mano de obra					0.6750		
Operario	hh	2	0.04	12.50	0.5000		
Peón	hh	1	0.02	8.75	0.1750		

Materiales					1.7619
Cemento	bls		0.034	27.00	0.9180
Arena	m3		0.00163	92.50	0.1508
Confitillo	m3		0.00126	50.00	0.0630
Poliestireno	kg		0.126	5.00	0.6300
Agua	m3		0.00076	0.10	0.0001
Equipos					0.3603
Mezcladora estacionaria	hm	1	0.02	12.00	0.2400
Vibrocomprimidora	hm	1	0.02	5.00	0.1000
Herramientas manuales	%M.O		0.03	0.68	0.0203
Costo por	unidad de b	loqueta en so	oles		2.80

Tabla 191Resultados costo de producción de bloqueta con 5 % de reemplazo de poliestireno expandido

Análisis de costos unitar	-	ueta con 5% de pandido	e reemplazo	de poliest	tireno
Rendimiento	400.00	Bloques/día	Jornada	8.00	horas
Cuadrilla		2 opera	arios + 1 peór	1	
Recurso	Unidad	Cuadrilla	Cantidad	Precio	Parcial
Mano de obra					0.6750
Operario	hh	2	0.04	12.50	0.5000
Peón	hh	1	0.02	8.75	0.1750
Materiales					2.1754
Cemento	bls		0.034	27.00	0.9180
Arena	m3		0.00163	92.50	0.1508
Confitillo	m3		0.00123	50.00	0.0615
Poliestireno	kg		0.209	5.00	1.0450
Agua	m3		0.00076	0.10	0.0001
Equipos					0.3603
Mezcladora estacionaria	hm	1	0.02	12.00	0.2400
Vibrocomprimidora	hm	1	0.02	5.00	0.1000
Herramientas manuales	%M.O		0.03	0.68	0.0203
Costo por	unidad de	bloqueta en so	les		3.2106

Tabla 192Resultados costo de producción de bloqueta con 1 % de reemplazo de plástico PET reciclado

Análisis de costos unitarios de bloqueta con 1% de reemplazo de plástico PET reciclado

Rendimiento	400.00	Bloques/día	Jornada	8.00	horas
Cuadrilla		2 opera	arios + 1 peór	ı	
Recurso	Unidad	Cuadrilla	Cantidad	Precio	Parcial
Mano de obra					0.6750
Operario	hh	2	0.04	12.50	0.5000
Peón	hh	1	0.02	8.75	0.1750
Materiales					1.2594
Cemento	bls		0.034	27.00	0.9180
Arena	m3		0.00163	92.50	0.1508
Confitillo	m3		0.00129	50.00	0.0645
Plástico PET reciclado	kg		0.042	3.00	0.1260
Agua	m3		0.00076	0.10	0.0001
Equipos					0.3603
Mezcladora estacionaria	hm	1	0.02	12.00	0.2400
Vibrocomprimidora	hm	1	0.02	5.00	0.1000
Herramientas manuales	%M.O		0.03	0.68	0.0203
Costo por	unidad de	bloqueta en so	les		2.2946

Tabla 193Resultados costo de producción de bloqueta con 3 % de reemplazo de plástico PET reciclado

Análisis de costos unitari	_	eta con 3% de eciclado	reemplazo d	le plástic	o PET
Rendimiento	400.00	Bloques/día	Jornada	8.00	horas
Cuadrilla					
Recurso	Unidad	Cuadrilla	Cantidad	Precio	Parcial
Mano de obra					0.6750
Operario	hh	2	0.04	12.50	0.5000
Peón	hh	1	0.02	8.75	0.1750
Materiales					1.5099
Cemento	bls		0.034	27.00	0.9180
Arena	m3		0.00163	92.50	0.1508
Confitillo	m3		0.00126	50.00	0.0630
Plástico PET reciclado	kg		0.126	3.00	0.3780
Agua	m3		0.00076	0.10	0.0001
Equipos					0.3603
Mezcladora estacionaria	hm	1	0.02	12.00	0.2400
Vibrocomprimidora	hm	1	0.02	5.00	0.1000
Herramientas manuales	%M.O		0.03	0.68	0.0203
Costo por	unidad de	bloqueta en so	les		2.5451

Tabla 194Resultados costo de producción de bloqueta con 5 % de reemplazo de plástico PET reciclado

Análisis de costos unitari	-	eta con 5% de eciclado	reemplazo d	le plástic	o PET
Rendimiento	400.00	Bloques/día	Jornada	8.00	horas
Cuadrilla		2 opera	arios + 1 peór	ı	
Recurso	Unidad	Cuadrilla	Cantidad	Precio	Parcial
Mano de obra					0.6750
Operario	hh	2	0.04	12.50	0.5000
Peón	hh	1	0.02	8.75	0.1750
Materiales					1.7574
Cemento	bls		0.034	27.00	0.9180
Arena	m3		0.00163	92.50	0.1508
Confitillo	m3		0.00123	50.00	0.0615
Plástico PET reciclado	kg		0.209	3.00	0.6270
Agua	m3		0.00076	0.10	0.0001
Equipos					0.3603
Mezcladora estacionaria	hm	1	0.02	12.00	0.2400
Vibrocomprimidora	hm	1	0.02	5.00	0.1000
Herramientas manuales	%M.O		0.03	0.68	0.0203
Costo por	unidad de	bloqueta en so	les	·	2.7926

4.2. Resultados respecto al objetivo General

Se analizó comparativamente las características físico- mecánicas y costos de producción de bloquetas de concreto de tipo no portante al reemplazar diferentes porcentajes del confitillo (1%,3% y 5%) con perlas de poliestireno expandido y hojuelas de plástico PET reciclado obteniendo como resultado final que los bloques con reemplazo de Pet reciclado y poliestireno expandido con 1%,3% y 5% de reemplazo lograron resultados similares en cuanto a las características físicas; sin embargo, los bloques con reemplazo de plástico Pet reciclado, obtuvieron mayor resistencia a compresión y mejores costos de producción que los bloques con reemplazo de poliestireno.

CAPITULO V: DISCUSIÓN

5.1. Descripción de los hallazgos más relevantes y significativos

Discusión N° 01.- ¿Las propiedades del plástico PET y poliestireno ayudan a mejorar las características de un bloque de concreto al ser elaborados con estos materiales?

Usamos el plástico PET y poliestireno porque principalmente el peso del bloque de concreto es un factor determinante para evitar su uso, para ello se investiga nuevos materiales que reduzcan el peso del mismo del bloque de concreto sin disminuir sus propiedades físicomecánicas.

Dentro de los distintos materiales utilizados para el reemplazo de dichos agregados, se requiere productos altamente reciclables, de abundante uso por la sociedad; y en caso del poliestireno expandido, el uso de este se da en la construcción; con propiedades mecánicas y físicas resaltantes. En este caso el poliestireno expandido de uso común y el plástico PET los cuales cumplen son los requerimientos indicados.

Las características más relevantes del plástico son la buena resistencia en el tiempo y térmica, excelentes propiedades mecánicas, alta resistencia al desgaste, muy buen coeficiente de deslizamiento, reciclable, liviano, entre otras. Y características del poliestireno como la ligereza, volumen. Teniendo en común la ligereza y sin afectar las resistencias a la compresión y tracción.

Discusión N° 02.- ¿Cómo fue el comportamiento respecto a la adherencia del cemento con los agregados, poliestireno expandido y plástico Pet reciclado?

En el caso de la pasta elaborada con plástico Pet reciclado y la pasta elaborada con poliestireno expandido la adherencia ocurrió en su totalidad, cabe destacar que al momento de la ruptura ayudo a que no se quebrara por completo manteniéndola unida aun después del fallo. Este efecto se observó de mejor manera en los bloques con pet reciclado ya que su forma irregular influyo de forma positiva al momento de realizar el ensayo de compresión.

5.2. Limitaciones del estudio

Discusión N° 03.- ¿Cómo desarrollaron la conductividad térmica, aislamiento acústico y las características físico-mecánicas de los bloques de concreto?

La evolución de las propiedades es significativa en función a las características de los bloques de concreto. Para un análisis a los 7 días de secado, se tienen resultados no muy distantes al bloque patrón en todas las proporciones. En la propiedad de alabeo, los valores

se mantienen dentro lo establecido para un bloque tipo NP especificada en la Norma Técnica E.070. La variación dimensional de los bloques de concreto sustituidos en todos los porcentajes cumple con los parámetros establecidos en la Norma Técnica E.070. La absorción es directamente proporcional al porcentaje de poliestireno y plástico, los bloques elaborados con poliestireno generan una absorción mayor a la de los elaborados con plástico en un 1% aproximadamente en todas las proporciones. La resistencia a la compresión es inversamente proporcional a los porcentajes de plástico PET y poliestireno con los que se elaboraron los bloques de concreto. El porcentaje que presenta mayor esfuerzo a la resistencia de compresión es de 5% de los bloques elaborados con plástico PET, obviando resultados del bloque patrón, obteniendo los demás porcentajes menos resistencia a la compresión.

5.3. Comparación crítica con la literatura existente

Discusión N° 04.- ¿Contamos con una guía a nivel local para la valoración de la conductividad térmica y aislamiento acústico de distintos materiales?

Al realizar nuestra investigación y en búsqueda de fuentes, no se hallaron normativas locales o nacionales acerca de la conductividad térmica o del aislamiento acústico, siendo imprescindible la realización de una guía para estimar la misma. Así mismo, con respecto al aislamiento acústico, no contamos con a algún tipo de norma o guías para realizar este estudio.

5.4. Implicancias del estudio

Discusión N° 05.- ¿Las características mecánicas de bloques de concreto elaborados con plástico y poliestireno hacen posible su uso en la construcción de viviendas?

Se determina la resistencia a la compresión de los bloques de concreto elaborados con plástico y poliestireno, vemos que la resistencia a la compresión del bloque es 20 Kg/cm2 (2.2MPa) para los bloques con sustitución de 1% de plástico PET cumpliendo con la norma E 070 que solicita una compresión mínima de 20 kg/cm2 (2,0 MPa), según los resultados de la variación dimensional de la unidad, cumple con los parámetros establecidos en la Norma Técnica E.070. En la propiedad de alabeo, los valores se mantuvieron dentro lo establecido para un bloque tipo NP especificada en la Norma Técnica E.070.

CONCLUSIONES Y RECOMENDACIONES

Conclusiones

Conclusión n°01.- Respecto a la hipótesis general que indica: "Las bloquetas con reemplazo de plástico Pet reciclado tendrán mejores características físicas- mecánicas y menores costos de producción a comparación de las bloquetas con reemplazo de poliestireno expandido".

Se obtuvo una menor variación dimensional para los bloques con reemplazo de plástico Pet reciclado a comparación de las unidades de poliestireno expandido; para el alabeo se observó que los bloques con reemplazo de poliestireno expandido tiene resultados similares respecto a los bloques con reemplazo de plástico Pet reciclado; la absorción es menor en el caso de bloquetas con 3% de reemplazo de poliestireno expandido a comparación de los demás bloques; en el ensayo de conductividad térmica el menor valor hallado es para los bloques de concreto con 5% de reemplazo de poliestireno expandido que para bloques plástico PET; el mayor valor del aislamiento acústico se halló en los bloques con 5% de reemplazo de poliestireno expandido que para los bloques de plástico PET; en el caso de la resistencia a la compresión los bloques elaborados con 1%, 3% y 5% de poliestireno se obtuvieron menores resistencias que para el plástico PET durante las pruebas realizadas en los 7, 14 y 28 días, dentro del análisis de precios se obtuvieron costos menores en los bloques con reemplazo de plástico Pet reciclado.

Es por todo lo analizado anteriormente que las bloquetas reemplazadas con poliestireno expandido y plástico Pet reciclado cumplen con los parámetros establecidos en la norma E-070; por lo tanto se concluye que ambos tipos de bloques tienen buenas características físico-mecánicas; sin embargo, los bloques con 1%, 3% y 5% con reemplazo de Pet reciclado tienen menores costos de producción y mejor resistencia a compresión.

Conclusión n°02.- Se logró demostrar la hipótesis específica n°01 que indica: "Las bloquetas con reemplazo 1%, 3% y 5% de plástico Pet reciclado tendrán menor variación dimensional respecto a las bloquetas con reemplazo de 1%, 3% y 5% poliestireno expandido.". Se obtuvo una menor variación dimensional para el plástico Pet reciclado con reemplazo de 1% que para las unidades de poliestireno expandido. La característica física de variación dimensional si cumple con los parámetros de la norma E-070 y no se vio afectada por la sustitución del confitillo.

Conclusión n°03.- Se logró demostrar la hipótesis específica n°02 que indica: "Las bloquetas con reemplazo 1%, 3% y 5% de poliestireno expandido tendrán menor alabeo respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado.".

Para la característica física de alabeo se obtuvieron valores que se mantuvieron dentro lo establecido para un bloque tipo NP especificada en la Norma Técnica E.070.

Conclusión n°04.- Se logró demostrar la hipótesis específica n°03 que indica: "Las bloquetas con reemplazo 1%, 3% y 5% de poliestireno expandido tendrán menor densidad respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado". La densidad es menor en el caso del 5% de poliestireno expandido con 2694.21 kg/cm3 sobre el plástico PET de 5% con 3148.88 kg/cm3, ambos son los menores valores obtenidos en los resultados ensayados, lo que indica que a mayor porcentaje de reemplazo se obtiene menor densidad. De igual forma sucede con el peso en kg, se obtuvo 4 kg en los bloques con 5% de reemplazo de poliestireno expandido.

Conclusión n°05.- Se logró demostrar la hipótesis específica n°04 que indica: "Las bloquetas con reemplazo 1%, 3% y 5% de poliestireno expandido tendrán menor absorción respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado". Se obtuvo menos absorción en los bloques con 5% de reemplazo con poliestireno expandido lo que indica 26% menos que el bloque patrón. La característica física de absorción si cumple con lo establecido en la norma E-070 ya que no se vio afectada por el reemplazo de poliestireno expandido y plástico Pet reciclado.

Conclusión n°06.- Se logró demostrar la hipótesis específica n°05 que indica: "Las bloquetas con reemplazo de 1%, 3% y 5% de poliestireno expandido tendrán menor conductividad térmica con respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado". El mayor valor hallado es para los bloques de concreto con poliestireno expandido con 1% de reemplazo, lo que indica un 15% menos que el bloque patrón.

Conclusión n°07.- Se logró demostrar la hipótesis específica n°06 que indica: "Las bloquetas con reemplazo de 1%, 3% y 5% de poliestireno expandido tendrán mayor aislamiento acústico con respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado". El mayor valor de aislamiento acústico se halló en los bloques con poliestireno expandido con 5% de reemplazo, obteniendo un aislamiento de 44.60dB. Según los resultados también se concluyó que el bloque con 5% de reemplazo de poliestireno

expandido tiene 62.9% más aislamiento respecto al bloque patrón y 24% más que el bloque con 5% de reemplazo de plástico Pet reciclado.

Conclusión n°08.- Se logró demostrar la hipótesis específica n°07 que indica: "Las bloquetas con reemplazo de 1%, 3% y 5% de poliestireno expandido tendrán menor resistencia a la compresión con respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado". Para los bloques elaborados con 1%, 3% y 5% de poliestireno se obtuvieron menores resistencias que para el plástico PET durante las pruebas realizadas en los 7, 14 y 28 días para medir sus resistencias; la mayor resistencia hallada en los 28 días es para los bloques con plástico PET con un 2.44 MPa en bloques de plástico PET con 1% de reemplazo cumpliendo así con lo establecido en la norma E-070, la cual indica como mínimo valor de resistencia a compresión 2.0 Mpa. También se evidencio que la resistencia del bloque con 1% de reemplazo de plástico Pet reciclado disminuye en un 13% respecto al bloque patrón.

Conclusión n°09.- Se logró demostrar la hipótesis especifica n°08 que indica: "Las bloquetas con reemplazo de 1%, 3% y 5% de poliestireno expandido tendrán mayor costo unitario respecto a las bloquetas con reemplazo de 1%, 3% y 5% plástico PET reciclado. Para los bloques de concreto elaborados con plástico Pet reciclado se obtuvo un menos costo en su análisis en sus diferentes porcentajes respecto a una bloqueta con reemplazo en 1%, 3% y 5% de poliestireno expandido. El costo del bloque de concreto con reemplazo de 5% con plástico Pet reciclado es mayor en 22% respecto al bloque patrón y menor en 13% respecto al bloque con 5% de reemplazo de plástico Pet reciclado.

Conclusión n°10.- De acuerdo a los resultados la conductividad térmica y el aislamiento acústico son directamente proporcionales a las propiedades de los materiales, a mayor porcentaje de poliestireno expandido y plástico Pet reciclado en los bloques de concreto, estos actúan como aislador térmico y acústico permitiendo disminuir la conductividad térmica y acústica.

Conclusión n°11.- Con lo visto anteriormente se demostró que todos los bloques cumplen con la norma E-070; sin embargo, el bloque de concreto con reemplazo de 5% de plástico Pet reciclado tiene buenas características físico-mecánicas, menor peso respecto a los reemplazados con 1% y 3% de plástico Pet reciclado y un costo de producción aceptable a comparación de los demás bloques elaborados, por lo que es apto para ser utilizado en la construcción de muros no portantes de manera sostenible.

Recomendaciones

Recomendación 01. - Se recomienda incrementar las investigaciones sobre la conductividad térmica y de aislamiento acústico en unidades de albañilería de diferentes clases para ampliar el conocimiento en estos temas.

Recomendación 02. - Se recomienda el estudio del comportamiento de diferentes elementos en unidades de albañilería que mejoren las propiedades físico-mecánicas y los costos de producción en el ámbito de construcción.

Recomendación 03. - Se recomienda poner atención en el estudio de elementos que cumplan comportamiento de aisladores acústicos, así mismo, que tengan buen grado de protección térmica.

Recomendación 04. -Se recomienda evitar lugares con niveles intensidades de sonidos altos, así como intervenciones externas de sonidos altos, para realizar el ensayo de aislamiento acústico.

Recomendación 05. – se recomienda además ampliar el estudio del plástico PET reciclado en distintas formas de sustitución debido a su buen acoplamiento dentro de las unidades de albañilería en estudio.

REFERENCIAS BIBLIOGRAFICAS

- Aceros Arequipa. (2020). *Aceros Arequipa*. Obtenido de https://www.acerosarequipa.com/manuales/manual-de-construccion-paramaestros-de-obra/muro
- ACI. (2011). Proporcionamiento de mezclas de concreto normal, pesado y masivo.
- Aclima. (2017). *Tecnologia de plasticos*. Obtenido de https://aclima.eus/fibras-de-pet-reciclado-para-materiales-de-construccion/
- Amasifuén, H. (2018). Diseño de bloques de concreto ligero con la aplicación de perlas de poliestireno, distrito de tarapoto, san martín 2018. Tarapoto.
- Angumba, P. (2016). Ladrillos elaborados con plástico reciclado (PET), para mampostería no portante. Cuenca.
- ASTM C 117-13. (2013). ASTM C 117-13.
- ASTM C33, Standard Specification for Concrete Aggregates. (s.f.).
- ASTM C33/C33M-18, Standard Specification for Concrete Aggregates. (s.f.).
- Beltrán, R. A. (2012). *Costos y presupuestos*. Nayarit, Peru: Instituto tecnológico de TEPIC.
- Botero, L. (2002). Análisis de Rendimientos y consumos de mano de obra en actividades de construcción. *EAFIT*, 14.
- Botero, L. F. (2002). Análisis de Rendimientos y consumos de mano de obra en actividades de construccion. *EAFIT*, 11.
- BUSTAMANTE, M. (12 de abril de 2018). *INNOVA research journal*. Obtenido de https://revistas.uide.edu.ec/index.php/innova/article/view/650
- C&M. (2023). *Agrenort.Sac*. Obtenido de https://agrenortsac.wixsite.com/agregados/confitillo
- Camino, R., & Camino, R. (2017). Evaluación de la conductividad térmica, propiedades fisico-mecanicas del ladrillo king kong 18 huecos adicionado con puzolana de la cantera Raqchi en diferentes porcentajes, con respecto a un ladrillo tradicional. Cusco.
- Capeco. (2019). Costos y presupuestos en edificacion. En Capeco, *Costos y presupuestos en edificacion*.
- Casapino, M., & Serrano, A. (2020). Evaluación de la conductividad térmica y propiedades físico-mecánicas de bloques de concreto sustituyendo el confitillo por poliestireno expandido tipo perla. Cusco.
- Contrina, S. (2019).
- cursosonlineweb.com. (2015). clases de papel. Cajamarca, Peru.

- Charca, S. (2015). Evaluación de las fibras Ichu como sistema de aislamiento termico y de bajo costo para las regiones de los Andes.
- Chicaiza, V. (2017). Análisis comparativo de la resistencia a compresión entre bloques tradicionales y bloques elaborados con poliestireno expandido granular y bloques elaborados con tuza de maiz triturado como sustituto parcial del agregado grueso. AMBATO.
- Echeverria, E. (2017). Ladrillos de concreto con plastico PET reciclado. Cajamarca, Peru.
- Elaplas. (2022). *Elaplas*. Obtenido de https://www.elaplas.es/materiales/plasticostecnicos/pet/
- FAO. (s.f.). *Costos de producción*. Obtenido de https://www.fao.org/3/v8490s/v8490s06.htm
- Ferrex. (2022). Ferrex.
- Hernandez Sampieri, R. (2006). Metodología de la investigación. Mexico.
- Hernandez, R., Fernandez, C., & Baptista, P. (2014). metodología de la investigación. Peru.
- Horvath. (Lunes, 30 de Mayo de 1999). *Tecnologia de plasticos*. Obtenido de https://tecnologiadelosplasticos.blogspot.com/2011/05/pet.html
- https://eraikal.blog.euskadi.eus. (2013). Ladrillos de concreto con plastico PET reciclado. USA, Peru.
- IDAE, I. p. (23 de julio de 2007). "Soluciones con Aislamiento de Poliestireno Expandido (EPS)". Madrid. Obtenido de https://reciclamas.eu/blog/como-serecicla-el-pet-nuevas-vias-en-experimentacion/
- IMCYC. (Julio de 2004). *Propiedades del concreto*. Obtenido de http://www.imcyc.com/cyt/julio04/CONCEPTOS.pdf
- INDECOPI. (2002). UNIDADES DE ALBAÑILERÍA. Método de muestreo y ensayo de unidades de albañilería de concreto. Lima-Peru.
- INDECOPI E.040. (2009).
- Lapa, J. (2020). Efecto del poliestireno expandido en las propiedades físicas y mecánicas de la unidad de albañilería de concreto en la ciudad de Huancayo. Huancayo.
- Lazo, J. (2017). Diseño de concreto celular para diferentes densidades, analisis de sus propiedades y sus aplicaciones. Lima.
- Materiales de construccion Universidad Jose Cecilio del Valle. (03 de Agosto de 2009). *matdeconstruccion*. Obtenido de https://matdeconstruccion.wordpress.com/2009/08/03/bloques-de-concreto/

- Medina, R. (2011). *Muros No Portantes*. Obtenido de Construyendo Seguro Aceros Arequipa: https://acerosarequipa.com/pe/es/construccion-de-viviendas/boletin-construyendo/edicion_14/editorial_juan_seguro.html
- Megchum, J., Robles, F., Macias, M., & Osorio, A. (2022). Determinación de la conductividad térmica de materiales para biosecado mediante el metodo de placa caliente. Mexico.
- Menéndez, V. (2008). Medidas de aislamiento acustico. Madrid.

Muñoz, F. (2018).

Norma Tecnica E.070. (2006). MVCS.

NTP 339.185. (2018). *Scrib*. Obtenido de Agregados. Metodo de ensayo normalizado para contenido de humedad total evaporable de agregados por secado: https://es.scribd.com/document/429957838/NTP-339-185-Contenido-de-Humedad

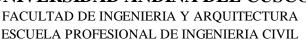
NTP 399.600 Unidades de albañileria . (2017).

- NTP 399.604. (Septiembre de 2002). Unidades de Albañileria. Peru. Obtenido de https://www.studocu.com/pe/document/universidad-tecnologica-de-los-andes/base-de-datos-2/ntp-3996042002-unidades-de-albanileria-metodo-de-muestreo-y-ensayo-de-unidades-de-albanileria-de-concreto/19760146
- NTP 399.613. (2005). Unidades de Albañileria. Metodos de muestreo y ensayo de ladrillos de arcilla usados en albañileria.
- NTP 400.012. (2013). norma tecnica peruana. Peru.
- NTP 400.018. (2002). norma tecnica peruana. Peru.
- NTP 400.021. (2002). Industria del papel y de la pasta de papel. Peru.
- NTP 400.022. (2013). norma tecnica peruana. Peru.
- NTP400.017. (2011). norma tecnica peruana. Peru.
- Paulino, J., & Espino, R. (2017). Análisis comparativo de la utilización del concreto simple y concreto liviano con perlitas de poliestireno como aislante termico y acusticoaplicado a unidades de albañileria en el Peru. Lima.
- RAE. (2021). Real Academia Española. Obtenido de https://dle.rae.es/cemento
- Real Academia Española. (23 de julio de 2021). *Papel*. En diccionario de la escuela Española (edición del tricentenario). Obtenido de https://dle.rae.es/papel
- San Martin de Porras S.A. (s.f.).
- Tawifk, L & Chauvel, A M. (1993). Administración de la produccion. México: McGraw-Hill.
- Tecnología de los plásticos. (2017). *Tecnología de los plásticos*. Obtenido de https://tecnologiadelosplasticos.blogspot.com/

Teschke, E. y. (2010). Industria del papel y de la pasta de papel. Peru.

Teschke, K., & Demers, P. (2010). Industria del papel y de la pasta de papel. Peru.

Torres, C. (2004). *Análisis termo estructural de ladrillos de altas escuadrías con morteros de pega de reducido espesor*. Obtenido de http://cybertesis.ubiobio.cl/tesis/2004/torres_c/doc/torres_c.pdf



INSTRUMENTOS DE RECOLECCIÓN DE DATOS

Cantidad de material fino que pasa el tamiz Nº 200 por lavado

UNIVERSIDAD ANDINA DEL CUSCO

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: LUCERO LIBERTAD CONDORI TORRES

DETERMINACIÓN DE FINOS POR LAVADO

CANTERA:					
Descripción	Simbolo	Muestra 01	Muestra 02	Muestra 03	Unidad
Peso de la muestra seca antes de	W				gr
P.M. Secada al horno despues de	Wo				gr
Perdida por lavado	W-Wo				gr
Porcentaje que pasa el tamiz N° 200	((W-Wo)/W)*100				%

Contenido de humedad del agregado

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE CONTENIDO DE HUMEDAD

70.	G1 1 1	** *	3.5	35	35 . 3
Datos	Simbolo	Und	Muestra 1	Muestra 2	Muestra 3
Peso recipiente más agregado humedo	Mcaw	gr			
Peso del recipiente más el agregado seco	Mcas	gr			
Peso del recipiente	Mc	gr			
Peso del agua	Mw	gr			
Peso de la muestra seca	Ms	gr			
CONTENIDO DE HUMEDAD	W	%			
CONTENIDO DE HUMEDAD	9	6			

Análisis granulométrico del agregado

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

	TESISTA: LUCERO LIBERTAD CONDORI TORRES							
	ENSAYO DE GRANULOMETRÍA							
	Apertura del		Muestra 01-P	eso de muest	ra inicial:	g		
TAMIZ	tamiz (mm)	Peso	0/ Datamida	% Retenido	0/ 0	Especific	a a aioma a	
	tannz (mm)	retenido (gr)	% Retenido Acumulado % Q		% Que pasa	Especiik	caciones	
# 4	4.75							
# 8	2.36							
# 16	1.18							
# 30	0.60							
# 50	0.30							
# 100	0.15							
# 200	0.07							
Fondo	0.00							
Peso Mues	tra Final (gr)							
Modulo	Modulo de fineza							

Gravedad específica y absorción de los agregados

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

> TESISTAS: - LUCERO LIBERTAD CONDORI TORRES ENSAYO DE PESO ESPECIFICO

Und Muestra 1 Muestra 2 Muestra 3 Datos del ensavo

Datos del elisayo	Simbolo	Cilu	Muesuai	Muestia 2	Muestia 3
Peso del material superficialmente seco	S	gr			
Peso del picnometro más agua	В	gr			
Peso del picnometro más agua más muestra	C	gr			
Peso del material seco a horno	A	gr			
PESO ESPECIFICO DE LA ARENA	Pem	g/cm3			
PESO ESPECIFICO DE LA ARENA	Pesss	a/am2			
SATURADA SUPERFICIALMENTE	Pesss	g/cm3			
PESO ESPECIFICO APARENTE	Pea	g/cm3			
PORCENTAJE DE ABSORCIÓN	ab	%			
PESO ESPECIFICO DE LA AR	ENA	g/cm3			
ABSORCIÓN		%		•	•

Peso unitario del agregado

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE PESO UNITARIO SUELTO Y COMPACTADO

Datos del ensayo	Simbolo	Und	Muestra 1	Muestra 2	Muestra 3
Peso de la muestra compactada más	G	gr			
Peso de la muestra compactada		gr			
Peso del recipiente	T	gr			
Volumen del molde	V	cm3			
Altura	Н	cm			
Diametro	D	cm			
PESO UNITARIO COMPACTADO	M	gr/cm3			
PESO UNITARIO COMPACTADO	M	kg/m3			
PESO UNITARIO COMPACTADO	M	kg/m3			

Diseño de bloquetas de concreto

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: LUCERO LIBERTAD CONDORI TORRES

DICE	NO DE MEZCI	A DE BLOOI
Datos requeridos	<u>NO DE MEZCI</u> para diseño	LA DE BLUQ
Resistencia de compresion de diseño	1	kg/cm2
Resistencia de compresion requerida		kg/cm2
Slump		
Peso especifico de Cemento		kg/cm3
Tipo de vibrado		
Datos de los agregados	ARENA	CONFITILLO
M.F.		
TMN		
PEM kg/m3		
% Absorción		
Cont. Humedad %		
PUS		
PUC		
Datos según tabla de diseño	ACI	Volumenes
Relacion agua cemento		
Cantidad de agua		
Porcentaje de aire atrapado		
Cantidad de cemento		

ETAS DE CO	ONCRETO		
	Dis	eño seco	
	Cemento		kg
	Agua		Lt
	Confitillo		Kg
	Arena		kg

Correccion por Humedad					
Confitillo kg					
Arena	kg				

Aporte de agua de los agregados							
Confitillo	Lt						
Arena	Lt						
Agua efectiva	Lt						
Disei	ño Humedo						
Cemento	Kg						
Agua	Lt						
Confitillo	Kg						
Arena	Kg						

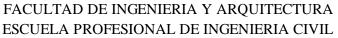
Variación dimensional de bloques de concreto

Volumen total

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO


TESISTAS: - LUCERO LIBERTAD CONDORI TORRES

	VARIACIÓN DIMENSIONAL											
MUESTRA	LAI	RGO (1	mm)	ANCHO (mm)		ALTURA (mm)			ESPESOR (mm)			
MUESTRA	L1	L2	L3	A1	A2	A3	H1	H2	Н3	E1	E2	E3
M1												
M2												
M3												
M4												
M5												
M6	·											
PROMEDIO	·											

Alabeo de bloques de concreto

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: LUCERO LIBERTAD CONDORI TORRES

	ALABEO											
MUESTRA			CONCAVO/	CARA INFI	CONCAVO/							
	DIAGONAL 1 DIAGONAL 2 CONVEXO	DIAGONAL 1	DIAGONAL 2	CONVEXO								
M1												
M2												
M3												
M4												
M5												
M6												
PROMEDIO												

Absorción y densidad de bloques de concreto

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO -

TESISTA: LUCERO LIBERTAD CONDORI TORRES

	ABSORCIÓN Y DENSIDAD											
MUESTRA	Ws	Wd	Wi	ABSORCIÓN (%)	DENSIDAD (kg/cm3)							
M1												
M2												
M3												
M4												
M5												
M6												
PROMEDIO												

Conductividad térmica

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

CONDUCTIVIDAD TÉRMICA										
MUESTRA	M 1	M2	М3	M4	M5	M6				
Potencia de energia										
Altura de bloque de										
Largo de bloque de										
Ancho de bloque de										
Temperatura de placa										
caliente (°K=°C+275.15)										
Temperatura de placa fria										
(°K=°C+275.15)										
Conductividad Térmica										

Aislamiento acústico

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTAS: - LUCERO LIBERTAD CONDORI TORRES

	AISLAMIEN	ΓΟ ACÚSTICO	
FREC (Hz)	Lp emisor (dB)	Lp receptor (dB)	Aislamiento (dB)
100.00			
125.00			
160.00			
200.00			
250.00			
315.00			
400.00			
500.00			
630.00			
800.00			
1000.00			
1250.00			
1600.00			
2000.00			
2500.00			
3150.00			
PROMEDIO			•

Resistencia a la compresión de bloques de concreto

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTAS: - LUCERO LIBERTAD CONDORI TORRES

	RESISTENCIA A LA COMPRESION DEL BLOQUE												
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf)	CARGA MAXIMA Pmax (KN)	ESFUERZO Kgf/m2	ESFUERZO (f'b) Mpa	PRO MEDIO (f'b) Mpa					
M1													
M2													
M3													
M4	·												
M5													
M6													

VALIDACIÓN DE INSTRUMENTOS

	VALIDACION DE INSTE	RUMENT	OS			
ATOS GENER	RALES					
	SIS: "ANÁLISIS COMPARATIVO DE LAS CAI RODUCCIÓN DE BLOQUETAS DE CONCRET S DE POLIESTIRENO EXPANDIDO Y PLÁSTIC 3"	O REEME	LALAUA	2 COM	DILEBER	LU
ESISTA: LUC	ERO LIBERTAD CONDORI TORRES					
ATOS DEL E	XPERTO					
OMBRES Y	APELLIDOS: Manuel Josus Consupin	o Jan	Us.			
	D: Jele do Prectico	3.6	1.1	6		
ARGO O IN	STITUCION DONDE LABORA: Universidad	Ondin	0 0.61			
	Farmung	Deficiente	Regular		Muy bueno	THE RESERVE
Componente	Ensayos	0-20%	21-40%	41-60%	61-80%	81-100%
	Cantidad de material fino que pasa el tamiz N*200					X
	Contenido de humedad del agregado					1000
Ensayosa	Analisis granulometrico					×
agregados	Gravedad especifica u absorcion de agregados finos					×
	Gavedad específico y absorcion de agregados gruesos					×
	Peso unitario suelto y compactado					×
	Variacion dimensional					
	Alabeo					X
Ensayos a los bloques de	Absorcion y densidad					X
concreto	Conductividad termica					X
	Aislamiento acustico					X
	Resistencia a la compresion		_	-	1	1 X
1.	OPINION DE APLICABILIDAD					**********
11.	PROMEDIO DE VALORACION					
111.	LUEGO DE REVISADO EL INSTRUMENTO					
Procee	de a su aplicación (<)	100	Debe c	orregirs	se ()	
	Sello y firma	de docen	to			
	Dn	1: 7242	14173			

ANEXOS

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA . - LUCERO LIBERTAD CONDORI TORRES

DETERMINACIÓN DE FINOS POR LAVADO

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 22/03/2023

CANTERA:		A	rena Pisaq			
	Descripción	Simbolo	Muestra 01	Muestra 02	Muestra 03	Unidad
Peso de la n	nuestra seca antes de lavado	W	1530.50	1510.50	1540.30	gr
P.M. Secad	a al horno despues de lavado	Wo	1484.60	1469.40	1492.46	gr

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 22/03/2023

CANTERA:	Arena Cunyac								
	Descripción	Simbolo	Muestra 01	Muestra 02	Muestra 03	Unidad			
Peso de la m	uestra seca antes de lavado	W	1500.00	1448.20	1440.30	gr			
P.M. Secada	al horno despues de lavado	Wo	1464.60	1409.40	1402.46	gr			

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 22/03/2023

CANTEEDA	Confitillo Senga							
CANTERA:								
	Descripción	Simbolo	Muestra 01	Muestra 02	Muestra 03	Unidad		
Peso de la m	uestra seca antes de lavado	W	1230.50	1345.80	1340.00	gr		
P.M. Secada al horno despues de lavado		Wo	1210.90	1329.40	1320.46	gr		

UNIVERSIDAD ANDINA DEL CUSCO MACULTAD DE INGENIERIA, C.R. INGENIERIA CIVIL.

SANDIA DE JEFE DE PRACTICAS - LABORATORIO, DE SUELOS - INGENIERIA CIVIL.

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA : - LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE GRANULOMETRÍA DE AGREGADO FINO - ARENA PISAQ

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 23/03/2023

-		1390.20 gr	1346.90 gr	1382.40 gr	1373.17 gr
TAMIZ	Apertura del tamiz (mm)	Peso 01	Peso 02	Peso 03	Peso
		retenido (gr)	retenido (gr)	retenido (gr)	retenido (gr
# 4	# 4 4.75		5	0.00	1.67
# 8	2.36	63.8	50.1	70.40	61.43
# 16	1.18	181.2	176.9	190.60	182.90
# 30	0.60	305.5	297.8	293.30	298.87
# 50	0.30	353.5	343.9	334.20	343.87
# 100	0.15	258.5	255.7	262.10	258.77
# 200	0.07	165.4	154.2	160.40	160.00
Fondo	0.00	59.8	60.8	70.60	63.73
Peso Muestra Final (gr)		1387.7	1344.4	1381.6	1371.23

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA :: - LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE GRANULOMETRÍA DE AGREGADO FINO - ARENA CUNYAC

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 23/03/2023

	1	1045.20 gr	1032.90 gr	1038.30 gr	1038.80 gr
TAMIZ	Apertura del	Peso 01	Peso 02	Peso 03	Peso
TAMIZ	tamiz (mm)	retenido (gr)	retenido (gr)	retenido (gr)	retenido (gr)
# 4	4.75	16.40	15.50	13.90	15.27
# 8	2.36	133.70	135.20	116.80	128.57
# 16	1.18	310.20	306.40	308.60	308.40
# 30	0.60	385.60	388.50	384.65	386.25
# 50	0.30	112.50	106.20	124.70	114.47
# 100	0.15	56.50	56.60	65.10	59.40
# 200	0.07	21.50	15.90	14.90	17.43
Fondo	0.00	7.60	7.20	8.40	7.73
	Peso Muestra Final (gr)		1031.50	1037.05	1037.52

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE GRANULOMETRÍA 75% PISAQ + 25% CUNYAC

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 22/03/2023

TAMIZ	A mantama dal	1468.20 gr	1469-00 gr	1782.50 gr	1173.73 gr
	Apertura del tamiz (mm)	Peso 01	Peso 02	Peso 03	Peso
		retenido (gr)	retenido (gr)	retenido (gr)	retenido (gr)
# 4	4.75	20.50	15.40	14.80	16.90
# 8	2.36	86.40	89.30	93.40	89.70
# 16	1.18	167.60	168.20	161.20	165.67
# 30	0.60	310-90	318.60	317.50	31567
# 50	0.30	260.10	2 4 2.60	260.10	254.27
# 100	0.15	240.10	239.40	241.60	240.37
# 200	0.07	62.40	74.10	67.90	68.13
Fondo	0.00	18.40	19.40	24.50	20.77
Peso Muestra Final (gr)		1766.40	1167.00	1181.00	1171,47

ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÂNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE GRANULOMETRÍA DE CONFITILLO

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 22/03/2023

TAMIZ	Apertura del tamiz (mm)	1072.30 gr	1030.80 gr	1108.10 gr	1070.40 gr
		Peso 01	Peso 02	Peso 03	Peso
		retenido (gr)	retenido (gr)	retenido (gr)	retenido (gr
#1/2		0.00	0.00	0.00	0.00
#3/8	9.5	118.10	96.40	90.30	101.60
# 4 4.75		663.30	649.60	648.10	653.67
# 8	2.36	217.80	203.50	268.90	230.07
# 16	1.18	70.50	78.90	97.50	82.30
Fondo	0.00	1.80	1.50	2.10	1.80
Peso Muestra Final (gr)		1071.50	1029.90	1106.90	1069.43

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE GRANULOMETRÍA DE POLIESTIRENO EXPANDIDO

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 04/04/2023

UNIVERSIDAD ANDINA DEL CUSCO FACULTAD DE INGENIERIA, CR INGENIERIA CIVIL

		Apertura del	1003.50 gr	1019.50 gr	1024.00 gg	1015 67 gr	Cold
	TAMIZ	tamiz (mm)	Peso 01	Peso 02	Peso 03	ORFE DE P	RACTICAS - LABORATORIO, LOS - INGENIERIA CIVIL.
	tarriz (mm)	retenido (gr)	retenido (gr)	retenido (gr)	retenido (gr)	LOS - INGENIERIA CIVIL	
	#1/2		0.00	0.00	0.00	0.00	
	#3/8	9.5	54.00	56.40	55.00	55.13	
	# 4	4.75	672.00	684.00	690.00	682.00	
	# 8	2.36	200.80	203.10	207.50	203.80	
	# 16	1.18	73.70	75.40	70.80	73.30	
	Fondo	0.00	1.80	0.00	0.00	0.60	
	Desa Muse	tro Final (ar)	1002.30	1018.90	1023.30	1014.83	

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA .: - LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE GRANULOMETRÍA DE PLASTICO PET

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 04/04/2023

		002 00 ~	1000.00 gr	987.20 gr	989.73 gr
TAMIZ	Apertura del	982.00 gr Peso 01	Peso 02	Peso 03	Peso
1111111	tamiz (mm)	retenido (gr)	retenido (gr)	retenido (gr)	retenido (gr)
#1/2		0.00	0.00	0.00	0.00
#3/8	9.5	128.00	131.50	126.50	128.67
# 4	4.75	570.60	580.10	590.60	580.43
	2.36	202.90	208.60	200.10	203.87
# 8	1.18	75.60	76.10	66.50	72.73
# 16		3.20	2.10	2.30	2.53
Fondo	0.00 tra Final (gr)	980.30	998.40	986.00	988.23

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE CONTENIDO DE HUMEDAD

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 21/03/2023

CONTENIDO DE HUN	CEDAD AREN	TA 750/ DIS	AO + 25% CUN	NYAC	
CONTENIDO DE HUI			Muestra 1	Muestra 2	Muestra 3
Datos	Simbolo	Und	1000.00	1000.00	1000.00
Peso recipiente más agregado humedo	Mcaw	gr		976.10	977.50
Peso del recipiente más el agregado seco	Mcas	gr	976.80	308.00	293.60
Peso del recipiente	Mc	gr	346.80	308.00	233.00

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 22/03/2023

	DO DE HUMI	EDAD CON	FITILLO		
CONTENI		Und	Muestra 1	Muestra 2	Muestra 3
Datos	Simbolo	Ulid	2325.50	2336.50	2360.40
Peso recipiente más agregado humedo	Mcaw	gr	2283.80	2294.60	2318.10
Peso del recipiente más el agregado seco	Meas	gr	642.00	660.40	661.20
Peso del recipiente Peso del recipiente	Mc	gr	642.00	000.10	

UNIVERSIDAD ANDINA DEL CUSCO MACIATAD DE INGENERIA. CR BIGENERIA CIVIL.

JAPE DE PRACTICAS - LABORATORIO DA SMEL-DIS - INGENIERIA CIVIL.

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE PESO ESPECIFICO

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 24/03/2023

PESO ESPECIFICO I	DE LA AREN	IA 75% PIS	AQ 25% CUN	YAC	
	Simbolo	Und	Muestra 1	Muestra 2	Muestra 3
Datos del ensayo	Simoolo		500.00	500.00	500.00
Peso del material superficialmente seco	3	gr	646.90	647.80	647.40
Peso del picnometro más agua	В	gr	953.90	955.30	955.80
Peso del picnometro más agua más muestra	С	gr		493.60	493.51
Peso del material seco a horno	A	gr	493.40	493.00	175.01

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 31/03/2023

70.70	PECIFICO D	EL CONFI	TILLO		
PESO ES			Muestra 1	Muestra 2	Muestra 3
Datos del ensayo	Simbolo	Und		2305.30	2300.40
Dates der en generationalmente seca	В	gr	2120.50	2303.50	2300110
Peso de la muestra superficialmente seca Peso de la muestra superficialmente seca	С	gr	1340.80	1488.10	1490.10
sumergida	Δ	gr	2099.00	2280.20	2275.10
Pasa de la muestra seca al horno	Α	8			

UNIVERSIDAD ANDINA DEL CUSCO ACCULTAD DE MOENERIA. C.P. INGENERIA CIVIL.

ANDIR DE PRACTICAS - LABORATORIO.

DE SHELDS - INGENIERIA CIVIL.

ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

ENSAYO DE PESO UNITARIO SUELTO Y COMPACTADO

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 27/03/2023

PESO UNITARIO SUE	LTO DE LA	ARENA 75%	6 PISAQ 25%	CUNYAC	
Datos del ensayo	Simbolo	Und	Muestra 1	Muestra 2	Muestra 3
Peso de la muestra suelta más recipiente	G	gr	5595.00	5640.00	5650.00
Peso de la muestra suelta		gr	1425.00	1405.00	1375.00
Peso del recipiente	T	gr	4170.00	4235.00	4275.00
Volumen del molde	V	cm3	958.22	958.22	958.22
Altura	Н	cm	11.50	11.70	11.70
Diametro	D	cm	10.30	10.30	10.30

PESO UNITARIO COMP.	ACTADO DI	E LA ARENA	75% PISAQ 2	5% CUNYA	C
Datos del ensayo	Simbolo	Und	Muestra 1	Muestra 2	Muestra 3
Peso de la muestra compactada más	G	gr	5860.00	5915.00	5975.00
Peso de la muestra compactada		gr	5785.00	5783.80	5786.00
Peso del recipiente	T	gr	4130.00	4130.00	4130.00
Volumen del molde	V	cm3	958.22	958.22	958.22
Altura	Н	cm	11.50	11.70	11.70
Diametro	D	cm	10.30	10.30	10.30

REALIZADO EN: LABORATORIO DE SUELOS Y PAVIMENTOS DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 30/03/2023

PESO UNITARIO SUELTO DEL CONFITILLO					
Datos del ensayo	Simbolo	Und	Muestra 1	Muestra 2	Muestra 3
Peso de la muestra suelta más recipiente	G	gr	5435.00	5440.80	5440.10
Peso de la muestra suelta		gr	1305.00	1308.30	1307.10
Peso del recipiente	T	gr	4130.00	4132.50	4133.00
Volumen del molde	V	cm3	958.22	958.22	958.22
Altura	Н	cm	11.50	11.50	11.50
Diametro	D	cm	10.30	10.30	10.30

PESO UNITARIO COMPACTADO DEL CONFITILLO					
Datos del ensayo	Simbolo	Und	Muestra 1	Muestra 2	Muestra 3
Peso de la muestra compactada más	G	gr	5685.00	5683.00	5685.00
Peso de la muestra compactada		gr	5785.00	5783.80	5786.00
Peso del recipiente	T	gr	4130.00	4130.00	4130.00
Volumen del molde	V	cm3	958.22	958.22	958.22
Altura	Н	cm	11.50	11.50	11.50
Diametro	D	cm	10.30	10.30	10.30

UNIVERSIDAD ANDINA DEL CUSCO FACULTAD DE INGENIERIA COIL.

ALONIO

ALO

ESCUELA PROFESIONAL DE INGENIERIA CIVIL	FACULTAD DE INGENIERIA Y ARQUITECTURA

50000

LABORATORIO DE II LABORATORIO DE II ARIACIÓN DIMENSIONAL LARGO (mm) MI UDO GOI M2 UDO GOI M3 UDO GOI M4 UDO GOI M5 UDO GOI M6 UDO GOI M7 UDO GOI M8 UDO	SIS: "ANALI
ABORATO LAR 10 10 10 10 10 10 10 10 10 10 10 10 10	SIS COMP TAS DE CO
TESISTA ATORIO DE ING LARGO (mm) L2 LARGO (mm) L2 L3 L3 L3 L3 L3 L3 L40	ARATIVO I ONCRETO I DO Y PLÁS
STA:-LUCER INGENIERIA C	DE LAS PROF REEMPLAZA TICO PET RE
TESISTA:-LUCERO LIBERTAD CONDORI TORRES LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 02/05/2023 LARGO (mm) AL BLOQUE PATRON LARGO (mm) ALTURA (mm) ALTURA (mm) E ANCHO (mm) AL 1	SIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓ DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"
L DE LA UNIVERSIDAD FECHA: 02 05 2023 06 PATRON ALTERNATION ALTERNATIO	ICO-MECÁN ERENTES PO LA CIUDAD
TORRES ALTURA (mm) H2 10 10 10 10 10 10 10 10 10 1	ICAS Y COS DEL CUSCO
DEL CUSCO ESI H3 E1 200 19 200 19 200 19 19 19 19 19 19 19 19 19	TOS DE PR S DE POLIE O - 2023"
SPESOR (mm	DE PRODUCCIÓN POLIESTIRENO 23"
10 10 10 E3	

00

104

hor

104

90

120

120

07.1

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

E BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO IS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023" TESISTA: - LUCERO LIBERTAD CONDORI TORRES

					RA				
400 400	Roh	101	1017	11	-	V 111	1100		ABORA
	lah	101	1017	12	LAKGO (mm)	The state of the s	Seria		TORIO D
401	101	707	169	[3			VIADO DOS DIMENSIONAL - BLOQUE POLICIONA		LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO
121	121	17	130	1	^1	An	OSION A		IERIA CI
121	101	5 5	30	101	Δ2	ANCHO (mm)	~	LECITO	VIL DE L
no	2 2	170	130	101	A3	=	1218000	. 01 00	L DE LA UNIVERSIDAI
200	200	200	1991	200	H1	AL	E 800	000	RSIDAD
385	199	200	200	200	H2	ALTURA (mm)	62 11 6 -	COTIDED	ANDINA
200	199	200	100	200	НЗ	2			DEL CUS
7 00	co	17	to	œ	E1	ESPE	FCDE	EXPANDIDO 1.000	sco
òà	ão i	8	ā	18	E2	ESPESON (min)	OB (mr	00 1	
Ø +	5 000	G	17	00	E3	1	3	000	

JESTR

ESCUELA PROFESIONAL DE INGENIERIA CIVIL FACULTAD DE INGENIERIA Y ARQUITECTURA

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

1	
7	
\approx	
7	
TI.	
701	
01	
_	
5	
8	
=	
岩	
3	
7	
P	
2	
2	
Z	
OI	
Ξ	
\sim	
3	
2	
- LUCERO LIBERTAD CONDORI TORRES	
2	ı
H	ı
S	

TESISTA:

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 02/05/2023 EDEPANDIDO

MUESTRA

A2

A1

A3

H1

H2

H3

ALTURA (mm)

3.0%

ESPESOR E2

(mm) E3

Go

CON

40%

CO

APPROVIN

DIMENSIONAL LARGO (mm)

BLOQUE

POLIESTI RENO

ANCHO (mm)

ā GO

ã

UNIVERSIDAD ANDINA DEL CUSCO

ESCUELA PROFESIONAL DE INGENIERIA CIVIL

FACULTAD DE INGENIERIA Y ARQUITECTURA

641		MUESTRA	LARIAROS				TESIS: "ANAI DE BLOQU
421 401 401 100 120 120 120 120 120 120 120 120 1			CARAGON DIMENCIONAL		LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO	TESISTA:	TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"
1 071		A1 AWCI	ANCH		IERIA CIVII	- LUCERO I	AS PROPIE MPLAZADA O PET RECI
20 170		A2 A3	ANCHO (mm)	PARESTIRENS EXPRISTIPO SOOD	L DE LA UNIVERSIDA	TESISTA: - LUCERO LIBERTAD CONDORI TORRES	DADES FÍSICO S CON DIFERI CLADO EN LA
700	200	出	AL	STIRE	RSIDAL	DORI T	-MECÁI ENTES P CIUDAL
200	201	H1 H2	ALTURA (mm)	no Ex	ANDIN	ORKES	VICAS Y ORCENT DEL CU
701	701	НЗ	т)	PANP	A DEL C		COSTOS AJES DE JSCO - 20
30	4	E1	ESPI	8	USCO		DE PROPORTION DE POLIES (23"
00	18	E2	ESPESOR (mm)	0000			DUCCI
19	00	E3	3)				ÓN

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

SIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCION DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"
--

N.	MY	110	40	. 42		1		MUESTRA		UARIACIÓN		1			TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECANICAS Y COST DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO
80h	400	1	400	101	,	ICh			_	Dimid		ABORA			ISIS CON TAS DE EXPANI
104	nah	100	104	300	COS	402	7		LARGO (mm)	Dimencional		LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO	TE		SIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECANICAS Y COST TAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO
400	400		101	.01	101	101		- 2	3	-)		E INGEN	TESISTA :- LUCERO LIBERTAD CUNDURI TORNES		IVO DE L ETO REEI LÁSTICO
02.1		100	120		110	[2]	- 11	Δ1	Al	MOON		IERIA CI	- LUCER		AS PROP MPLAZA O PET RE
C	100	120	100	120	120	00	5	Α2	ANCHO (mm)	PLUBLE DEI 1900	ILCIA	VIL DE L	O LIBER		DAS CON
200	120	121	100	170	120	100		A3	2	1000	: 0	L DE LA UNIVERSIDA	IAD COR		S FISICO N DIFERI O EN LA
0	200	100	0	200	144	200	3	H	3	A .		RSIDAD	DOKI IC	TITO TO	MECAN INTES PO CIUDAD
200	201	00%		200	200	3	23	H2	0.5	ALTUBA (mm)		ANDINA	MARES	Saga	DEL CU
200	200	100		206	195		199	НЗ	,	-		DEL CU			SCO - 2023"
0	Œ	0	Ø	17	-	à	8	EI	1	ESPE		sco			OLIES'
9	1	1	55	301		Î	19 1	73	3	ESPESOR (mm)					DE POLIESTIRENO - 2023"
Ö	+		00	G	9	1	2	5	[2	2					

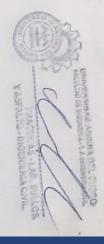
FACULTAD DE INGENIERIA Y ARQUITECTURA

. He	MUESTRA				TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"
100	[1]			LABORA	EXPAN
400	L2	ARGO (mr	UP	TORIO D	MPARAT CONCR DIDO Y
000	L3	מ	RIACIO	ESISTA :	ISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE TAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POI EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"
120	A1	AN	Wid ru	ERIA CI	AS PROPMPLAZA
120	A2	ICHO (mn	ENCION	VIL DE L	TEDADE DAS CONCICLADO
170	A3			A UNIVE	S FÍSICO N DIFERE O EN LA
200	700		- 810	RSIDAD	-MECÁN NTES PO CIUDAD
700	700		OUP T	ANDINA	ICAS Y CORCENTA
109	200		-	DEL CU	OSTOS I JES DE F SCO - 202
8) E-[7 5	F1	ESPES	sco	DE PROD OLIEST 3"
31 81	_	E3 E3	OR (mm)		IRENO
	401 400 120 120 120 200 200 100 17 401 400 120 120 120 200 201 201 (8 1	11 12 13 A1 A2 A3 H1 H2 H2 H3	LARGO (mm) ANCHO (mm) ALTORA (mm) L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L3 L3 L2 L3 L	LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mm)	LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 02 105/2023

071 12

12

200


200

200

+

中

00

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

LOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023" TESISTA: - LUCERO LIBERTAD CONDORI TORRES

1																				
099	200	101	200	100	23		9	,	ICH	,								The state of the	I AROR/	
	000	100	100		402		101		101		17		AKGO (m	1000	_				TORIO	
	400		401			13	100	1101	20-	100	5	13	m)		JER IT				DE INGE	
-0-	120		1119				1	30	1-11	100	111	Δ1	,	D	1000	-			NIERIA C	
-0-	1120	3	100	120	100	30	100	5	- 1	110		A2	10000	NCHO (m	1101100	3000	TOOL	TOTA	IVIL DE	
121	100	133			100	-05		120		119		A3	1	3	MILL	3		IA · 02/0	LA UNIV	/
201	000	000	- 1			000		200	3	(00)	0	H1		A	The Contract of the Contract o	ついろう		5/2023	ERSIDAL	1
70		200		201		100		199		00 7		H2		TURA (mi		c P(-1			ANDIN	Taran.
102		8		201		102)	147	100	000	000	H3		m)	-	500%			ADELCO	י דודו כו
0	0	ā)	4		6	0	0	ò	10	0	LT	7	EST	ECD				0000	COST
2	10	à	,	ā	5	- 0	100	1 1	4/	(1)	10	7.3	5	1	ESOR In					
G	5	3	5	Ø	5	S	ò	. 0	NO.	18	6	-	EZ	freeze	1					
	121 201 100	120 150 151 151 150 150	400 400 120 120 120 120 200 200 18 18 18	400 400 120 120 120 100 200 18 18 19 1	401 401 119 120 120 120 200 200 18 18 18 19 100 400 400 120 120 120 120 120 120 120 120 120 1	400 400 120 120 120 201 201 13 18 19 11 101 101 101 101 101 101 101 101 1	ADI ADI <td>400 400 100 120 120 200 200 201 18 18 18 401 401 101 102 120 201 201 201 13 18 1 400 401 110 110 120 120 201 201 13 18 1 401 401 101 101 120 120 200 200 200 18 18 1 401 402 103 104 100 200 200 200 18 18 1 401 402 103 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 1</td> <td>401 401 401 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120<td>(101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101</td><td>(101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101</td><td>491 401 119 119 119 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<td> 12 13 A1 A2 A3 H1 H2 H3 E1 C2 1401 1109 1104 1105 200 200 200 18 18 1401 1401 1120 120 120 200 200 201 18 18 1401 1402 120 120 120 201 201 201 18 18 1400 1400 120 120 120 200 200 200 18 18 1400 1400 120 120 120 201 201 201 18 18 1400 1400 120 120 120 201 201 201 18 18 1400 1400 120 120 120 201 201 201 18 18 1400 1400 120 120 120 200 200 200 200 18 18 1500 1600 1700 1700 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 2</td><td> L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 </td><td>LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESSIVITION L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 Up Up Up 119 119 200 200 200 18 18 Up Up 120 120 120 200 200 201 18 18 Up 401 119 120 120 201 201 201 18 18 Up 401 119 120 120 201 201 201 13 18 Up 400 120 120 120 201 201 201 18 18 Up 400 120 120 120 201 201 18 18</td><td>LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 Up Up Up 119 119 200 200 200 18 18 Up Up 120 120 120 200 200 201 18 18 Up 401 119 120 120 201 201 18 18 Up 401 119 120 120 201 201 13 18 Up 400 120 120 120 201 201 13 18 Up 400 120 120 120 201 201 18 18 Up 400 120 120 120 201 201 18 18</td><td>UARCIACÓN OLMENGORAL - BLOQUE PET 5.0% LARGO (mm) ALTURA (mm) ESPESOR (mn) LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mn) L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L9 L01 119 119 119 200 200 200 18 18 L9 L01 120 120 120 200 200 201 18 18 L9 401 140 120 120 120 201 201 19 18 18 L9 400 120 120 120 201 201 101 19 18 L9 120 120 120 201 201 18 18 L9 1400 120 120 201 201 10 18 18 L9 120 120 120 <t< td=""><td> LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 </td><td>PESOR (mn E2 /3 /3 /7 /7 /8 /8</td><td>RATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL COSCO FECHA: 02/05/2023 VARIACIÓN DI MENCIONAL - BIDONE PET 5.0% ESPESOR (mn LARGO (mm)) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L3 L4 L14 L20 200 200 200 18 18 19 L40 L40 L12 L20 L20 200 200 201 18 18 L40 L40 L40 L12 L20 L20 L20 200 200 201 18 L8 L40 L40 L40 L12 L20 L20 L20 200 200 201 18 L8 L8 L40 L40 L40 L20 L20 L20 L20 L20 L20 L20 L30 L30 </td></t<></td></td></td>	400 400 100 120 120 200 200 201 18 18 18 401 401 101 102 120 201 201 201 13 18 1 400 401 110 110 120 120 201 201 13 18 1 401 401 101 101 120 120 200 200 200 18 18 1 401 402 103 104 100 200 200 200 18 18 1 401 402 103 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104 1	401 401 401 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 <td>(101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101</td> <td>(101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101</td> <td>491 401 119 119 119 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100<td> 12 13 A1 A2 A3 H1 H2 H3 E1 C2 1401 1109 1104 1105 200 200 200 18 18 1401 1401 1120 120 120 200 200 201 18 18 1401 1402 120 120 120 201 201 201 18 18 1400 1400 120 120 120 200 200 200 18 18 1400 1400 120 120 120 201 201 201 18 18 1400 1400 120 120 120 201 201 201 18 18 1400 1400 120 120 120 201 201 201 18 18 1400 1400 120 120 120 200 200 200 200 18 18 1500 1600 1700 1700 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 2</td><td> L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 </td><td>LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESSIVITION L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 Up Up Up 119 119 200 200 200 18 18 Up Up 120 120 120 200 200 201 18 18 Up 401 119 120 120 201 201 201 18 18 Up 401 119 120 120 201 201 201 13 18 Up 400 120 120 120 201 201 201 18 18 Up 400 120 120 120 201 201 18 18</td><td>LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 Up Up Up 119 119 200 200 200 18 18 Up Up 120 120 120 200 200 201 18 18 Up 401 119 120 120 201 201 18 18 Up 401 119 120 120 201 201 13 18 Up 400 120 120 120 201 201 13 18 Up 400 120 120 120 201 201 18 18 Up 400 120 120 120 201 201 18 18</td><td>UARCIACÓN OLMENGORAL - BLOQUE PET 5.0% LARGO (mm) ALTURA (mm) ESPESOR (mn) LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mn) L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L9 L01 119 119 119 200 200 200 18 18 L9 L01 120 120 120 200 200 201 18 18 L9 401 140 120 120 120 201 201 19 18 18 L9 400 120 120 120 201 201 101 19 18 L9 120 120 120 201 201 18 18 L9 1400 120 120 201 201 10 18 18 L9 120 120 120 <t< td=""><td> LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 </td><td>PESOR (mn E2 /3 /3 /7 /7 /8 /8</td><td>RATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL COSCO FECHA: 02/05/2023 VARIACIÓN DI MENCIONAL - BIDONE PET 5.0% ESPESOR (mn LARGO (mm)) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L3 L4 L14 L20 200 200 200 18 18 19 L40 L40 L12 L20 L20 200 200 201 18 18 L40 L40 L40 L12 L20 L20 L20 200 200 201 18 L8 L40 L40 L40 L12 L20 L20 L20 200 200 201 18 L8 L8 L40 L40 L40 L20 L20 L20 L20 L20 L20 L20 L30 L30 </td></t<></td></td>	(101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101	(101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101 (101	491 401 119 119 119 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 <td> 12 13 A1 A2 A3 H1 H2 H3 E1 C2 1401 1109 1104 1105 200 200 200 18 18 1401 1401 1120 120 120 200 200 201 18 18 1401 1402 120 120 120 201 201 201 18 18 1400 1400 120 120 120 200 200 200 18 18 1400 1400 120 120 120 201 201 201 18 18 1400 1400 120 120 120 201 201 201 18 18 1400 1400 120 120 120 201 201 201 18 18 1400 1400 120 120 120 200 200 200 200 18 18 1500 1600 1700 1700 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 2</td> <td> L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 </td> <td>LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESSIVITION L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 Up Up Up 119 119 200 200 200 18 18 Up Up 120 120 120 200 200 201 18 18 Up 401 119 120 120 201 201 201 18 18 Up 401 119 120 120 201 201 201 13 18 Up 400 120 120 120 201 201 201 18 18 Up 400 120 120 120 201 201 18 18</td> <td>LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 Up Up Up 119 119 200 200 200 18 18 Up Up 120 120 120 200 200 201 18 18 Up 401 119 120 120 201 201 18 18 Up 401 119 120 120 201 201 13 18 Up 400 120 120 120 201 201 13 18 Up 400 120 120 120 201 201 18 18 Up 400 120 120 120 201 201 18 18</td> <td>UARCIACÓN OLMENGORAL - BLOQUE PET 5.0% LARGO (mm) ALTURA (mm) ESPESOR (mn) LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mn) L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L9 L01 119 119 119 200 200 200 18 18 L9 L01 120 120 120 200 200 201 18 18 L9 401 140 120 120 120 201 201 19 18 18 L9 400 120 120 120 201 201 101 19 18 L9 120 120 120 201 201 18 18 L9 1400 120 120 201 201 10 18 18 L9 120 120 120 <t< td=""><td> LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 </td><td>PESOR (mn E2 /3 /3 /7 /7 /8 /8</td><td>RATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL COSCO FECHA: 02/05/2023 VARIACIÓN DI MENCIONAL - BIDONE PET 5.0% ESPESOR (mn LARGO (mm)) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L3 L4 L14 L20 200 200 200 18 18 19 L40 L40 L12 L20 L20 200 200 201 18 18 L40 L40 L40 L12 L20 L20 L20 200 200 201 18 L8 L40 L40 L40 L12 L20 L20 L20 200 200 201 18 L8 L8 L40 L40 L40 L20 L20 L20 L20 L20 L20 L20 L30 L30 </td></t<></td>	12 13 A1 A2 A3 H1 H2 H3 E1 C2 1401 1109 1104 1105 200 200 200 18 18 1401 1401 1120 120 120 200 200 201 18 18 1401 1402 120 120 120 201 201 201 18 18 1400 1400 120 120 120 200 200 200 18 18 1400 1400 120 120 120 201 201 201 18 18 1400 1400 120 120 120 201 201 201 18 18 1400 1400 120 120 120 201 201 201 18 18 1400 1400 120 120 120 200 200 200 200 18 18 1500 1600 1700 1700 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 201 2	L2 L3 A1 A2 A3 H1 H2 H3 E1 E2	LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESSIVITION L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 Up Up Up 119 119 200 200 200 18 18 Up Up 120 120 120 200 200 201 18 18 Up 401 119 120 120 201 201 201 18 18 Up 401 119 120 120 201 201 201 13 18 Up 400 120 120 120 201 201 201 18 18 Up 400 120 120 120 201 201 18 18	LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 Up Up Up 119 119 200 200 200 18 18 Up Up 120 120 120 200 200 201 18 18 Up 401 119 120 120 201 201 18 18 Up 401 119 120 120 201 201 13 18 Up 400 120 120 120 201 201 13 18 Up 400 120 120 120 201 201 18 18 Up 400 120 120 120 201 201 18 18	UARCIACÓN OLMENGORAL - BLOQUE PET 5.0% LARGO (mm) ALTURA (mm) ESPESOR (mn) LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mn) L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L9 L01 119 119 119 200 200 200 18 18 L9 L01 120 120 120 200 200 201 18 18 L9 401 140 120 120 120 201 201 19 18 18 L9 400 120 120 120 201 201 101 19 18 L9 120 120 120 201 201 18 18 L9 1400 120 120 201 201 10 18 18 L9 120 120 120 <t< td=""><td> LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 </td><td>PESOR (mn E2 /3 /3 /7 /7 /8 /8</td><td>RATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL COSCO FECHA: 02/05/2023 VARIACIÓN DI MENCIONAL - BIDONE PET 5.0% ESPESOR (mn LARGO (mm)) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L3 L4 L14 L20 200 200 200 18 18 19 L40 L40 L12 L20 L20 200 200 201 18 18 L40 L40 L40 L12 L20 L20 L20 200 200 201 18 L8 L40 L40 L40 L12 L20 L20 L20 200 200 201 18 L8 L8 L40 L40 L40 L20 L20 L20 L20 L20 L20 L20 L30 L30 </td></t<>	LARGO (mm) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2	PESOR (mn E2 /3 /3 /7 /7 /8 /8	RATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL COSCO FECHA: 02/05/2023 VARIACIÓN DI MENCIONAL - BIDONE PET 5.0% ESPESOR (mn LARGO (mm)) ANCHO (mm) ALTURA (mm) ESPESOR (mn L2 L3 A1 A2 A3 H1 H2 H3 E1 E2 L3 L4 L14 L20 200 200 200 18 18 19 L40 L40 L12 L20 L20 200 200 201 18 18 L40 L40 L40 L12 L20 L20 L20 200 200 201 18 L8 L40 L40 L40 L12 L20 L20 L20 200 200 201 18 L8 L8 L40 L40 L40 L20 L20 L20 L20 L20 L20 L20 L30 L30

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

BORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO CENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA RODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÂNICAS Y COSTOS TESISTA: - LUCERO LIBERTAD CONDORI TORRES CIUDAD DEL CUSCO - 2023"

D

CARA SUPERIOR (mm)

CONCAVO/

CARA INFERIOR (mm)

CONCAVO/

FECHA: 02/05/2023

BLOQUE

PATRON

DIAGONAL 1

DIAGONAL 2

Concard

DIAGONAL 1 DIAGONAL 2

0,0

CONVEXO

ONCAVO

3

0

N

0

410

C

CONUOXO

3

ONONO

0

Concexo

0.0

omuexo

I

0

CONCEXO

0			B
4	L	A ST	None Manna
	1	1	STREETS OF
C. Hedis	1	1	DENDAR ADDRESS DES
STORES.	21/	11	60
CASIL	SOLEN	1	1904

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 02/05/2023

JESTRA

CARA SUPERIOR (mm)

CONCAVO/

CONVEXO

DIAGONAL 1 DIAGONAL 2

S

CON Law

CONCOXO

CARA INFERIOR (mm)

POLIESTIRENO

CONCAVO/

DIAGONAL 1

DIAGONAL 2

20

CONCAVO

2

60

convexo

CONVEXO

CONVEXO

COR	1
NASA NASA NASA NASA NASA NASA NASA NASA	No.
PANOTI NU	S-VINSHISSAFIA
BURN CALL	Och and
Sp. W	1

25

w

W


CONVOYO

5

S

(onucxo CONTROL

oraw

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

CIUDAD DEL CUSCO - 2023"

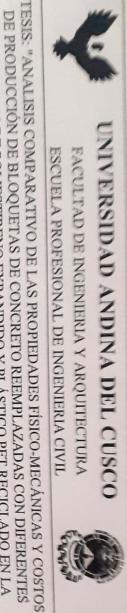
ALAGEO

CONCAVO/ CONVEXO

CARA INFERIOR (mm)

CONCAVO/ CONVEXO

FECHA: 02/05/2023


POLIESTIRENO 3,00/6

DIAGONAL 2

DIAGONAL 1 DIAGONAL 2

OXBAUG CON VEXO CONVEXO

5

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

ORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA IS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES CIUDAD DEL CUSCO - 2023"

ABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 02/05/2023

POLICITIRENS

5000

CONCAVO/ CONVEXO

TESISTA : - LUCERO LIBERTAD CONDORI TORRES

TRA

CARA SUPERIOR (mm)

CONCAVO/

DIAGONAL 1 DIAGONAL 2

CARA INFERIOR (mm)

DIAGONAL 1

DIAGONAL 2

ONVEXO

6.0

0

OXUNCI

6.0

ONUEXO

00

Concavo Oncar

CONVEXO CONVEXO

0

Ö

oncavo

		N	
		300	
100	585		2_
- 10			(S)
			201
	7		25
	14		37
165	1		25
	10		1.9
- 60	1	1	100
PS	11	0	SE
215			BE.
5.0	1. 1		25.0
5 1		1	3.8
Service Control	10	11	10
		11	0.8
05	4	10	0.00
A STATE	1		3.75
800	2		35
BC (F-1		1	10
		1	DIR
101	1	1	10
	1	- 1	
	1		1
			1

ESCUELA PROFESIONAL DE INGENIERIA CIVIL FACULTAD DE INGENIERIA Y ARQUITECTURA

2	NA	M3		1/2	(11.1)	2		MUESIKA	A LICENTE A			LABO		TESIS: "AI DE PROI PORCEI
7.0						0.0	DIAGONAL 1		CARA SUPE	ALPBED -		RATORIO DE	TESI	NALISIS COM DUCCIÓN DE I NTAJES DE PO
			00				DIAGONAL 1 DIAGONAL 2	PIACONAL 2	CARA SUPERIOR (mm)	10 0 10 - O		INGENIERIA (ISTA:-LUCE	PARATIVO DE BLOQUETAS I DLIESTIRENO CIUDA
Concaro	Commo	(COLINCKO	- CANADA	(CONCANO			CONCAVO/	19 DONE PLASTICO PET 1/0/2	and or or	LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO	TESISTA: - LUCERO LIBERTAD CONDORI TORRES	TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"
C	5.0	0.0		20	100			DIAGONAL 1 DIAGONAL 2	CARA INFERIOR (mm)	001 410	007 1 00	NIVERSIDAD A	CONDOR! TO	REEMPLAZAI PLÁSTICO PE - 2023"
	5,0							DIAGONAL 2	IOR (mm)		/0	NDINA DEL	(RES	MECÂNICAS DAS CON DIFI T RECICLADO
1	Convex	(4	COUNCY	CONVEX	Constitution	- CONPU	1		CONVEXO	CONCAVO		CUSCO		Y COSTOS ERENTES D EN LA

CA

(onvexo

40

CONURXO

CONTANO

OXOUCE)

2.0

2.0

oncavo

STRA

CARA SUPERIOR (mm)

CONCAVO/

CARA INFERIOR (mm)

CONCAVO/

PET 3,00/0

FECHA: OU(OS/10073

CONVEXO

DIAGONAL 1 DIAGONAL 2

20

4.0

COUCARO

DIAGONAL 1

DIAGONAL 2

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

(IR	Pis.
1	
1	AND STREET
SEMERACKIL	1
Fig	118

0 0

ONCORO

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES RCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS

CIUDAD DEL CUSCO - 2023" TESISTA : - LUCERO LIBERTAD CONDORI TORRES FECHA: 2 2 (25/25-7) CONCAVO/ CARA INFERIOR (mm) CONVEXO DIAGONAL 1 DIAGONAL 2 CONVEXO S,O CONVEXO CONVEXO 2.O CONCAVO CONCAVO CONCAVO 2.O CONCAVO CONCAVO CONCAVO 2.O CONCAVO CONC					1			A				801			CE
CIUDAD DEL CUSCO - 2023" (STA : - LUCERO LIBERTAD CONDORI TORRES INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 02/05/2573 RIOR (mm) CONCAVO/ CONVEXO DIAGONAL 2 CONVEXO CONCAVO/ CONC			0.3	5,0			DIAGONAL 1		CARA SUPE			RATORIO DE		TESI	TAJES DE PO
DDEL CUSCO - 2023" RO LIBERTAD CONDORI TORRES FECHA: 2 205/2273 FECHA: 2 205/2273 FECHA: 2 205/2273 CONCAVO/ CONCAVO/ CONVEXO DIAGONAL 1 DIAGONAL 2 CONCAVO/ CONVEXO CONCAVO/ CONVEXO CONCAVO/ CONCAV		30	4.0			5,0	DIAGONAL 2		RIOR (mm)	ALABE		INGENIERIA (0 60 6	STA:-LUCE	CIUDA
D-2023" CONDORI TORRES NIVERSIDAD ANDINA DEL CUSCO 1 (05/ 2003) CARA INFERIOR (mm) CONCAVO/ CONVEXO 2.0 2.0 2.0 CONCAVO	00000	CANUCKO	Courses	Connovo	CONVEXO	(ONAKO)			CONCAVO/	0 - 0100	PECHA: 0	IVIL DE LA U	The same	RO LIBERTAL	D DEL CUSCO
ANDINA DEL CUSCO ANDINA DEL CUSCO CONCAVO/ CONVEXO DIAGONAL 2 CONCAVO CONCAVO CONCAVO CONCAVO CONCAVO		(2.5				7.5	DIAGONAL 1	CARA INFE	UP PE J	2 E20 CE 11	NIVERSIDAD		CONDORI TO) - 2023"
CUSCO CONCAVO/ CONVEXO CONCAVO CONCAVO						20	3.0	DIAGONAL 2	RIOR (mm)		305	ANDINA DEL	TO DET	RRES	
		1	concavo	1	1	Concaw	(DUCCO)		CONVEXO	CONCAVO/		COSCO	CHISCO		

ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 24/05/2023

	Bloque Partron								
MUESTRA	Ws	Wd	Wi	ABSORCIÓN (%)	DENSIDAD (kg/cm3)				
M1	9564.5	9108.6	7505.70						
M2	9600.7	9107.8	7499,60		Harley Bay				
M3	9589.4	9110.00	7484.20						
M4	9566.3	9101.1	7494.50						
M5		9115 40	75/0 90		THE PARTY LIES				

M6

UNIVERSIDAD ANDINA DEL CUSCO

7486.60

9115.50

9600.00

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 4/05/2023

MUESTRA	Ws	Wd	Wi	ABSORCIÓN (%)	DENSIDAD (kg/cm3)
M1	6264.5	5968.1	4292.0		
M2	6302.5	6031.5	4289.4		
МЗ	6278.9	5980, 8	4290.10		
M4	6174.5	5897.8	4300.10		
M5	6278.4	5987.2	4300.5		
M6	6300.5	6002.0	4294.2		

UNIVERSIDAD ANDINA DEL CUCCO-FACULTAD DE INCLUERA-CP. INGENERIA CIVIL-SANCIA DE STITLOS Y ASFALTO - INGENIERIA CIVIL-

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 4/05/2023

	Bloque con 3% Poliestireno								
MUESTRA	Ws	Wd	Wi	ABSORCIÓN (%)	DENSIDAD (kg/cm3)				
M1	5838.9	5600.5	3888.5						
M2	5799.6	5569.5	3894.6						
M3	5822.10	5590.6	3900.70						
M4	5839.0	5599.6	3901.20						
M5	5795-10	5565.2	3897.70						
M6	3799.10	5562.2							

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 4/05/2023

Plaque con 5% Poliestireno

MUESTRA	Ws	Wd	Wi	ABSORCIÓN (%)	DENSIDAD (kg/cm3)
M1	4358.8	4200.8	2800.10		
M2	4350.1	4189.8	2804 20		
МЗ	4357.1	4191.2	2794.50		
M4	4352 5	4191.3	2801.40		
M5	4350.5	4190.0	2790.10		
M6	4352.6	4188.9	2795.60		

DINIVERSIDAD ANDINA DEL SUCCO
PACULAD DE INGENERIA CA INCENTIA CONL

ACON AS -I AF. SULLOS
Y ASF ALTO -INGENIERA CIVIL.

TACULTAD DE INCENTER.

ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 4/05/23

				-
Bloque con	190	Pet	Recidado	

MUESTRA	Ws Wd		Wi	ABSORCIÓN (%)	DENSIDAD (kg/cm3)
M1	6300.4	6020 4	4750,50		
M2	6295.3	6015.8	4740.10		
M3	6301.5	6024.1	4752.40		
M4	6289.9	6013.4	4751.10		
M5	6294.70	6018.60	4746.20		
M6	6293.9	6015.20	4750.80		

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 4/05/2023

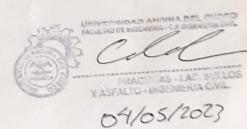
				0 1 /
Blowne	(m	3%	Pet	Recidado
1) rugue	0		,	

	DENSIDAD				
MUESTRA	Ws	Wd	Wi	ABSORCIÓN (%)	(kg/cm3)
3.41	6080.5	5820.6	4400.90		
M1	0000		4398.50		
M2	6100.0	5840.60			
	1 00 11	5839.6	4397.10	A STATE OF THE STA	
M3	6099.4	3031			
M4	6105.4	5841.0	4397.50		
1714		10110 2	4390.10		
M5	6115.3	5849.2			
M6	6075.60	5816.40	4400.00		

UNIVERSIDAD ANDINA DEL CUCCO PACULTAD DE INGENERA. C.P. INGENERA CIVIL.

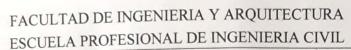
Y ASFALTO - ITICI, NIERA CIVIL.

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL


TESIS: "ANALISIS COMPARATIVO DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

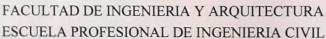
TESISTA: - LUCERO LIBERTAD CONDORI TORRES

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO


FECHA: 4/05/23

	Bloque 5% Pet Recidado							
MUESTRA	Ws	Wd	Wi	ABSORCIÓN (%)	DENSIDAD (kg/cm3)			
M1	5900.9	5669.7	4100.0					
M2	5880.7	5654.1	4099.5					
M3	5890.5	5660.3	The state of the s					
M4	5882.1	5654.4	4090.6					
M5	5899.5	5666-8	4089.7					
M6	5902.6	5661.2	4090.8.					

TESIS: "ANALISIS COMPARATIVO DE LAS CARACTERISTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"


TESISTA: - LUCERO LIBERTAD CONDORI TORRES

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO

Fecha = 28/04/23	Blog	we Pa	non			
MUESTRA	M1	M2	M3	M4	M5	M6
Potencia de energia electrica (W)	30.00	30.00	30.00	30.00	30.00	30.00
Altura de bloque de concreto (m)	0,200	0,200	0,200	0,200	0,202	0,199
Largo de bloque de concreto (m)	0,400	6,400	0,401	0,400	0,401	0,400
Ancho de bloque de concreto (m)	0,120	01121	0,120	0,120	0,120	0,120
Temperatura de placa caliente (°K=°C+275.15)	568.15	565. K	565.15	566.15	569.15	565, 15
Temperatura de placa (°K=°C+275.15)	328.15	325.15	329.15	325.15	327.15	321.15

UNIVERSIDAD ANDINA DEL CUSCO

TESIS: "ANALISIS COMPARATIVO DE LAS CARACTERISTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO

Fecha : 28/04/23	Blogue	1%	Poliestice	no	THE DEL	
MUESTRA	M1	M2	M3	M4	M5	M6
Potencia de energia electrica (W)	30.00	30.00	30.00	30.00	30.00	30.00
Altura de bloque de concreto (m)	0,199	0,201	0,200	0,200	0,202	0,200
Largo de bloque de concreto (m)	0,401	0,402	0,401	0,400	0,400	
Ancho de bloque de concreto (m)	0,120	0,121	0,121	0,120	0,121	0,400
Temperatura de placa caliente (°K=°C+275.15)	567.15	561.15				568.15
Temperatura de placa . " fia (°K=°C+275.15)					304.15	

UNIVERSIDAD ANDINA DEL CUCCO.
PACIATAD DE RIGERERIA CIVIL

PACIATAD DE RIGERERIA CIVIL

PRACTICAS - LAS. SUELOS.
Y ASFALTO - INGENIERIA CIVIL.

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS CARACTERISTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO

EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES DE LA UNIVERSIDAD ANDINA DEL CUSCO

LABORATORIO DE INGENIER	IA CIVIL I	DE LA UN	uestran	0	245	M6
Hecha: 28 04 23 MUESTRA	M1	M2	M3	M4 30.00	M5 30.00	30.00
Potencia de energia electrica (W)	30.00	30.00	30.00		0/202	0,200
Altura de bloque de concreto (m)	- 1	0,202		01399	0,401	0,400
Largo de bloque de concreto (m)	0,402		01	0,120	0,119	01119
Ancho de bloque de concreto (m)	0,120	01121	7.2		566.15	563,15
Temperatura de placa caliente (°K=°C+275.15)	563.15	564.15	565.15	303.12	300	
Temperatura de placa (°K=°C+275.15)	290.15	292.15	289.15	288.15	290.15	292.15

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS CARACTERISTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO

LABORATORIO DE INGL. Fecho. 28/04/23 Blo MUESTRA	M1	M2	M3	M4	M5	M6
Potencia de energia electrica (W)	30.00	30.00	30.00	30.00	30.00	30.00
Altura de bloque de concreto (m)	0,200	0,201	0,200	0,200	0,202	0,199
Largo de bloque de concreto (m)	0,399	0,401	0,401	0,400	0,401	0,400
Ancho de bloque de concreto (m)	0,120	0,121	0,119	0,120	0,120	0,120
Temperatura de placa canente (°K=°C+275.15)	565.15	566.15	564.15	564.15	564.15	566.15
Temperatura de placa (°K=°C+275.15)	280,15	285.15	284.15	280,15	286.15	283.15

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS CARACTERISTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA :: - LUCERO LIBERTAD CONDORI TORRES

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO

Fecha: 28/04/23 blog	we pet	190	PESTIC	20		
MUESTRA	M1	M2	M3	M4	M5	M6
Potencia de energia electrica (W)	30.00	30.00	30.00	30.00	30.00	30.00
Altura de bloque de concreto (m)	0,199	0,200	0,200	0,202	0,202	0,199
Largo de bloque de concreto (m)	0,399	0,401	0,400	0,400	0,402	0,400
Ancho de bloque de concreto (m)	0,121	0,120	0,120	0,119	0,120	0(12(
	567.15		565.15	568,15	270,15	569,15
Temperatura de placa	318.15					311.15
File (°K=°C+275.15)						

UNIVERSIDAD ANDINA DEL CUSCO

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS CARACTERISTICAS FÍSICO-MECÁNICAS Y
COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON
DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO
EN LA CIUDAD DEL CUSCO - 2023"

TESISTA: - LUCERO LIBERTAD CONDORI TORRES

TOTALERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO

TORRO DE INGENIER	IA CIVIL I	DE LA UN	Pet			
LABORATORIO DE INGENIER	3 Blogs	se 300	B/12	M4	M5	M6
+ egice	M1	M2	1412	30.00	30.00	30.00
MUESTRA		30.00	30.00			0(199
Potencia de energia electrica (W)	30.00		0,200	0/200	0,200	
Potencia de chergia	0,200	01202		01401	0,400	01402
Altura de bloque de concreto (m)	0,400	01401	010		0,121	0,120
de bloque de colletete (14)		0,121	01120	01121	-	
Ancho de bloque de concreto (m)	01121	07.2		110 15	566.15	569,15
Ancho de bloque de considerate		568,15	570.15	361.13	300.0	
Temperatura de placa carre	57000					1 - ×
(°K=°C+275.15)	194,15		200 15	200.15	290.5	292.5
Temperatura de placa	1994 15	393.15	298.13	300.15	-	
Temperatura de plas	2111					
Fig. (°K=°C+275.15)						
1110						

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

TESIS: "ANALISIS COMPARATIVO DE LAS CARACTERISTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

TESISTA : - LUCERO LIBERTAD CONDORI TORRES

LABORATORIO DE INGENIERIA CIVIL DE LA UNIVERSIDAD ANDINA DEL CUSCO

Fecha 28/04/23	Bloque	240 DE	t			
MUESTRA	M1	M2	M3	M4	M5	M6
Potencia de energia electrica (W)	30.00	30.00	30.00	30.00	30.00	30.00
Altura de bloque de concreto (m)	0,199	0.200	0,200	0,199	0,200	0,199
Largo de bloque de concreto (m)	0,400	0,402	01400	0,400	0,401	01400
Ancho de bloque de concreto (m)	0,120	0,121	0/120	0/121	0,199	0/121
Temperatura de placa caliente (°K=°C+275.15)	564.15	569,15	570.15	567.15	565,15	570,0
Temperatura de placa (°K=°C+275.15)	285.15	200.15	281.15	281.15	281.15	286.15

UNIVERSIDAD ANDINA DEL CUCCO.
FACULTAD DE INGENIERIA CIPI.

PRACTICAS - LAE. SUELOS. Y ASFALTO - INGENIERIA CIVIL.

1600.00 2000.00

1250.00 1000.00 800.00

OR - HO

104. 05.60

> 92.40 91.30

90.20 97.40 74.20

43.0

3150.00 2500.00

> > X1.0

99.50 100,50 100.40

2500.00

10.40

630.00 500.00

400.00

250.00 315.00

98.

50

98.40

04. Pt

81.20

91.20

160.00 125.00

200.00

98.50 102.50 or +13

90.30

80.20

81.50

80.00

71.30

UNIVERSIDAD ANDINA DEL CUSCO

ESCUELA PROFESIONAL DE INGENIERIA CIVIL FACULTAD DE INGENIERIA Y ARQUITECTURA

LABORATORIO DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 28/04/23

TESISTA : - LUCERO LIBERTAD CONDORI TORRES

FREC (Hz)

Lp emisor (dB)

Lp receptor (dB)

Aislamiento (dB)

slamiento

20

78.30 68.

82.40

85.0

Slogue

100.00

1			•
	10	-	Sie Con
	37	1	8
1		J.	1.00
1	2.	36	7
ı	-	-	-25

	A15
	100
	150
	E 16
	4, 755
	A
1	

LABOR	ATORIO DE LA UNIVERS	LABORATORIO DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 28/04/23	8
	Bloque 1060 Poli	iestilens	
C (Hz)	Lp emisor (dB)	Lp receptor (dB)	Ais
0.00	91.30	70,0	
5.00	99.80	72,5	
0.00	101.20	76.5	
0.00	100.40	1.08	
50.00	95.30	72,4	
15.00	89.00	69, 4	
00.00	98.60	75,5	T
00.00	99.40	73,2	
30.00	100.20	0 195	T
00.00	100.00	81,1	T
100.00	-	73.2	T
50.00	98.60	Pot	1
300.00	97.40	2,97	+
UU UUL	100.50	00,4	-

FACULTAD DE INGENIERIA Y ARQUITECTURA

TESIS: "ANALISIS COMPARATIVO DE LAS CAPACTERISTICAS FÍSICO-MECÁNICA COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CO DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET

ESCUELA PROFESIONAL DE INGENIERIA CIVIL

ESISTA: - LUCERO LIBERTAD CONDORI TORRES RECICLADO EN LA CIUDAD DEL CUSCO - 2023" UNIVERSIDAD ANDINA DEL CUSCO

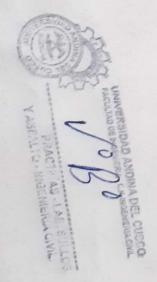
AND WEST STREET, OUTVIEW AND

PRACTICAS - LAS. SULLOS

NIVERSIDAD ANDINA DEL CUCCO.

3150.00

100


UNIVERSIDAD ANDINA DEL CU

ESCUELA PROFESIONAL DE INGENIERIA CIV FACULTAD DE INGENIERIA Y ARQUITECTUR

TESIS: "ANALISIS COMPARATIVO DE LAS CARACTERISTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON

	≥ ≥	20
		0
	1	P
1		赵

100.00 125.00 160.00 200.00 250.00 315.00 400.00 630.00 630.00 1000.00 1250.00 1600.00 2500.00		TESIST	COSTOS DE PRODUCCION DIFERENTES PORCEN RECIC
	Lo emisor (dB) Lp receptor (dB) Aislamiento (dB)	TESISTA:-LUCERO LIBERTAD CONDORI TORRES LABORATORIO DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 26/04/23	COSTOS DE PRODUCCIÓN DE BLOQUE I AS DE CUNCRE I O RECITADO PET DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL

RENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET OS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON ANALISIS COMPARATIVO DE LAS CARACTERISTICAS FÍSICO-MECÁNICAS Y TESISTA): - LUCERO LIBERTAD CONDORI TORRES RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

LABORATORIO DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 28/04/23

		-	
5	10	No.	
2	1		5
2	30		9
-	di.	-	

1	
5 62 68	2
5 Post	ğ
	ğ
All the state of	P

	Lo emisor (dB)) Lp receptor (dB)	Aislamiento (dB)
	8214		
	88,9	S00 8	
	90,3	50,6	
	86,6	9,44	
	91,0	08.5	
	2,46	30,9	
	90,4	SII	
	9,89	12.0	
	100,2	2120	
	8,19	47.4	
	101.5	111	
	100,9	1105	
	99,9	202	
		6.12	
	102,3	30,	
0100.00	102,3	011	

R	FREC (Hz)	100.00	125.00	160.00	200.00	250.00	315.00	400.00	500.00	630.00	800.00	1000.00	1250.00	1600.00	2000.00	2500.00
loque 1% pla	Lp emisor (dB)	90,1	82,5	79,9	84,8	89,4	90,5	91,2	89,9	0,89	100,2	7,40	8,001	101.4	100,9	102.8
planta Pet	Lp receptor (dB)	60,2	68,8	64.9	65.6	o'Th	70,4	40,0	65,6	12.5	1813	79,2	80.1	2000	200	00 1
	Aislamiento (dB)									-	-	1			1	

ESCUELA PROFESIONAL DE INGENIERIA CIVIL

UNIVERSIDAD ANDINA DEL CUSCO FACULTAD DE INGENIERIA Y ARQUITECTURA

TESIS: "ANALISIS COMPARATIVO DE LAS CARACTERISTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET

LABORATORIO DE LA UNIVERSIDAD ANDINA DEL CUSCO

TESISTA :: - LUCERO LIBERTAD CONDORI TORRES RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

Y ASFALTO - INGENIERIA CIVIL PRACTICAS - LAS. SULLOS

ESCUELA PROFESIONAL DE INGENIERIA FACULTAD DE INGENIERIA Y ARQUITECT

LABORATORIO DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 28/04/23

FREC (Hz)

Lp emisor (dB) Rogue

Lp receptor (dB)

Aislamiento (dB)

80.4 78

92.

600 . 85

85

LABORATORIO DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 28/04/23

R

TESISTAS: - LUCERO LIBERTAD CONDORI TORRES RECICLADO EN LA CIUDAD DEL CUSCO - 2023"

100.00

250.00 200.00 160.00 125.00

400.00

315.00

93.2 90.0

59.7 N. 85

86.

500.00

630.00

96

100

8. 8 8 60.4

96. 99 496

1600.00 1250.00 1000.00 800.00

2000.00 2500.00

101.8

89.9

1001

59.3 53

60

3150.00

The second second	CIVIL	URA	000
State of the latest designation of the lates	AND SA		-

(ZII)	בט בווווסטו (מבט		
00	86,40	62,1	
.00	89,3	4,29	
0.00	88.8	60,2	
0.00	94,6	61,2	
0.00	0,89	65.3	
5.00	88.4	64.5	
0.00	95,6	67. 4	
0.00	96,6	400.00	
0.00	99,1	10.0	
0.00	100,4	1000	
0.00	99.5	1 Ct	
0.00	100,5	5.22	
0.00	102.6	45	
00.00	105.1	4 6	
0.00	99,8		
0.00	100/2		

UNIVERSIDAD ANDINA DEL CUSCO

TESIS: "ANAL	*
TESIS: "ANALISIS COMPARATIVO DE LAS CARACTERISTICAS FÍSICO-MECÂNICAS Y	FACULTAD DE INGENIERIA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERIA CIVIL
-MECÁNICASY	0

COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO" TESISTA :

CONDORI TORRES LUCERO LIBERTAD

LUGAR: LABORATORIO DE CONCRETO Y MATERIALES DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 24.04.29.23

		BLOQUE	PATRÓN	
RE	SISTENCIA	A LA COM	PRESION DEL BLO	DQUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) (7 DIAS)
M1	4000	120		6800
M2	4200	120,1		6950
M3	400,0	119		6300
M4	400,0	119,7		6640
M5	4001	120,0		6500
M6	400,0	1199		6580

	BIDO	UE POL	IESTIRENO 1	1.9/0
RE		Control of the State of the Sta	PRESION DEL BLO	
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) (7 DIAS)
M1	400,3	120		4080
M2	400/	121		3900
M3	4000	121		4350
M4	400,2	120		3770
M5	400,1	119		4130
M6	400/1	170		3600

	B/0	DUE POL	COLINCIO	3%
DE	SISTENCIA	A LA COM	PRESION DEL BLO	OQUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) (7 DIAS)
M1	4092	119		2800
M2	40011	122		2570
M3	400,1	121		2700
M4	4000	119		2790
M5	400,2	120		2660
M6	400,1	121		2450

24/04/2023

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO" TESISTA 4:

CONDORI TORRES LUCERO LIBERTAD

LUGAR: LABORATORIO DE CONCRETO Y MATERIALES DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 24../24../2923

	BLD	QUE PO	LIESTIRENO.	5%
RE			PRESION DEL BLO	
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) (7 DIAS)
M1	400,4	122		2750
M2	400,2	120		1930
M3	400,0	121		2010
M4	400/1	120,0		1890
M5	400,2	121		2300
M6	400,0	121,3		1990

	BU	DAVE PI	ET 1040	
RE			PRESION DEL BLC	QUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) (7 DIAS)
M1	400,4	121		4050
M2	400,0	120,0		4550
M3	400,3	122,0		4190
M4	400,0	121,1		4360
M5	400,0	121		4400
M6	400,2	121,8		9450

		BLOQUE	= PET 3010	
RF	SISTENCIA	A LA COM	PRESION DEL BLO	OQUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) (7 DIAS)
M1	400,2	120		3010
M2	4000	121		3050
M3	400,1	121		2900
M4	400,2	120		2800
M5	400,2	119		2750
M6	400,0	120		3015

PRACTICAS - LAE, SUELOS
Y ASFALTO - RIGENIERIA GIVIL

2410412023

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO" TESISTA:

CONDORI TORRES LUCERO LIBERTAD

LUGAR: LABORATORIO DE CONCRETO Y MATERIALES DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: 24./04/.2023

	B	LOQUE F	PET SOL	
RE	SISTENCIA	A LA COMP	PRESION DEL BLO	DQUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) (7 DIAS)
M1	400,0	120		2100
M2	400,2	120,5		2380
M3	400,4	121		2250
M4	400,1	121		2300
M5	400,2	120		1900
M6	4090	119,8		2290

HALVEN SHE HAS MANUA DEL CUSCO:
PACULTAD DE INGENIERIA - C.P. INGENIERIA CIVIL

24/04/2023

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO" ESISTA:

'ONDORI TORRES LUCERO LIBERTAD

UGAR: LABORATORIO DE CONCRETO Y MATERIALES DE LA UNIVERSIDAD ANDINA DEL CUSCO

ECHA: Q.2. /. 25. /. 20.23

A. V.C		Browne	PATRÓN	
RE	SISTENCIA		PRESION DEL BLO	OQUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) (14 DIAS)
M1	400	119		9750
M2	400,2	119		9540
M3	400,1	120.		9710
M4	400,1	120		9580
M5	400,1	120		9620
M6	400,0	120		9670

	Bla	QUE POLI	ESTIRENO 1	9/0
RF	SISTENCIA	A LA COM	PRESION DEL BLO	QUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) (14 DIAS)
M1	400	119		6950
M2	400	119		7150
M3	400,1	119		7030
M4	400	120		7080
M5	400,1	121		6970
M6	400,1	121		

			Market and Control of the Control	
	BLOQUE	POLICST	PRESION DEL BIO	
RE	SISTENCIA	A LA COM	PRESION DEL BLO	CARGA MAXIMA
MUESTRA	LARGO	ANCHO	AREA BRUTA	(kgf) (14 DIAS)
	1,100 2	120		6670
M1	400,2			6500
M2	400,1	121		
M3	400,1	120		6583
IVIS				6590
M4	40011	120		6600
M5	400,0	120		
		121		6530
M6	400,1	12		

UNIVERSIDAD ANDINA DEL CUSCO-FACULTAD DE INGENIERIA COL INGENIERIA COLLAR SULLOS

02/05/2023

FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO" TESISTA:

CONDORI TORRES LUCERO LIBERTAD

LUGAR: LABORATORIO DE CONCRETO Y MATERIALES DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 02./25./2023

	BLOS	DUE POL	i ESTIRENO	5%
RE	SISTENCIA	A LA COM	PRESION DEL BLO	DQUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) (14 DIAS)
M1	400,1	120		6290
M2	4000	120		6330
M3	400,0	120,2		6200
M4	4000	120,1		6310
M5	400/	120,1		6270
M6	4000	120		6300

		Bloque	PET 10%	
RE	SISTENCIA		PRESION DEL BLO	OQUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) (14 DIAS)
M1	400,2	118		7300
M2	400,2	119		7270
M3	4000	118		7350
M4	40011	118		7250
M5	400,1	119		7400
M6	4000	120		7390

	13	LOQUE	PET 39/0	
RE	SISTENCIA	A LA COM	PRESION DEL BLO	DQUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) (14 DIAS)
M1	400,0	219		7010
M2	400,2	120		710
M3	400,0	120		7090
M4	400,1	120		7180
M5	400,0	120		7070
M6	400,1	119		7100

HINTERSHEAD ANDINA DEL CUCCO.

RADITAD DE RIGERIERA CAR. ESCENCIA CAVIL

PRACTIC AS -1 AF. SUELOS.

Y ASFALTO - INGENIERIA CAVIL

02/05/2023

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO"

CONDORI TORRES LUCERO LIBERTAD

LUGAR: LABORATORIO DE CONCRETO Y MATERIALES DE LA UNIVERSIDAD ANDINA DEL CUSCO

FECHA: .22/.05./.20.

	13/00	UE PET	50%	
RE	SISTENCIA	A LA COMI	PRESION DEL BLO	QUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA (kgf) (14 DIAS)
M1	400,1	120		6970
M2	400,1	121		6960
M3	400,2	120		6880
M4	400,0	120	And Market	6940
M5	400,1	121		6900
M6	400,2	120		6910

02/05/2023

DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO" TESISTA :

CONDORI TORRES LUCERO LIBERTAD

LUGAR: LABORATORIO DE CONCRETO Y MATERIALES DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 15. 105. 12023

		PA	TRON	
	RESISTEN	CIA A LA CO	MPRESION DEL B	LOQUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA kgf
Woestwit E in				28 días
M1	400.2	(2)		13 590
M2	400.1	120		13400
M3	400.7	121		13760
M4	400.0	120		13970
M5	Pacy	120		14020
M6	Y00.0	120		1375D

			EXPANDIDO 1%	
	RESISTEN	ICIA A LA CO	MPRESION DEL B	LOQUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA kgf
				28 días
M1	1400	121		11100
	400			11200
M2	400	131		10180
M3	400-1	120		
M4	400	121		11090
M5	1.001	120		11110
M6	400.1	120		11020

	PECICIEN	OLIESTIRENO	DEXPANDIDO 3% DMPRESION DEL B	LOQUE
	RESISTEN		AREA BRUTA	CARGA MAXIMA kgf
MUESTRA	LARGO	ANCHO	ANLA BROTT	28 días
		1-7		10050
M1	400.1	120		9 990
M2	400.1	150		10100
M3	400.0	15.7		10070
M4	400-1	150		9890
M5	400.0	157		9970
N/6	400.0	121		

COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET TESISTA:

CONDORI TORRES LUCERO LIBERTAD

LUGAR: LABORATORIO DE CONCRETO Y MATERIALES DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: 15.1.05.12023

BCTIA, .19/				71112
	P	OLIESTIREN	D EXPANDIDO 5%	
	RESISTEN	ICIA A LA CO	MPRESION DEL B	LOQUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA kgf
N.4.4				28 días
M1	400.7	151		9790
M2	400	170		
M3	400	120		98210
M4				9750
	400	150		9840
M5	400.2	150		9950
M6	400.2	120		9880

		P	ET 1%		
RESISTENCIA A LA COMPRESION DEL BLOQUE					
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA kgf	
				28 días	
M1	400.2	121		15 030	
M2	400.2	119		11970	
M3	400.0	119		12000	
M4	400.1	121		11990	
M5	400.0	119		11860	
M6	0.00N	121		11900	

	RESISTEN		ET 3% DMPRESION DEL B	LOQUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA kgf
IVIOESTRA				28 días
M1	400.0	119		10750
M2	400.2	121		10490
M3	400.1	118		10680
M4	400.2	120		10 700
M5	400.1	120		10540
M6	G-CON	120		10560

MULTINE ROS MENTAL AND THE STATE OF THE STAT

TESIS: "ANÁLISIS COMPARATIVO DE LAS CARACTERÍSTICAS FÍSICO-MECÁNICAS Y COSTOS DE PRODUCCIÓN DE BLOQUETAS DE CONCRETO REEMPLAZADAS CON DIFERENTES PORCENTAJES DE POLIESTIRENO EXPANDIDO Y PLÁSTICO PET RECICLADO"

TESISTA :

CONDORI TORRES LUCERO LIBERTAD

LUGAR: LABORATORIO DE CONCRETO Y MATERIALES DE LA UNIVERSIDAD ANDINA DEL CUSCO FECHA: ...\\$\./..\&./..\\&./..\\&./.\\&./.\\\&./.\\\&.\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\\&.\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\\\&.\\&.\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\\&.\\&

		PI	ET 5%	
	RESISTEN	CIA A LA CO	MPRESION DEL B	LOQUE
MUESTRA	LARGO	ANCHO	AREA BRUTA	CARGA MAXIMA kgf
				28 días
M1	400.1	121		9790
M2	400. D	119		9910
M3	400.0	120		9780
M4	400.1	121		9890
M5	400.2	121		9900
M6	400.2	170		9870