

UNIVERSIDAD ANDINA DEL CUSCO FACULTAD DE INGENIERÍA Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO AL MORTERO DE CEMENTO ADICIONADO CON DIÓXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020

Presentado por: Carol Stefani Carazas Tito

Nery Alex Palomino Valverde

Para optar el título profesional de Ingeniero Civil

Asesor: Mg. Ing. Víctor Chacón Sánchez

CUSCO – PERÚ 2020

Dedicatoria

A Dios, que me ha permitido llegar a esta etapa de mi vida y nunca me abandonó.

A mis padres, Bernabé y Sabina por todo su apoyo y comprensión dada en todo momento.

¡LOS AMO!

A mis hermanas Yeny y Lillian, que siempre estuvieron pendientes de mí en todo aspecto de mi vida.

¡LAS QUIERO!

A mi sobrina Andreita, que constantemente estaba pendiente del avance de la tesis.

¡TE QUIERO!

Carol CT.

A Dios, mis padres Javier e Irma, hermanos, quienes fueron una motivación y un apoyo incondicional para poder lograr y realizar esta investigación de mi tesis.

Alex PV

Agradecimientos

Agradecer en primer lugar a Dios, que me ha dado salud y fuerzas para realizar esta investigación.

Agradezco a mi asesor Mg. Ing. Víctor Chacón Sánchez, quien estuvo guiándonos desde el primer momento de la investigación desde el curso de TESIS I.

Agradezco a toda mi familia por su apoyo incondicional siempre.

Agradecer a mi compañero Alex y su familia por el apoyo y motivación brindados.

Agradezco a mi casa de estudios, la Universidad Andina del Cusco, especialmente a la Facultad de Ingeniería y Arquitectura que fueron parte de mi formación profesional y personal a lo largo de mi vida.

Carol CT.

V

Agradezco a mi asesor Mg. Ing. Víctor Chacón Sánchez, por el apoyo desde el primer momento en esta investigación.

Agradezco a mis abuelos Cirilo e Isabel el cual confiaron en mi persona, en las decisiones y proyectos que me permitieron llegar a esta etapa de mi vida.

Alex PV.

Resumen

La presente investigación, estudió las propiedades físico-mecánicas (fluidez, resistencia a la compresión, absorción y adherencia) y fotocatalíticas (autolimpieza y degradación de dióxido de nitrógeno) que brinda el dióxido de titanio (TiO2) al mortero, agregándolo como aditivo en la mezcla, en un 3%, 5% y 7% del peso del cemento. Se realizó el diseño de mezcla del mortero patrón, es decir sin adición de TiO2, el cual se comparó con el mortero adicionado con TiO2 a los porcentajes mencionados. La relación de agua/cemento elegida fue de 0.85. El primer ensayo al que el mortero fue sometido, fue el de fluidez, el cual influye en su trabajabilidad y fue realizado en estado plástico. De acuerdo a los resultados obtenidos la fluidez del mortero baja al incrementar el porcentaje de TiO2, para el 3% de TiO2, el mortero aún tiene una consistencia plástica, y para el 5% y 7% tiene una consistencia seca. El segundo ensayo al que fue sometido el mortero fue en estado endurecido, siendo éste el de resistencia a la compresión, según la NTP 334.051, en el cual las muestras son sometidas a fuerza de compresión. La resistencia del mortero modificado con el 3% de TiO2 sube muy poco en comparación con el mortero patrón, sin embargo, al modificarlo con el 5% y 7% esta resistencia baja mucho más. El tercer ensayo fue el de absorción, que se realizó según la NTP 339.631, disminuyendo la absorción al incrementar los porcentajes de TiO2. En cuanto al ensayo de adherencia, éste se realizó según la Norma Chilena (NCh) 167, la adherencia aumentó al incrementar los porcentajes de TiO2. Para el estudio de las propiedades fotocatalíticas (autolimpieza y degradación de dióxido de nitrógeno) que brinda el TiO2 al mortero, se realizaron mediante la prueba del factor de fotodegradación R, para las 4 y 26 horas. Para la autolimpieza se utilizó un colorante violeta, llamado rodamina B en cubos de mortero, aumentando considerable del factor de degradación para los porcentajes adicionados con TiO2. Para la degradación de gases se utilizó el dióxido de nitrógeno, siendo uno de los gases más contaminantes para el medio ambiente hoy en día, sometiendo cubos de morteros adicionados y sin adición este gas nocivo, resultando también un incremento considerable del factor de degradación para los porcentajes adicionados con TiO2.

Palabras clave: Dióxido de titanio (TiO2), fotocatálisis, autolimpieza, resistencia a la compresión, absorción, fluidez, adherencia, trabajabilidad, mortero.

vii

Abstract

The present investigation studied the physical-mechanical (fluidity, resistance to compression, absorption and adherence) and photocatalytic (self-cleaning and degradation of nitrogen dioxide) properties that titanium dioxide (TiO2) provides to mortar, adding it as an additive in the mix, in 3%, 5% and 7% of the weight of the cement. The mixture design of the standard mortar was carried out, that is, without the addition of TiO2, which was compared with the mortar added with TiO2 at the percentages mentioned. The water / cement ratio chosen was 0.85. The first test to which the mortar was subjected was the fluidity test, which influences its workability and was carried out in a plastic state. According to the results obtained, the fluidity of the mortar decreases by increasing the percentage of TiO2, for 3% of TiO2, the mortar still has a plastic consistency, and for 5% and 7% it has a dry consistency. The second test to which the mortar was subjected was in the hardened state, this being compressive strength, according to NTP 334.051, in which the samples are subjected to compression force. The resistance of the mortar modified with 3% of TiO2 rises very little compared to the standard mortar, however, when modifying it with 5% and 7% this resistance drops much more.

The third test was the absorption test, which was carried out according to NTP 339,631, decreasing absorption by increasing the percentages of TiO2. Regarding the adherence test, it was carried out according to the Chilean Standard (NCh) 167, the adherence increased by increasing the percentages of TiO2. For the study of the photocatalytic properties (self-cleaning and degradation of nitrogen dioxide) that TiO2 provides to the mortar, they were carried out through the test of the photodegradation factor R, for 4 and 26 hours. For self-cleaning, a violet dye, called rhodamine B, was used in mortar cubes, considerably increasing the degradation factor for the percentages added with TiO2. Nitrogen dioxide was used for the degradation of gases, being one of the most polluting gases for the environment today, subjecting buckets of mortars added and without adding this harmful gas, also resulting in a considerable increase in the degradation factor for the percentages added with TiO2.

Keywords: Titanium dioxide (TiO2), photocatalysis, self-cleaning, resistance to compression, absorption, fluidity, adhesion, workability, mortar.

viii

Introducción

El presente trabajo de investigación tiene como finalidad dar a conocer la influencia del uso del dióxido de titanio (TiO2) como aditivo fotocatalizador, utilizándolo en el mortero de cemento Portland Tipo I relación A/C=0.85, teniendo una aplicación en la construcción como en el revestimiento y asentado de unidades de albañilería que modifica las propiedades físico mecánicas como la resistencia a compresión, absorción y adherencia, el cual a la vez aportan tratamientos y/o propiedades adicionales como la fotocatálisis (auto limpieza-descontamínate), teniendo una aplicación como revestimiento de estructuras expuestos al medio ambiente y/o a emisiones contaminantes provenientes de la combustión de petróleo y sus derivados especialmente compuestos de nitrógeno.

El estudio se realizó en el entorno de la ciudad del Cusco, específicamente en el distrito de San Jerónimo. Se hizo uso de los siguientes materiales: cemento de la marca YURA del tipo IP, agregado fino de la cantera de Cunyac y agua potable de la ciudad de Cusco, para determinar la auto limpieza de mortero se utilizó Rodamina; compuesto químico utilizado como colorante de color violeta, el cual es un indicador de auto limpieza de mortero.

En la investigación también se realizó la medición de la degradación del dióxido de nitrógeno (NO2), mediante el procedimiento que especifica el Organismo de Unificación Nacional Italiana (UNI) 11259:2008 (determinación de la actividad fotocatalítica de aglutinantes hidráulicos - método de ensayo Rodammina), sustituyendo la Rodamina, mediante exposición continua de probetas con gas contaminante dióxido de nitrógeno NO2, siendo este un indicador de descontaminante bajo exposición continua de las probetas a radiación ultra violeta (UV).

Esta investigación se presenta en cinco capítulos el cual tiene como primer capítulo la descripción del problema, como segundo capítulo se desarrolla el marco teórico con antecedentes nacionales e internacionales, el tercer capítulo se describe la metodología, en el capítulo cuarto se muestran los resultados, y por último muestra la discusión en el capítulo cinco. Como complemento tenemos las conclusiones, recomendaciones, referencias, glosario de términos y anexos.

Con los resultados obtenidos mediante los ensayos realizados se podrá afirmar la importancia de la utilización de aditivos fotocatalizadores en la construcción, brindando no solo beneficios en las propiedades físico mecánicas del mortero sino como descontaminante de sustancias nocivas como dióxido de nitrógeno (NO2) perjudiciales para la salud.

Índice general

Dedicatoria	ii
Agradecimientos	iv
Resumen	vi
Abstract	vii
Introducción	vii
Índice de tablas	xii
Índice de figuras	xvii
Capítulo I: Planteamiento del problema	1
1.1 Identificación del problema	1
1.1.1 Descripción del problema	1
1.1.2 Formulación del problema	2
1.2 Justificación e importancia de la investigación	3
1.2.1 Justificación técnica	3
1.2.2 Justificación social	3
1.2.3 Justificación de viabilidad	4
1.2.4. Justificación por relevancia	5
1.3 Limitaciones de la investigación	5
1.3.1. Limitaciones geográficas	5
1.3.2 Limitaciones de estudio	5
1.3.3 Limitación con respecto a los materiales	<i>6</i>
1.3.4 Limitación de pruebas	6
1.3.5 Limitaciones según los equipos utilizados	7
1.4 Objetivo de la investigación	7
1.4.1 Objetivo general	7
1.4.2 Objetivos específicos	8
Capítulo II: Marco teórico	9
2.1 Antecedentes	9
2.1.1 Antecedentes a nivel nacional:	9
2.1.2 Antecedentes a nivel internacional:	10
2.2 Aspecto teóricos pertinentes	12
2.2.1 Catálisis	12
2.2.2 Fotocatálisis	13
2.2.3 Dióxido de titanio	17

2.2.4 Propiedades de los materiales de construcción fotocatalíticos a base de TiO2	19
2.2.5 Tipos de materiales de construcción fotocatalíticos	21
2.2.6 Mortero	23
2.3 Hipótesis	45
2.3.1 Hipótesis general	45
2.3.2 Sub hipótesis	46
2.4 Definición de variables	46
2.4.1 Variables independientes	46
2.4.2 Variables dependientes	47
2.4.3 Cuadro de operacionalización de variables	49
Capitulo III: Metodología	50
3.1 Metodología de la investigación	50
3.1.1 Tipo de Investigación	50
3.1.2 Nivel de la investigación	51
3.1.3 Método de la investigación:	51
3.2. Diseño de investigación:	52
3.2.1 Diseño metodológico	52
3.2.2 Diseño de Ingeniería	54
3.3 Población y muestra	55
3.3.1 Población	55
3.3.2 Muestra	55
3.3.3 Criterios de inclusión	57
3.4 Instrumentos	58
3.4.1 Instrumentos de recolección de datos	58
3.4.2 Instrumentos de ingeniería	70
3.5 Procedimiento de recolección de datos	72
3.5.1 Granulometría del agregado fino	72
3.5.2 Material que pasa el tamiz N°200 del agregado fino	75
3.5.3 Peso unitario suelto y compactado del agregado fino	78
3.5.4 Peso específico y absorción del agregado fino	82
3.5.5 Contenido de humedad	85
3.5.6 Ensayo de fluidez	87
3.5.7 Elaboración de probetas de mortero	90
3.5.8 Ensavo de resistencia a compresión	96

хi

3.5.9 Ensayo de absorción	100
3.5.10 Ensayo adherencia corte por cizalla	105
3.5.11 Ensayo de rodamina	113
3.5.12 Ensayo de degradación del dióxido de nitrógeno (NO2)	119
3.6 Procesamiento de análisis de datos	125
3.6.1 Granulometría del agregado fino	125
3.6.2 Módulo de finura	127
3.6.3 Material que pasa el tamiz N°200 -Agregado fino	128
3.6.4 Peso unitario del agregado fino	130
3.6.5 Peso específico y absorción del agregado fino	132
3.6.6 Contenido de humedad del agregado fino	134
3.6.7 Diseño de mezcla de mortero con dióxido de titanio	135
3.6.8 Ensayo de fluidez del mortero	143
3.6.9 Ensayo de resistencia a la compresión del mortero	145
3.6.10 Ensayo de adherencia del mortero	150
3.6.11 Ensayo de la tasa de absorción de agua del mortero	156
3.6.12 Rodamina - Factor de fotodegradación de color	161
3.6.13 Degradación de dióxido de nitrógeno - factor de fotodegradación de color.	165
Capítulo IV: Resultados	170
4.1 Resultados del ensayo de resistencia a la compresión	170
4.2 Resultados del ensayo de adherencia por cizalla	176
4.3 Resultados del ensayo de absorción del mortero	180
4.4 Resultados del ensayo de rodamina – factor de fotodegradación de color R4 Y	
4.5 Resultados del ensayo de degradación del gas dióxido de nitrógeno (NO2) en e	
mortero	191
4.6 Análisis de costos unitarios	197
Capítulo V: Discusión	200
Glosario	204
Conclusiones	207
Recomendaciones	211
Referencias	214
Anexos	219
A néndices	222

Índice de tablas

Tabla 1. Propiedades del dióxido de titanio tipo Rutilo y Anatasa
Tabla 2. Usos de los morteros de cemento
Tabla 3. Clasificación de los morteros de pega para mampostería simple según resistencia a la
compresión a 28 días y según dosificación
Tabla 4. Clasificación ASTM C476 de morteros de pega para mampostería reforzada según
resistencia a la compresión a 28 días y según dosificación (partes por volumen) 26
Tabla 5. Morteros de relleno – partes volumen
Tabla 6. Requisitos químicos y físicos del Cemento Portland Tipo IP
Tabla 7. Clasificación de los agregados según su masa unitaria
Tabla 8. Clasificación de los agregados según el tamaño de sus partículas
Tabla 9. Clasificación de las partículas del agregado según su forma
Tabla 10. Clasificación de las partículas del agregado según su textura superficial34
Tabla 11. Tamices a utilizar para realizar el análisis granulométrico
Tabla 12. Límites permisibles para el agua de mezcla y de curado
Tabla 13. Fluidez recomendada del mortero para diversos tipos de estructura y condiciones de
colocación41
Tabla 14. Cuadro de operacionalización de variables
Tabla 15. Distribución de la muestra N°1
Tabla 16. Distribución de la muestra N°2
Tabla 17. Formato para el análisis granulométrico del agregado fino
Tabla 18. Formato para el material que pasa por el tamiz N°200
Tabla 19. Formato para el peso unitario suelto y compactado del agregado fino
Tabla 20. Formato para el peso específico y absorción del agregado fino
Tabla 21. Formato para el contenido de humedad del agregado fino
Tabla 22. Formato para el diseño de mezcla del mortero de cemento
Tabla 23. Formato para el ensayo de fluidez del mortero
Tabla 24. Formato para el ensayo de resistencia a la compresión del mortero
Tabla 25. Formato para el ensayo de la tasa de absorción del mortero
Tabla 26. Formato para el ensayo de adherencia al corte por cizalla del mortero
Tabla 27. Formato para el ensayo de rodamina-factor de fotodegradación R4 y R26 del mortero
69

xiii

Tabla 28.	Formato para el ensayo de degradación de NO2-factor de fotodegradación R4 y	R26
	del mortero	70
Tabla 29.	Asignatura de probetas para la investigación	94
Tabla 30.	Asignatura de probetas para resistencia a la compresión	94
Tabla 31.	Asignatura de probetas para absorción y autolimpieza	95
Tabla 32.	Asignatura de probetas para adherencia por cizalle	95
Tabla 33.	Análisis granulométrico del agregado fino	126
Tabla 34.	Granulometría del agregado fino según NTP	127
Tabla 35.	Clasificación del agregado fino según el módulo de finura	128
Tabla 36.	Material que pasa por el tamiz N°200	129
Tabla 37.	Peso unitario suelto y compactado del agregado fino	131
Tabla 38.	Peso específico y absorción del agregado fino	133
Tabla 39.	Contenido de humedad del agregado fino	134
Tabla 40.	Usos del mortero de cemento	135
Tabla 41.	Resistencia de morteros cemento y arena según su proporción en volumen	136
Tabla 42.	Fluidez del mortero	137
Tabla 43.	Resumen las propiedades de los componentes del mortero para el diseño de me	zcla
		137
Tabla 44.	Diseño de mezcla de mortero	142
Tabla 45.	Ensayo de fluidez del mortero	144
Tabla 46.	Resistencia a compresión del mortero a los 7 días	146
Tabla 47.	Resistencia a compresión del mortero a los 14 días	147
Tabla 48.	Resistencia a compresión del mortero a los 28 días	148
Tabla 49.	Tipos de mortero (Proporciones en volumen)	151
Tabla 50	. Valores al corte de cizalle (το) y del coeficiente de fricción (f) para difere	ntes
	unidades y morteros	151
Tabla 51.	Adherencia al corte por cizalla del mortero sin TiO2	152
Tabla 52.	Adherencia al corte por cizalla del mortero al 3% de TiO2	153
Tabla 53.	Adherencia al corte por cizalla del mortero al 5% de TiO2	154
Tabla 54.	Adherencia al corte por cizalla del mortero al 7% de TiO2	155
Tabla 55.	Tasa de absorción de agua de especímenes de mortero sin TiO2	157
Tabla 56.	Tasa de absorción de agua de especímenes de mortero al 3% de TiO2	158
Tabla 57.	Tasa de absorción de agua de especímenes de mortero al 5% de TiO2	159

	٠		
X	1	٦	7

Tabla 58. Tasa de absorción de agua de especímenes de mortero al 7% de TiO2 160
Tabla 59. Rodamina - Factor de fotodegradación R4 y R26 de mortero sin TiO2 162
Tabla 60. Rodamina - Factor de fotodegradación R4 y R26 de mortero al 3% de TiO2 162
Tabla 61. Rodamina - Factor de fotodegradación R4 y R26 de mortero al 5% de TiO2 163
Tabla 62. Rodamina -Factor de fotodegradación R4 y R26 de mortero al 7% de TiO2 163
Tabla 63. Degradación de dióxido de nitrógeno - Factor de fotodegradación R4 y R26 de
especímenes de mortero sin TiO2
Tabla 64. Degradación de dióxido de nitrógeno - Factor de fotodegradación R4 y R26 de
especímenes de mortero al 3% de TiO2
Tabla 65. Degradación de dióxido de nitrógeno - Factor de fotodegradación R4 y R26 de
especímenes de mortero al 5% de TiO2
Tabla 66. Degradación de dióxido de nitrógeno - Factor de fotodegradación R4 y R26 de
especímenes de mortero al 7% de TiO2
Tabla 67. Resumen de resultados de ensayo de resistencia a compresión
Tabla 68. Resumen de resistencia a la compresión utilizada en programa SPSS 171
Tabla 69. Anova de un factor de resistencia a la compresión a respecto a los diferentes
tratamientos de TiO2 de probetas de mortero
Tabla 70. Comparaciones múltiples de resistencia a la compresión a 7, 14 y 28 días de curado
respecto a los diferentes tratamientos de TiO2
Tabla 71. Homogeneidad de subconjuntos a los 7 días de curado respecto a los diferentes
tratamientos de TiO2
Tabla 72. Homogeneidad de subconjunto resistencia a compresión a los 14 días de curado
respecto a los diferentes tratamientos de TiO2
Tabla 73. Homogeneidad de subconjuntos de resistencia a compresión a los 28 días de curado
respecto a los diferentes tratamientos de TiO2
Tabla 74. Resumen de resultados de ensayo de adherencia al corte por cizalla
Tabla 75. Resumen de adherencia al corte por cizalla utilizada en programa SPSS
Tabla 76. Anova de un factor de adherencia al corte por cizalla respecto a los diferentes
tratamientos de TiO2 de probetas de mortero
Tabla 77. Comparaciones múltiples de adherencia al corte por cizalla a los 7 días de curado
respecto a los diferentes tratamientos de TiO2
Tabla 78. Homogeneidad de subconjuntos de adherencia al corte por cizalla a los 7 días de
curado respecto a los diferentes tratamientos de TiO2

Tabla 79. Resumen de resultados del ensayo absorción del mortero
Tabla 80. Resumen de tasa de absorción de agua utilizados en programa SPSS
Tabla 81. Anova de un factor de tasa de absorción de agua a 24 horas respecto a los diferente
tratamientos de TiO2
Tabla 82. Comparaciones múltiples de tasa de absorción de agua a 24 horas respecto a lo
diferentes tratamientos de TiO2
Tabla 83. Homogeneidad de subconjuntos de tasa de absorción de agua a 24 horas respecto
los diferentes tratamientos de TiO2
Tabla 84. Resumen de resultados del ensayo de rodamina –factor de fotodegradación de colo
R4 y R2618
Tabla 85. Resumen de degradación de rodamina B utilizados en programa SPSS
Tabla 86. Anova de un factor de degradación de rodamina B para los factores R4 y R26 respect
a los diferentes tratamientos de TiO2 de probetas de mortero
Tabla 87. Comparaciones múltiples de degradación de rodamina B para los factores R4 y R2
respecto a los diferentes tratamientos de TiO2 de probetas de mortero
Tabla 88. Homogeneidad de subconjuntos de degradación de rodamina B para el factor R
respecto a los diferentes tratamientos de TiO2
Tabla 89. Homogeneidad de subconjuntos de degradación de rodamina B para el factor R2
respecto a los diferentes tratamientos de TiO2
Tabla 90. Resumen de resultados del ensayo de degradación del NO2 -factor d
fotodegradación de color R4 y R2619
Tabla 91. Resumen de degradación de dióxido de nitrógeno (NO2) utilizados en programa SPS
Tabla 92. Anova de un factor de degradación del dióxido de nitrógeno (NO2) para los factores
R4 y R26 respecto a los diferentes tratamientos de TiO2 de probetas de mortero 19
Tabla 93. Comparaciones múltiples de degradación del dióxido de nitrógeno (NO2) para lo
factores R4 y R26 respecto a los diferentes tratamientos de TiO2 de probetas d
mortero19
Tabla 94. Homogeneidad de subconjuntos de degradación del dióxido de nitrógeno (NO2) par
el factor R4 respecto a los diferentes tratamientos de TiO2
Tabla 95. Homogeneidad de subconjuntos de degradación del dióxido de nitrógeno (NO2) par
el factor R26 respecto a los diferentes tratamientos de TiO2

xvi

Tabla 96. Análisis de costos unitarios de la partida de tarrajeo de muros (mortero patrón 0%	6 de
TiO2)	198
Tabla 97. Análisis de costos unitarios de la partida de tarrajeo de muros (mortero 3% de Ti-	O2)
	198
Tabla 98. Análisis de costos unitarios de la partida de tarrajeo de muros (mortero 5% de Ti-	O2)
	199
Tabla 99. Análisis de costos unitarios de la partida de tarrajeo de muros (mortero 7% de Ti-	O2)
	199

xvii

Índice de figuras

Figura 1: Fotocatálisis -Degradación de agentes contaminantes atmosféricos	2
Figura 2: Esquema de fotocatálisis en una superficie con óxido de titanio	13
Figura 3: Potencial redox de algunos semiconductores y su ancho de banda	15
Figura 4: Mapa de energía solar	17
Figura 5: Organigrama de diseño de ingeniería	54
Figura 6: Compra de agregado de la cantera Cunyac	73
Figura 7: Introducción de agregado fino al horno	73
Figura 8: Tamizado mecánico del agregado fino	74
Figura 9: Pesado del agregado fino	76
Figura 10: Lavado de arena fina mediante el tamiz N° 200	76
Figura 11: Instrumentos y materiales de ensayo	78
Figura 12: Pesado de molde con el agregado fino	79
Figura 13: Apisonado del agregado fino con 25 golpes	80
Figura 14: Ensayo de agregado fino	80
Figura 15: Secado superficialmente seca de agregado fino	82
Figura 16: Apisonado de agregado fino superficialmente seco	83
Figura 17: Pesado y colocado del agregado al interior del picnómetro	84
Figura 18: Extracción de vacíos, mediante la bomba	84
Figura 19: Pesado de agregado fino a humedad natural	86
Figura 20: Pesado de agregado fino después de secado al horno	86
Figura 21: Limpieza mesa de fluidez	88
Figura 22: Preparado del mortero para la verificación de fluidez	88
Figura 23: Colocado y apisonado del mortero dentro del anillo cónico	89
Figura 24: Toma de mediciones del mortero sobre la mesa de fluidez	89
Figura 25: Pesado de cemento y dióxido de titanio según diseño de mezcla	91
Figura 26: Preparación de mezcla de mortero	92
Figura 27: Colocado y elaboración de probetas de mortero	92
Figura 28: Elaboración de probetas de mortero en porcentajes de 3%,5% y 7%	93
Figura 29: Tesista realizando el ensayo "resistencia a compresión"	96
Figura 30: Rotura de probeta adicionada con 3% de TiO2 curado durante 28 días	97
Figura 31: Colocado de probetas dentro del contenedor de absorción	101

xviii
Figura 32: Saturado de ladrillos durante 30 minutos
Figura 33: Mezclado de mortero según diseño
Figura 34: Colocado de mortero para la formación de probetas de ladrillo
Figura 35: Curado de probetas de ladrillos
Figura 36: Ensayo de adherencia por cizalle de probetas de ladrillo
Figura 37: Instrumento de lámpara UV sobre el contenedor
Figura 38: Aplicación de rodamina B a probetas de morteros: patrón y modificado al 3%, 5% y
7% de TiO2
Figura 39: Exposición de probetas a rayos UV
Figura 40: Resumen fotográfico de probetas, sin exposición a rayos UV
Figura 41: Resumen fotográfico de la exposición de probetas a rayo UV, durante un periodo de
tiempo (T=4 horas)
Figura 42: Resumen fotográfico de la exposición de probetas a rayo UV, durante un periodo de
tiempo (T=26 horas)
Figura 43: Cobre (CU) y ácido nítrico (HNO3)
Figura 44: Exposición de probetas con dióxido de nitrógeno (NO2)
Figura 45: Imagen inicial y contrastada de probetas con dióxido de nitrógeno (NO2) 120
Figura 46: Exposición de probetas a rayos UV con presencia de dióxido de nitrógeno (NO2)
Figura 47: Resumen fotográfico de la exposición de probetas a rayos UV con presencia de
dióxido de nitrógeno (NO2), durante un periodo de tiempo inicial (T=0 horas) 121
Figura 48: Resumen fotográfico de la exposición de probetas a rayos UV con presencia de
dióxido de nitrógeno (NO2), durante un periodo de tiempo (T=4 horas) 122
Figura 49: Resumen fotográfico de la exposición de probetas a rayos UV con presencia de
dióxido de nitrógeno (NO2), durante un periodo de tiempo (T=26 horas) 122
Figura 50: Resistencia a la compresión de morteros vs. A/C
Figura 51: Resistencia a compresión del mortero a los 7 días
Figura 52: Resistencia a compresión del mortero a los 14 días
Figura 53: Resistencia a compresión del mortero a los 28 días
Figura 54: Rodamina -Factor de fotodegradación del mortero R4 a las 4 horas
Figura 55: Rodamina -factor de fotodegradación del mortero R26 a las 26 horas
Figura 56: Degradación de dióxido de nitrógeno - factor de fotodegradación del mortero R4 a
las 4 horas

xix

Figura 57: Degradación de dióxido de nitrógeno - factor de fotodegradación del mo	rtero R26 a
las 26 horas	168
Figura 58: Días de curado vs. Resistencia a compresión (kg/cm2)	170
Figura 59: Adherencia al corte por cizalla del mortero	177
Figura 60: Tasa de absorción de agua de especímenes de mortero	181
Figura 61: Rodamina - Factor de fotodegradación de color R4 vs. R26 al 3%,5% y 7	′% de TiO2
	185
Figura 62: Degradación del NO2 - Factor de fotodegradación de color R4 vs. R26 a	al 3%,5% y
7% de	192

Capítulo I: Planteamiento del problema

1.1 Identificación del problema

1.1.1 Descripción del problema

El mortero es uno de los materiales de construcción más ampliamente usado, siendo uno de los materiales más antiguos. Sin embargo, permite que se construyan grandes estructuras a partir de componentes pequeños y fáciles de manejar. Presentando nuevos desafíos impulsando nuevas formulaciones referente a sus materiales, técnicas constructivas e impacto ambiental.

La ciudad del Cusco se encuentra en la cuarta posición de las 21 ciudades consideradas como zonas de atención prioritarias del Perú debido principalmente por emisión de agentes contaminantes como dióxido de nitrógeno NO2, materias, sustancias orgánicas e inorgánicas, de actividad humana y/o antropogénica, del parque automotor y quemado de ladrillos. (Ministerio del Ambiente, 2014).

No solo provocando daños en la salud sino también perjudiciales para el medio ambiente, contribuyendo con la degradación de los materiales de construcción, los cuales están expuestos a estos contaminantes, produciendo un desgaste acelerado de los materiales, y como consecuencia un aumento en el costo de mantenimiento y rehabilitación.

Una de las patologías más comunes en edificaciones es la eflorescencia, la cual es producida principalmente por la interacción constante de la humedad, temperatura y sales solubles presentes en los materiales y/o bajo la superficie de los materiales, este problema se vuelve visible debido al deterioro de pintura y desprendimiento del mortero, provocando una inadecuada imagen estética, problemas en la salud como: asma, rinitis y problemas pulmonares. Según Zuasnábar, Karen (2019) el uso de dióxido de titanio en materiales de construcción, tiene un cierto desconocimiento, en las propiedades físico mecánicas y fotocatalíticos del mortero, así como también la concentración adecuada a utilizar y falta de información sobre la normativa que la rige.

Debido a la problemática que representa la contaminación atmosférica la cual es perjudicial para nuestras estructuras expuestas a estos contaminantes, como la durabilidad mediante las patologías de descomposiciones y disgregaciones de los materiales.

Se realiza el presente trabajo de investigación, para incidir el uso de dióxido de titanio como aditivo en morteros de cemento portland como alternativa para prolongar el tiempo de vida, resistencia a la intemperie, procesos de auto limpieza y descontaminante de gases provenientes de la combustión del petróleo.

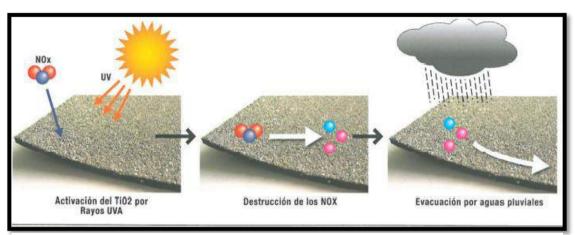


Figura 1: Fotocatálisis -Degradación de agentes contaminantes atmosféricos

Fuente: Faraldos, (2012)

1.1.2 Formulación del problema

1.1.2.1 Formulación del problema general

¿Cómo resulta la evaluación de las propiedades físico-mecánicas y fotocatalíticas del mortero de cemento portland tipo I relación A/C 0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente a un mortero patrón de cemento portland tipo I relación A/C=0.85?

1.1.2.2 Formulación de los problemas específicos

PE-1: ¿Cómo resulta las propiedades mecánicas "fluidez, adherencia, absorción y resistencia a compresión" obtenidas de los testigos de mortero de cemento portland tipo I relación A/C 0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=085?

PE-2: ¿Cómo resulta la auto limpieza respecto a la exposición a radiación de tipo ultravioleta del mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de

- titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85?
- PE-3: ¿Cómo influye el mortero de cemento portland tipo I relación A/C 0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85 respecto a la descontaminación del gas dióxido de nitrógeno NO2?
- PE-4: ¿Cuánto será la variación de los costos de elaboración de mortero patrón de cemento portland tipo I relación A/C 0.85 frente al mortero adicionado con dióxido de titanio en concentraciones de 3% 5% y 7%?

1.2 Justificación e importancia de la investigación

1.2.1 Justificación técnica

Este tema de investigación pertenece a la especialidad de Ingeniería Civil, ya que involucra los materiales de construcción (cemento, agregado fino, agua) el cual adicionado con dióxido de titanio al mortero nos brinda propiedades adicionales como auto limpieza y mitigación de la eflorescencia.

La otra especialidad presente es la Ingeniería Química ya que el fenómeno de la fotocatálisis es producto de la interacción de radiación tipo (rayos ultravioleta) y un foto catalizador (dióxido de titanio) presente en materiales a base de cemento.

La investigación busca encontrar la influencia del dióxido de titanio adicionado al 3%,5% y 7% de dióxido de titanio (TiO2), en morteros de cemento portland tipo I relación A/C= 0.85, porcentajes designados según antecedente "Ana María Aguilar (2013)", el cual realizó los ensayos de fluidez en morteros, con remplazo de cementos puzolanicos por el dióxido de titanio (TiO2) en porcentajes de 10% y 15%, los morteros obtuvieron una disminución en su fluidez de hasta el 57 %, teniendo un mortero duro (seco) no trabajable para el uso de pega de mampostería y pañetes finos.

1.2.2 Justificación social

La aplicación de productos fotocatalíticos o "descontaminantes" sobre las estructuras de obras civiles tiene una importancia relevante, el cual nos brinda una mayor calidad de vida teniendo

como resultado beneficios sobre la salud de los ciudadanos a través de materiales de construcción.

Es por ello que esta investigación desarrolla la importancia de la incidencia que tiene el dióxido de titanio adicionado en el mortero mediante el proceso de fotocatálisis, en cuanto a las propiedades físico-mecánicas y las propiedades fotocatalíticas que brinda, como la auto limpieza (proceso fotocatálisis), siendo el dióxido de titanio un material industrial con aplicaciones múltiples como en la fabricación de cosméticos, pinturas, textiles, entre otros, teniendo un costo comercial aproximadamente de S/.20.00 el kilo, en el mercado peruano.

Al investigar este proceso y obtener la degradación de agentes contaminantes orgánicos e inorgánicos que afectan a los materiales de construcción, ya sean los morteros de revestimiento de estructuras expuestas a estos contaminantes, presentes en el medio ambiente, será un aporte fundamental para nuevas tecnologías de tratamiento específico mediante obras civiles.

1.2.3 Justificación de viabilidad

Para esta investigación es necesario contar con materiales que sea necesarios para llevar la investigación como es en este caso los materiales como agregado fino, cemento, dióxido de titanio, agua, etc, los cuales son relativamente accesibles para los investigadores y fácil acceso de encontrar en el mercado nacional.

Para esta investigación se requerirá el uso de un fotocatalizador (dióxido de titanio TiO2), la cual será adicionado en concentraciones de 3% 5% y 7% para determinar las propiedades físicomecánicas del mortero, descontaminante y auto limpieza, el cual será sometido a radiación de tipo ultravioleta, el cual fue adquirido por los investigadores, con un moderado acceso económico.

Se conoce la importancia del tiempo que nos demandará la investigación a realizar, para la cual contamos con toda la predisposición del tiempo por parte de los investigadores para así culminar nuestros estudios e investigaciones relacionadas.

En la información y datos necesarios para la realización de la investigación fueron tomadas en referencia a la tesis: "Análisis de su auto limpieza en función del tipo de cemento y rugosidad superficial"

1.2.4. Justificación por relevancia

Desde la llegada del cemento al Perú, el mortero de cemento es el material más demandado para revestimiento y unión de elementos de albañilería en edificaciones y construcciones de nuestro país.

Es por eso que esta investigación tiene una importancia primordial en la mejora de sus propiedades mecánicas, en morteros adicionados con el dióxido de titanio ya que es una investigación nueva, que nos proporcionara beneficios del dióxido de titanio, como la propiedad de auto limpieza y descontamínate. Dando un aporte a futuras investigaciones, en lo referente a innovación de tecnologías de materiales como el mortero.

1.3 Limitaciones de la investigación

Las limitaciones para esta investigación se clasificaron en geográficas, de estudio, respecto a los materiales a emplear, las pruebas y los equipos utilizados.

1.3.1. Limitaciones geográficas

Esta investigación se limita a condiciones climáticas de la ciudad del Cusco, debido a que la investigación se realizó en dicha ciudad.

1.3.2 Limitaciones de estudio

- Se limita a realizar el diseño de mezcla según la Norma Técnica de Peruana E.070.
- Se limita a estudiar y elaborar probetas de mortero de relación a/c 0.85.
- Se limita a realizar un curado de las probetas de mortero a los 7, 14 y 28 días.
- Se limita a la obtención de la resistencia a la compresión de las probetas de mortero patrón curados durante 7, 14 y 28 días.
- Se limita a la obtención de la resistencia a la compresión de las probetas de mortero adicionado con dióxido de titanio (TiO2) curados durante 7, 14 y 28 días.

- Se limita como la unidad de muestra para los ensayos de auto limpieza (fotocatálisis) de las probetas de mortero de arena, mediante el uso de rodamina B.
- Se limita a obtener la degradación de rodamina B (autolimpieza) en las probetas de mortero de arena a la edad 28 días.
- Se limita a la exposición de rayos ultravioleta (UV) mediante el uso de lámparas, expuestos durante los periodos de tiempo de hasta 26 horas, en las probetas de mortero de arena.
- Se limita como la unidad de muestra para los ensayos de degradación de contaminantes atmosféricos de las probetas de mortero de arena, mediante el uso del gas dióxido de nitrógeno (NO2).
- Se limita a obtener la degradación de agente contaminante atmosférico, dióxido de nitrógeno en las probetas de mortero de arena a la edad 28 días.
- Se limita a obtener la resistencia a corte por cizalla en las probetas de ladrillo mediante el uso de tres ladrillos King Kong 18 huecos ensayados a la edad de 7 días de curado.
- Se limita a obtener la tasa de absorción de agua de las probetas de mortero de arena adicionado con dióxido de titanio (TiO2), de 48 horas de sumersión en agua.

1.3.3 Limitación con respecto a los materiales

- Se limita al uso de cemento portland tipo IP de la marca YURA.
- Se limita al uso de agregado fino de la cantera Cunyac.
- Se limita al uso de agua potable de la ciudad del Cusco E.P.S. SEDACUSCO
- Se limita al uso de la rodamina B.
- Se limita al uso de lámparas de emisiones de rayos ultra violeta (UV) de 15 watts/m2.
- Se limita al uso del dióxido de titanio (TiO2).

1.3.4 Limitación de pruebas

- Se limita a realizar las pruebas físico-mecánicas de los agregados necesarios para el diseño de mezcla, según norma técnica de edificaciones E.070.
- Se limita a realizar la prueba de consistencia.

- Se limita a elaborar las probetas de mortero de arena según la norma NTP 334.051.
- Se limita a realizar la prueba de resistencia a la compresión de las probetas de mortero, según la norma NTP 334.051.
- Se limita a realizar la prueba de corte por cizalle de las probetas de ladrillos, según la norma chilena NCh167.
- Se limita a realizar la prueba de auto limpieza de rodamina B de las probetas de mortero, según la norma italiana UNI 11259.2008.
- Se limita a realizar la prueba de tasa de absorción de agua de las probetas de mortero, según la norma NTP 399.631.

1.3.5 Limitaciones según los equipos utilizados

- Se limita al uso de la mesa de flujo para evaluar la consistencia del mortero.
- Se limita al uso de la máquina compresora para el ensayo de resistencia a la compresión de los testigos cúbicos de probetas de mortero.
- Se limita al uso del colorímetro digital de marca SUCOLOR para la medición de la degradación de dióxido de nitrógeno y rodamina B, el cual tiene las siguientes especificaciones:
 - ✓ Calibre de medición: 4mm
 - ✓ Temperatura de trabajo: -20°C a 50 °C.
 - ✓ Interfaz: RS-232.

1.4 Objetivo de la investigación

1.4.1 Objetivo general

Determinar el resultado de la evaluación de las propiedades mecánicas y fotocataliticas del mortero de cemento portland tipo I relación A/C 0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85.

1.4.2 Objetivos específicos

- **OE-1:** Determinar las propiedades mecánicas "fluidez, adherencia, absorción y resistencia a compresión" obtenidas de los testigos de mortero de cemento portland tipo I relación A/C =0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85.
- **OE-2:** Determinar la auto limpieza respecto a la exposición a radiación de tipo ultravioleta del mortero de cemento portland tipo I relación A/C 0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85.
- **OE-3:** Determinar la influencia del dióxido de titanio adicionado en mortero de cemento portland tipo I relación A/C 0.85 en concentraciones de 3% 5% y 7% y del mortero patrón de cemento portland tipo I relación A/C=0.85 respecto a la descontaminación del gas dióxido de nitrógeno NO2.
- **OE-4:** Determinar la variación de los costos de elaboración de mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85.

Capítulo II: Marco teórico

2.1 Antecedentes

2.1.1 Antecedentes a nivel nacional:

Título 1: Influencia del fotocatalizador dióxido de titanio en la propiedad autolimpiable del

concreto f´c=210 Kg/cm2

Autor: Vásquez Espinoza, Manuel Alexander André

Tipo: Tesis de Maestría

Fecha: 2016

Lugar: Cajamarca - Perú

Universidad: Universidad Nacional de Cajamarca

Resumen:

Este estudio tuvo como objetivo determinar la influencia del fotocatalizador dióxido de titanio en la propiedad autolimpiable del concreto f'c = 210 kg/cm2 y su resistencia a la compresión, mencionando también la propiedad que tiene el dióxido de titanio en el concreto como efecto descontaminante de los gases NOx. Para esto se empleó los agregados de la cantera "La Victoria" del distrito Baños del Inca y el agua de la ciudad de Cajamarca, con los cuales se elaboraron seis tratamientos de concreto con una misma proporción de materiales en peso 1:3.27:3.52/27.08 lts/bolsa, pero con diferentes porcentajes del fotocatalizador dióxido de titanio, dichos tratamientos fueron: Concreto sin TiO2, Concreto con 3%, 6%, 9%, 12% y 15% de TiO2. Se llega a la conclusión que el dióxido de titanio disminuye la resistencia a compresión cada vez que se aumenta, y que la degradación de Rodamina disminuye con esta adición, así por ejemplo para el concreto sin TiO2, disminuyó a las 26 horas en un 19.34%, para un concreto adicionado con 3% de TiO2 59.11%, para el 6% de TiO2 disminuyó en 71.20% y para el 10 en 81.77%, siendo estos porcentajes los que nos interesan para el desarrollo de la presente investigación. Para la resistencia a compresión los valores disminuyeron, pero estos a los 7 y 14 días de curado la holgura de disminución no fue mucha, sin embargo a los 28 días la disminución máxima que se dio fue de un 4.7% para el 15% de TiO2 Finalmente utilizando las estudios realizados tanto a la resistencia a la compresión, prueba de fotodegradación de

rodamina y análisis económico concluye que, el tratamiento óptimo para la ejecución real es el tratamiento que está entre los rangos de 3% TiO2 – 6% TiO2 pues es un concreto que estadísticamente pertenece al mismo grupo que el concreto solicitado en cuanto a la resistencia a la compresión, es fotocatalítico y autolimpiable y el precio de fabricación no es muy elevado.

Aporte:

En este documento podemos resaltar el efecto del dióxido de titanio como autolimpiante en el concreto, disminuyendo la coloración en el paso del tiempo, en este caso hasta 26 horas. Este antecedente nos sirve para la presente tesis para la aplicación del mortero autolimpiante, y aunque la resistencia según esta tesis no mejore, se llega a la conclusión que al menos la llega a bajar, pero no demasiado hasta un 4.7 %.

2.1.2 Antecedentes a nivel internacional:

Título 1: Efecto del reemplazo del cemento Portland por dióxido de titanio en las propiedades mecánicas del mortero

Autor: Jiménez Cortés David y Moreno Burbano Juan José

Tipo: Trabajo de grado

Fecha: 2016

Lugar: Cali, Colombia

Universidad: Pontificia Universidad Javeriana Cali

Resumen:

La presente investigación, tuvo como objetivo general el de evaluar el efecto en las propiedades del mortero con reemplazo del cemento Portland por TiO2. Determinaron la resistencia a compresión según ASTM-C109 y flexión según ASTM-C348 con distintos porcentajes de dióxido de titanio (0%, 5%, 7.5%, 8.5% y 10%), se evaluaron también las propiedades físicas del mortero respecto a la densidad y absorción según ASTM-C127, se comparó costos entre un mortero convencional y otro modificado don dióxido de titanio a los distintos porcentajes ya mencionados. Llegando a la conclusión de que el mortero adicionado con 5% de dióxido de

11

Universidad del Cusco

titanio reemplazado en el cemento tuvo un incremento de resistencia a la compresión de un 6%

y que para los porcentajes de 7.5% y 8.5% disminuyó en un 6%, esto a los 28 días de curado,

sin embargo, se descartó el uso del mortero modificado al 10% de TiO2 debido a que la fluidez

de este fue totalmente seca. La resistencia a flexión no tuvo diferencias significativas y en

cuanto a la absorción las diferencias no son tan significativas, pero de un 13.36% de absorción

para el mortero sin TiO2, al adicionarlo con un 5% de TiO2 este aumentó a 14.16% la absorción,

sin embargo, para el 10% de TiO2 la absorción bajo a 12.64%. En este artículo se hizo el

reemplazo del peso del cemento por los porcentajes de 5%, 7.5 %, 8.5% y 10% de cemento,

llegando a la conclusión de que el costo de aplicación de mortero con 5% de dióxido de titanio

con reemplazo del cemento portland es solo 3% más costoso que un mortero tradicional.

Aporte:

Lo que se resalta en esta tesis, es la aplicación del dióxido de titanio en morteros encontrando

antecedentes para las dos propiedades a investigar de la tesis de estudio que son la absorción,

lo cual tiene una importancia relevante en la durabilidad del mortero mediante las eflorescencias

producidas por humedad y ataque de sales.

Título 2: Morteros fotocatalíticos: Análisis de su autolimpieza en función del tipo de cemento

y rugosidad superficial.

Autor: Rodríguez García, José Rubén

Grado: Master Universitario en Innovación Tecnológica en la Edificación

Fecha: 2012

Lugar: Madrid

Universidad: Universidad Politécnica de Madrid Escuela Universitaria de Arquitectura

Técnica

Resumen:

El funcionamiento de la fotocatálisis que presentan los materiales con adición de óxido de

titanio en tamaño de nanopartículas, confiere ciertas cualidades especiales.

DERECHOS DE AUTOR RESERVADOS

Una vez conocido el funcionamiento de la fotocatálisis se estudió la influencia de ciertos factores, que no han sido tratados en profundidad hasta el momento en los materiales en base cemento, para mejorar las propiedades autolimpiantes, como son; el tipo de cemento o la rugosidad superficial, ya que sin duda, la composición que tenga el cemento y la rugosidad que se le confiera en los acabados, influirá en el comportamiento autolimpiante, por ello se hace necesario un estudio en el que se evaluaron qué cementos proporcionan una mayor efectividad en función de su composición y qué rugosidad superficial funciona mejor en la autolimpieza, debido a esto se estudiaron morteros con acabados lisos y con distintas rugosidades hasta 1.5mm de irregularidad.

Se llega a la conclusión de que el tipo de cemento CEM IV/B-V con una superficie totalmente lisa es el que ofrece las mejores cualidades de autolimpieza.

Aporte:

Lo que resaltamos aquí es, que la mayoría de cementos que utilizó de tipo I, II, III y IV ya sea en menor o mayor proporción generaron la cualidad de autolimpieza modificado con óxido de titanio ya sea con distintas rugosidades. La tesis fue realizada en la ciudad de Madrid, donde utilizaron distintos materiales comerciales del lugar, para la realización del mortero, pues nos sirve como un antecedente para nuestra tesis, debido a que nosotros realizaremos la evaluación de esta cualidad de autolimpieza que tiene el dióxido de titanio, pero en nuestras condiciones y con nuestros materiales usados en la región del Cusco.

2.2 Aspecto teóricos pertinentes

2.2.1 Catálisis

La catálisis es el proceso químico más estudiado en el mundo, modificando la velocidad de reacción química mediante un catalizador que viene a ser el material para que se produzca la catálisis.

Según Cárdenas Carolina, (2012, pag 26) existe dos tipos de catálisis, la heterogénea y homogénea. El primero utiliza catalizadores insolubles, dando lugar a que la reacción se produzca en la superficie y el segundo utiliza catalizadores solubles, produciendo la reacción en todos los sitios disponibles. Un tipo de catálisis heterogénea es la fotocatálisis.

La catálisis bajo el efecto de la radiación produce la fotocatálisis, lo cual hace posible la degradación de compuestos dañinos para el medio ambiente.

2.2.2 Fotocatálisis

2.2.2.1 Definición

La fotocatálisis es un proceso que se podría comparar como la fotosíntesis de las superficies urbanas.

Bermejo, Marina (2018), menciona que la fotocatálisis elimina los contaminantes NOx, Sox, COVx, compuestos orgánicos clorados y entre otros a través de reacciones de oxidación como de reducción con la ayuda de la activación de la energía solar o artificial. Convierte la energía solar en energía química viniendo a ser ésta una reacción fotoquímica.

El proceso consiste en la activación de la superficie catalítica por la energía ya sea solar o artificial, el cual producirá que los electrones de la banda de valencia pasen a la banda de conducción dejando un hueco en la banda prohibida que se encuentra entre las dos bandas, este proceso dependerá de la energía brindada por los fotones lo cual depende a su vez de la diferencia de energía que haya entre la banda de valencia y conducción, es decir de la banda prohibida o "bandgap".

Cuando la superficie fotocatlitica absorbe la radiación, este genera radicales libres lo cual combate a los contaminantes como los NOx convirtiéndolos en Nitratos (págs. 6-7).

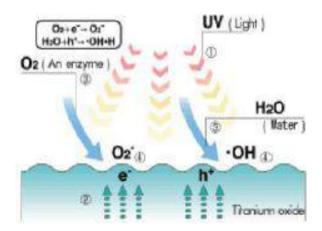


Figura 2: Esquema de fotocatálisis en una superficie con óxido de titanio

Fuente: Bermejo Marina, (2018)

A parte de disminuir la contaminación, los revestimientos fotocatalíticos pueden incluso contrarrestar la suciedad mediante la lluvia, dejando en evidencia la capacidad autolimpiante de éste.

2.2.2.2 Tipos de fotocatálisis

Según Lisbona, Lucía (2016), menciona que existen dos tipos de fotocatálisis, la homogénea y heterogénea.

La fotocatálisis heterogénea consiste en el mismo proceso de fotocatálisis ya explicado, donde la energía suministrada por el fotón sea mayor o igual al del "bandgap". Al paso del electrón de la banda de valencia a la banda de conducción se le conoce como el fenómeno de par electrón-hueco. Interviene más de una fase, en el cual, el catalizador generalmente es un sólido y los reactivos se encuentran en estado de solución ya sea gaseosa o liquida (págs. 28-29).

Según Sánchez, Daniel (2010), la fotocatálisis homogénea es cuando el catalizador está en solución con los reactivos.

2.2.2.3 Componentes necesarios para el proceso de Fotocatálisis

Lisbona, Lucía (2016) nos menciona los siguientes componentes necesarios para que se realice el proceso de fotocatálisis:

✓ Fotocatalizador

Es un material semiconductor necesario para producir la fotocatálisis, que absorbe la radiación para producir una acelerada reacción de oxidación en su superficie.

Los semiconductores por lo general son de banda ancha y de buen potencial oxidante, es por eso que a partir de estudios e investigaciones uno de los mejores viene a ser el dióxido de titanio. De esa manera logran neutralizar contaminantes orgánicos e inorgánicos presentes en la atmosfera.

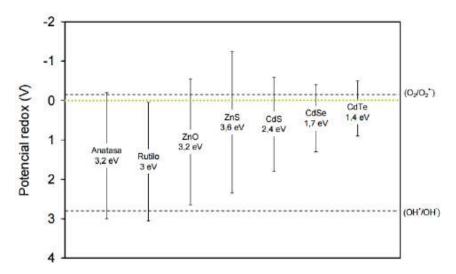


Figura 3: Potencial redox de algunos semiconductores y su ancho de banda

Fuente: Raquel Portela, (2008)

De la figura N°3. Podemos resaltar que el dióxido de titanio (TiO2) en sus dos formas naturales alotrópicas tiene una buena banda ancha y un mejor potencial redox (reacción de oxidación) ya sea en la banda de conducción y la banda de valencia.

✓ Oxidante

Por lo general el más común es el oxígeno, por la abundancia que existe en el aire que al entrar en contacto con el fotocatalizador lo oxide y éste reciba sus electrones.

✓ Suministrador de electrones

Los compuestos más comunes son los OH, estos proveen electrones para luego beneficiar a la oxidación de los contaminantes.

✓ Radiación

La radiación de tipo tiene que ser de tipo ultravioleta (UV), la cual puede ser natural o artificial. Esta radiación al ser absorbida por el fotocatalizador que será excitado provocando la aceleración de la reacción química de la fotocatálisis.

La longitud de onda de fotoactivación del TiO2 en fase Anastasa de la radiación ultravioleta se encuentra dentro del intervalo de ($\lambda \le 388$ nm) de radiación natural o una análoga con la artificial (Lisbona Lucía, 2016, pág. 32).

Sánchez, Daniel (2010), menciona que el espectro solar contiene solo un 4% de radiación ultravioleta por lo que se recomienda trabajar con buenos materiales fotocatalíticos.

A lo largo del año, la región de mayor potencial de energía solar en el territorio peruano está en la costa sur (16° a 18° S), con 6,0 a 6, 5 kWh/m2. Otras regiones con alta disponibilidad de energía solar diaria, entre 5,5 a 6, 0 kWh/m2 son la costa norte (3 ° a 8 ° S) y gran parte de la sierra sobre los 2500 m s.n.m. (Mayhua Fredy, 2019, pág. 33). Según la figura N°4 podemos ver la cantidad de Energía solar promedio anual por metro cuadrado en la ciudad del cusco se encuentra en el intervalo de 5– 6.5 KWh/m2.

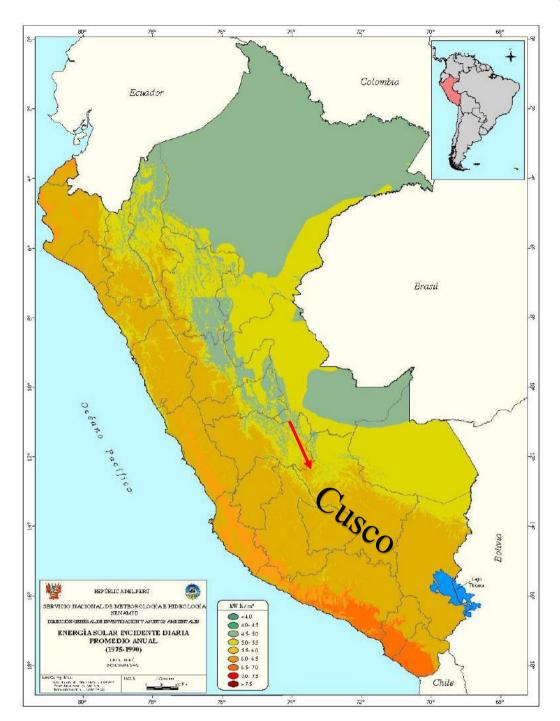


Figura 4: Mapa de energía solar

Fuente: Böhme et al., (2003)

2.2.3 Dióxido de titanio

Este compuesto es uno de los materiales fotocatalíticos más utilizados debido a su eficacia en el proceso de fotocatálisis, ya que este compuesto puede llegar a degradar la mayoría de

contaminantes orgánicos e inorgánicos no generando subproductos que puedan generar otro tipo de reacciones, manteniendo sus propiedades por periodos largos (Linsebigler, G. Lu, y J. Yates, 1995).

Este semiconductor se encuentra en la naturaleza en tres formas cristalinas como: rutilo, brookite y anatase. La estructura cristalina rutilo y anatasa se componen por cristales tetragonales, y la tipo brookite, la que no es tan común, muestra un sistema ortorrómbico de cristales (Ramírez Anibal, 2006).

Tabla 1. Propiedades del dióxido de titanio tipo Rutilo y Anatasa

Propiedades	Rutilo	Anatasa
Forma cristalina	Sistema tetrago nal	Sistema tetragonal
Banda prohibida (Eg)	413 nm	388 nm
Constante reticular (a)	4.58 ?	3.78 ?
Constante reticular (c)	2.95 ?	9.49 ?
Punto de fusión	1858 °C	a altas temperaturas cambia a

Fuente: Ramírez Anibal, (2006)

Se inicia la investigación que se orienta al uso de la elevada foto-actividad de este tipo de dióxido de titanio desde los hallazgos de Fujishima y Honda en 1972, sobre la descomposición fotocatalítica del agua usando electrodos de dióxido de titanio tipo anatasa (A. Fujishima y K. Honda, 1972).

Gracias al índice de refracción alto y debido a su opacidad, refleja de manera eficaz la luz, siendo este compuesto de un color blanco.

Lisbona, Lucía (2016), menciona que el TiO2 se caracteriza por su baja toxicidad, elevada estabilidad y compatibilidad con los materiales de construcción tradicionales, además de su elevada actividad fotocatalítica (pág. 45).

Bermejo, Marina (2018) da a conocer las principales ventajas que tiene el TiO2 al ser aplicado en las superficies de carácter fotocatalítico:

- ✓ El proceso de fotocatálisis puede realizarse a temperatura ambiental y presión atmosférica, sin necesidad de complejas instalaciones
- ✓ Puede utilizarse radiación solar o artificial

- ✓ Debido a su poder oxidativo tiene la capacidad de degradar compuestos y sustancias complejas.
- ✓ No genera otro tipo de productos.
- ✓ Brinda a las superficies añadidas con éste, en la capacidad de desinfección, autolimpieza y descontaminación.

El dióxido de titanio es un material con distintas propiedades, ya sean físicas, químicas y fotocatalíticas. La propiedad fotocatalítica se refiere a la neutralización de contaminantes presentes en la atmosfera y también a la generación de autolimpieza en las superficies recubiertas por ella, en cuanto a las propiedades físico-mecánicas nos da a conocer que con su aplicación llega a mejorar las propiedades de los elementos en los que se utiliza este compuesto, como el caso del mortero en la resistencia a compresión, adherencia y absorción.

2.2.4 Propiedades de los materiales de construcción fotocatalíticos a base de TiO2

Las propiedades que presenta el material de construcción fotocatalítico a base de TiO2, siendo éstas las siguientes:

✓ Descontaminación o degradación de gases

Una de las propiedades más relevantes del proceso fotocatalítico del TiO2 es la de purificar el aire, este proceso químico es más eficaz que aplicándolo para el tratamiento de aguas.

Lisbona, Lucía (2016), la contaminación del aire, es uno de las situaciones que últimamente ha tomado fuerza, por ejemplo, debido al incremento de gases de efecto invernadero generada por la humanidad. Sin embargo, el tratamiento existente para el tratamiento de gases contaminantes tiene alternativa en la fotocatálisis usando el TiO2 como material fotocatalizador que busca la degradación de la mayoría de gases nocivos para las zonas urbanas. Estos gases pueden ser: NOx (Óxidos de nitrógeno), SOx (Óxidos de azufre), COVs (compuestos orgánicos volátiles), CO (Monóxido de carbono), compuestos orgánicos y poli aromáticos (pág. 39).

Óxidos de nitrógeno

Lisbona, Lucía (2016), menciona que los óxidos de nitrógeno (NOx) son uno de los contaminantes que abundan en el aire, que son dañinos para la atmosfera provocando el smog y perjudiciales también para el ser humano, destruye la capa el ozono y provoca ácido nítrico (HNO3), éste último mediante la lluvia ácida, e incluso estos gases dañan diversos materiales mediante la corrosión (pág. 18).

✓ Autolimpieza

Lisbona, Lucía (2016), otra de las propiedades que se le asigna al dióxido de titanio como material fotocatalítico, ya que debido a la superficie hidrófila que este material tiene, es que se puede argumentar la capacidad que tienen estas superficies al ser utilizadas ya sea en el interior (muros, mobiliario, etc.) como en el exterior (fachadas, invernaderos, etc.). Puede ser aplicado en materiales cementantes, cerámicos, vidrio, etc.

La superficie hidrófila del dióxido de titanio como material fotocatalizador se refiere a la disminución del ángulo a 10°, que forma cuando entra en contacto con el agua al exponerse ésta a los rayos UV, ya sea este mínimo el TiO2 funciona de manera eficaz. La autolimpieza de las superficies con TiO2 se refiere a realizar su propia limpieza, ya que disminuye la capacidad de adherencia de partículas extrañas, polvo hasta incluso la grasa quien puede actuar como un adhesivo de éstas. Al no quedar partículas adheridas estas pueden ser limpiadas fácilmente o incluso limpiarse con la lluvia.

La autolimpieza en morteros se mide mediante el ensayo de rodamina B, siendo éste un compuesto orgánico que, al teñir en la superficie de mortero, se empezará a limpiar en un tiempo determinado, la pérdida del color debe compararse con el color de teñido inicial, el color se puede medir con un instrumento llamado colorímetro, para obtener datos exactos (págs. 39-40).

✓ Tratamiento de aguas

Lisbona, Lucía (2016), el tratamiento de aguas es uno de los procesos más estudiados a nivel mundial, siendo este de suma importancia para el medio ambiente tal como lo es el aire. El tratamiento de aguas mediante el proceso de fotocatálisis es un proceso análogo al que se realiza en el aire, por lo que se necesita de luz y un fotocatalizador

para que funcione. El resultado del proceso busca destruir microorganismos presentes en el agua, mohos o algas, contaminantes que pueden introducirse como pesticidas y entre otros, dejando de esa manera el agua limpia y cristalina (pág. 41).

✓ Efecto antibacteriano

Lisbona, Lucía (2016), la fotocatálisis a base de TiO2 genera también un efecto antibacteriano, ya que éste es un material que sirve para esterilizar. El proceso fotocatalítico elimina las bacterias de distintos tipos hasta un 99%, incluyendo virus conocidos o también sea el caso de la gripe aviar o gripe A.

Esto funciona al activar el material fotocatalizador con radiación UV interactuando la energía oxidante del TiO2, con la célula bacteriana no permitiendo inicialmente que actúe para luego eliminarla y descomponerla.

Se sabe que esta desinfección puede llegar a ser 3 veces más fuerte y efectiva que el cloro y 1.5 veces más que el ozono Ozono 14. El TiO2 se utilizó en baldosas cerámicas para generarle propiedades antisépticas para aplicarlo en hospitales, colegios y otros. Este compuesto añadido con algunos metales como el Cu y Ag eleva su actividad antibacteriana (pág. 41).

El TiO2 como material fotocatalizador es una excelente opción para muchos problemas de contaminación que se presentan hoy en día, para poder contrarrestar al menos en un porcentaje ese aumento de contaminación que se ve hoy, contribuyendo de alguna manera al planeta.

2.2.5 Tipos de materiales de construcción fotocatalíticos

Lisbona, Lucía (2016), menciona algunos tipos de materiales fotocatalíticos, de los cuales los más relevantes son los siguientes:

✓ Materiales a base de cemento

El material más utilizado en la industria de la construcción hoy en día es el cemento, ya sea para infraestructuras, fachadas, viviendas y otros. Existen muchos estudios de

materiales de construcción amigables con el medio ambiente, uno de ellos es el TiO2 ya sea como aditivo con el hormigón o en el cemento ya incorporado.

Se dice que el tipo de hormigón que funciona mejor con este compuesto es el adicionado con cenizas voltantes.

La aplicación de este material puede emplearse en varios elementos de la construcción:

- Aplicaciones horizontales: En techos como tejas de hormigón y suelos como en los pavimentos, estacionamientos, plazas, etc.
- Aplicaciones verticales: Estos pueden ser en muros, revestimientos, recubrimientos como ladrillos, bloques, etc.

✓ Pavimentos

Los pavimentos fotocatalíticos ya han sido aplicados en muchas partes sin alterar las propiedades mecánicas de éstos. Tenemos los pavimentos fotocatalíticos continuos y discontinuos.

Entre los pavimentos fotocatalíticos continuos se encuentran:

- a. Pavimento de mortero o lechada de cemento fotocatalítico Viene a ser una mezcla de mortero con elementos fotocatalíticos y resina, puesta en una superficie limpia, este tipo de pavimento puede reducir la contaminación hasta en un 60% mínimo.
- b. Recubrimiento fotocatalítico cementicio
 Estos son utilizados en pavimentos de alto tráfico y aguantan el hielo-deshielo.
 Tiene que ser aplicada por un proceso aspersor o cepillado.
- c. Mezcla fotocatalítica con base de cemento, cuarzo, sílice, pigmentos y aditivos Se caracteriza por mantener sus propiedades mecánicas excelentes y por la eliminación eficaz de la contaminación, además es resistente a la abrasión y cambios de temperatura. Se usa como acabados en pavimentos de hormigón.

d. Tratamiento fotocatalítico para pavimentos asfálticos:

Es un tipo de producto transparente, basado en una emulsión a base de agua y resinas. Aplicada mediante la aspersión sobre una superficie limpia y seca.

✓ Cerámicos

Existen empresas como Active, que producen cerámicos a base de TiO2 que generan las propiedades de autolimpieza, antibacterianas, descontaminante e incluso logra brindarles la propiedad de resistencia al rayado debido al tránsito de personas. Este proceso consistió en la aplicación partículas micrométricas de TiO2 fijadas a 700°C sobre las baldosas. Estos cerámicos garantizan un efecto fotocatalítico de larga duración.

✓ Pintura

La pintura como material fotocatalítico, tiene tres propiedades fundamentales como la reducción de contaminación del aire, olor e inhibición de bacterias.

Debido a que la pintura fotocatalítica es utilizada ya sean en exteriores aumenta su periodo de vida a la intemperie o también usada en interiores ya que el aire está estancado, es más fácil reducir la contaminación hasta en un 90%.

2.2.6 Mortero

Es una mezcla de cemento, agregado fino, agua, y algunas veces de algún aditivo. Este sirve ya sea de ligante en mampostería, recubrimiento o relleno.

Esta mezcla genera unas reacciones físico-químicas que favorecen su endurecimiento durante el amasado con agua. (Carles, 2006, pág. 235)

El mortero tiene una gran variedad de usos como: nivelar pisos, protección de taludes, recubrimiento de elementos estructurales, aunque se utiliza mayormente en mampostería Uno de los principales objetivos del mortero es brindar apoyo y adherencia, cómo también disminuir la permeabilidad (Gómez, Sánchez, Osorio, y Niño, 2010, pág. 147).

2.2.6.1 Tipos de mortero

Según Gutiérrez Libia (2003), nos indica que el mortero se clasifica de la siguiente manera:

- a. Teniendo en cuenta los materiales que lo constituyen:
 - Morteros calcáreos: La cal es usada como aglomerante, ya sea para morteros tipo aéreo (endurece al aire) e hidráulico (endurece bajo el agua). Para el mortero aéreo se utiliza la cal blanca y gris (dolomítica).
 El uso de este tipo mortero calcáreo se utiliza mayormente para acabados estéticos, específicamente de esquinas perfectas.
 - Morteros de yeso: Su preparación contiene yeso hidratado con agua, donde la cantidad de agua según la calidad, grado de cocción y finura del yeso.
 - Morteros de cal y cemento: Se utiliza cuando se requiere buena trabajabilidad, mejor retención del agua y elevada resistencia. Debido a que la cal reemplaza parte del cemento en los morteros, es conocido también como morteros de cemento rebajado.
 - Morteros de cemento: Este tipo de mortero, es el más utilizado en la industria de la construcción. Este mortero es hidráulico, cuando es mezclado, se acostumbra revolver primero el cemento y arena, luego agregar el agua.

Tabla 2. Usos de los morteros de cemento

MORTERO	USOS		
1:1	Mortero muy rico para impermeabilizaciones. Rellenos		
1:2	Para impermeabilizaciones y pañetes de tanques subterráneos. Rellenos		
1:3	Impermeabilizaciones menores. Pisos		
1:4	Pega para ladrillos en muros y baldosines. Pañetes finos		
1:5	Pañetes exteriores. Pega para ladrillos y baldosines, pañetes y mampostería en general. Pañetes no muy finos.		
1:6 y 1:7	Pañetes interiores. Pega para ladrillos y baldosines, pañetes y mampostería en general. Pañetes no muy finos		
1:8 y 1:9	Pegas para construcciones que se van a demoler pronto. Estabilización de taludes en cimentaciones.		

Fuente: Gutiérrez Libia, (2003)

b. Según la ASTM 270, clasifica a los morteros de pega de mampostería simple según su dosificación y resistencia a la compresión, ver tabla N°3:

Tabla 3. Clasificación de los morteros de pega para mampostería simple según resistencia a la compresión a 28 días y según dosificación

TIPO DE	RESISTENCIA A LA COMPRESIÓN		CEMENTO	CEMENTO	CAL	AGREGADO FINO	
MORTERO	(Mpa)	(Kg/cm2)	(P.S.I.)	POKILAND	MAMPOSTERIA		SUELTO
М	17.2	175	2500	1	1		
141	17.2	1,5	2500	1	-	0.25	
s	12.4	126	1800	0.5	1	0.25 a	
3	12.7	120	1600	1	-	0.5	Entre 2.25 y 3
N	5.2	53	750	-	1	0.5 a	veces la suma
	2.2		750	1	-	1.25	de cemento y
0	2.4	25	350	-	1	1.25 a	cal utilizado
	2.7	23	330	1	-	2.50	
К	0.5	5	75	1	-	2.50 a 4.00	

Fuente: Gutiérrez Libia, (2003)

c. Según la ASTM 476, clasifica a los morteros de pega de mampostería reforzada según su dosificación y resistencia a la compresión, ver tabla N°4:

Tabla 4. Clasificación ASTM C476 de morteros de pega para mampostería reforzada según resistencia a la compresión a 28 días y según dosificación (partes por volumen)

TIPO DE MORTERO	RESISTENCIA A LA COMPRESIÓN		CEMENTO PORTLAND	CEMENTO MAMPOSTERIA	CAL	AGREGADO FINO SUELTO	
PM	17.2	175	2500	1	1	0.25	2.25 a 3.00
PL	17.2	175	2500	1	-	a 0.5	2.23 8 3.00

Fuente: Gutiérrez Libia, (2003)

d. Los morteros de relleno, son aquellos que sirven para mejorar la unión entre mampostería y refuerzo. Según la ASTM 476, clasifica a los morteros de relleno de la siguiente manera:

Tabla 5. Morteros de relleno – partes volumen

TIPO DE RELLENO	CEMENTO PORTLAND	CAL	AGREGADO FINO SUELTO	AGREGADO GRUESO SUELTO
Relleno fino	1	0 a 0.1	2.25 a 3.0	-
Relleno grueso	1	0 a 0.1	2.25 a 3.0	1 a 2

Fuente: Gutiérrez Libia, (2003)

e. Teniendo en cuenta su uso, tenemos:

- ✓ Mortero de mampostería estructural, son suficiente resistencia, y que soportan fuerzas de compresión.
- ✓ Mortero de pega, se acuerdo a la posición deseada mantiene unidos los elementos.
- ✓ Mortero de revestimiento, brinda una superficie de un buen acabado, liso y uniforme.
- ✓ Mortero que se utiliza para rellenar juntas entre distintos elementos constructivos.

f. Teniendo en cuenta su endurecimiento:

✓ Morteros aéreos: Se refiere a los que para endurecer pierden agua por secado y fraguan por carbonatación, endurecen al aire.

✓ Morteros hidráulicos o acuáticos: Desarrollan resistencias altas al inicio, por lo logra endurecer bajo el agua.

En la presente tesis utilizaremos el tipo de mortero de cemento, siendo la calidad en mayor parte dependiente de las características del agregado fino, como el módulo de finura, granulometría, contenido de humedad, peso específico, peso unitario y absorción.

2.2.6.2 Componentes

2.2.6.2.1 Cemento

Definición

El cemento es uno de los materiales de construcción más utilizados en el mundo hoy en día, posee condiciones de pegante cualquiera sea su origen (Gutiérrez Libia, 2003, pág. 35).

Es un aglutinante con propiedades de adherencia y cohesión desarrollando la unión de fragmentos minerales entre sí, que al mezclarse con agua se produce una reacción química llamada hidratación que llega a fraguar y endurecer (Gómez, Sánchez, Osorio, y Niño, 2010, pág. 19)

Cemento Portland

Martínez Karen (2019), menciona que el cemento Portland, resulta de la calcinación a elevadas temperaturas de materiales calcáreos (caliza) y arcillosos con un alto contenido en sílice y alúmina, formando de esa manera el Clinker, para luego ser enfriado y triturado para poder mezclarlo con yeso, y de esa manera conseguir el cemento Portland (pág. 22).

Composición

Perilla Jorge (2014), el cemento Portland está compuesto por cal (CaO), arcilla (SiO₂, Al₂O₃ y Fe₂O₃) y yeso (SO₃), éste último viene a ser el regulador de fraguado.

El clinker, es la mezcla de caliza y arcilla, el cual está conformado en un 95% por silicato tricálcico (C_3S) , silicato dicálcico (C_2S) , ferrito aluminato tetracálcico (C_4AF) y aluminato tricálcico (C3A), sus propiedades tienen gran influencia en el cemento.

El C₃S o alita, controla las resistencias iniciales y el endurecimiento, el C₂S eleva la resistencia después de la primera semana aproximadamente, el C₃A es de mucha importancia ya que hace más fácil la mezcla de cal y sílice, el C₄AF disminuye la temperatura del Clinker, ya que actúa como fundente (Pg. 19-21).

Propiedades físicas y mecánicas

Estas propiedades se miden a través de ensayos que se realizan al cemento puro, lo cual nos da a conocer la calidad del cemento.

Gutiérrez Libia (2019), nos menciona algunas propiedades, de las cuales las más importantes son:

Peso específico: Viene a ser la relación de peso y volumen, varía entre 3.08 a 3.20 g/cm³ para el cemento Portland tipo I. Un bajo peso específico y alta finura puede indicar adiciones en el cemento.

Superficie específica (finura): La finura del cemento es una de las propiedades más importantes que se relaciona con la hidratación de éste. Al ser muy fino se endurece más rápido y desarrolla una elevada resistencia, pero libera más calor y hay susceptibilidad a la fisuración (pág. 42).

Tipos de cemento Portland

A. Sin Adición: Pasquel (1998), nos da a entender algunos tipos de cementos Portland que no tienen adición, siendo éstos los siguientes:

Tipo I: El uso es de tipo general, para estructuras que no requieran propiedades especiales.

Tipo II: Se utiliza en vaciados masivos o en estructuras con ambientes agresivos. Tiene moderada resistencia a los sulfatos y moderado calor de hidratación.

Tipo III: Su uso es para climas fríos o donde se requiera poner la estructura en servicio antes de tiempo, debido a que desarrolla rápidamente la resistencia con un elevado calor de hidratación.

Tipo IV: Su uso es para concreto masivo. Tiene un bajo calor de hidratación.

Tipo V: El uso es para entornos muy agresivos, ya que tiene una alta resistencia a los sulfatos.

B. Con adición o mezclados: La N.T.P. 334.090 (2013) indica los siguientes tipos de cemento con adición:

Tipo IS: Cemento Portland con escoria de alto horno.

Tipo IP: Cemento Portland puzolánico.

Tipo IL: Cemento Portland - Caliza.

Tipo I (PM): Cemento Portland puzolánico modificado.

Tipo IT: Cemento adicionado ternario.

Tipo ICo: Cemento Portland compuesto.

Según Pasquel (1998), menciona algunos sufijos como variantes que significan algo. Por ejemplo, el sufijo M indica una resistencia moderada a los sulfatos (pág. 40).

El cemento que utilizaremos en la presente tesis es el cemento Portland tipo IP, su uso es general no expuestos a ambientes agresivos ya sea la presencia de sulfatos y sobre todo el uso es común en la mayoría de las construcciones de nuestro medio.

Cemento Portland Tipo IP

El cemento Portland puzolánico es aquel que contiene puzolana, entre un 15% y 40% del peso total del cemento (Kosmatka Steven, Kerkhoff Beatrix, Panarese William y Tanesi Jussara, 2004, pág. 36). Se obtiene de la molienda del clinker, yeso y puzolana.

La N.T.P. 334.090 (2013) menciona que la puzolana es un material silíceo o silíceo y aluminoso, que finamente dividido y en presencia de humedad, reacciona químicamente con el hidróxido de calcio, a temperaturas comunes, para formar compuestos que poseen propiedades cementicias.

Podemos especificar el tipo IP con aire incluido, moderada resistencia a sulfatos o moderado calor de hidratación mediante sufijos A, MS o MH. Podemos especificar el tipo P con bajo calor de hidratación (Kosmatka Steven, Kerkhoff Beatrix, Panarese William y Tanesi Jussara, 2004, pág. 36).

Características técnicas

Tabla 6. Requisitos químicos y físicos del Cemento Portland Tipo IP

REQUISITOS REQUISITOS QUÍMICOS	CEMENTO MULTIPROPÓSITO YURA TIPO IP	REQUISITOS NORMA NTP 334.090 ASTM C-595
MgO (%)	1.5 a 2.4	6.00 Máx.
SO2 (%)	1.5 a 2.3	4.00 Máx.
Pérdida por ignición (%)	1.5 a 3.8	5.00 Máx.
REQUISITOS FÍSICOS	2 77 - 2 05	
Peso específico (gr/cm3)	2.77 a 2.85	
Expansión en autoclave (%)	-0.05 a 0.03	-0.20 a 0.80
Fraguado Vicat inicial (minutos)	170 a 270	45 a 420
Contenido de aire	2.5 a 8.0	12 Máx.

Fuente: YURA, (2019)

2.2.6.2.2 Agregados

Definición

Gómez, Sánchez, Osorio, y Niño (2010) mencionan que los agregados son el mayor componente de la mezcla de concreto o mortero, en el cual pueden ocupar hasta un 70% del volumen. Estos tienen diversas propiedades que se detallaran más adelante, las cuales influyen bastante en el comportamiento de la mezcla.

Los agregados en la mezcla brindan resistencia mecánica al mortero o concreto en estado endurecido, también se encargan de controlar los cambios de volumen ya sea en el fraguado o los que se ocasionan por los cambios en el contenido de humedad en las diferentes estructuras (pág. 55).

Clasificación

A. Clasificación por su procedencia

Agregados naturales

Existen de forma natural en el medio ambiente. Se forman por los procesos geológicos naturales que ocurrieron en el planeta durante años, la roca madre de origen brinda la mayoría de las características que tienen los agregados.

Rivera Gerardo, (2013), menciona que, de acuerdo a la geología histórica, se pueden formar por fenómenos internos de la tierra, al solidificarse y enfriarse el magma, se forman las rocas ígneas u originales, tenemos también las rocas sedimentarias que son formadas por fenómenos geológicos externos como la meteorización, al sufrir procesos de presión y temperatura se forman las rocas metamórficas, esto se conoce como el ciclo geológico que constantemente se encuentra en actividad (pág. 42).

Agregados artificiales

Son aquellos que fueron formados por procesos industriales. Rivera Gerardo, (2013) menciona que estos pueden ser: arcillas expandidas, escorias de alto horno, clinker, limaduras de hierro y otros, generalmente estos son de mayor o menor densidad que los agregados corrientes. Debido a que últimamente se están utilizando los concretos ligeros o ultraligeros, se necesitan ciertos tipos de agregados de esta característica para su fabricación, los cuales a su vez tienen que cumplir con ciertas características como baja densidad, aislante, resistencia, no tóxico e incombustible, siendo éstos un tipo de agregado artificial que se genera hoy en día (pg. 45).

B. Clasificación por su naturaleza

Según Rivva (2000), los agregados que se utilizan para la elaboración de concreto se clasifican de la siguiente manera:

- ✓ Agregado fino: Es aquel que pasa el tamiz 3/8" que se retiene en la malla N°200, el más común es la arena.
- ✓ Agregado grueso: Es el que queda retenido en el tamiz N°4, este puede ser piedra chancada y grava.
- ✓ Hormigón: Se encuentra de manera natural en la corteza terrestre y se emplea en la cantera tal cual es extraído, está conformado por arena y grava mezclado (pág. 17).

C. Clasificación por su densidad

Se entiende como la relación de la masa y unidad volumen de los agregados, ya sean artificiales o naturales.

Tabla 7. Clasificación de los agregados según su masa unitaria

TIPO DE CONCRETO	MASA UNITARIA APROX. DEL CCTO. kg/m ³	MASA UNITARIA DEL AGREGADO kg/m³	EJEMPLO DE UTILIZACIÓN	EJEMPLO DE AGREGADO
Ultraligero	500 – 800		Concreto para aislamiento.	Piedra pómez Ag. Ultraligero.
Ligero	950 – 1350 1450 – 1950	480 -1040	Rellenos y mampostería no estruct. Ccto. Estructural	Perlita Ag. Ultraligero.
Normal	2250 – 2450	1300 – 1600	Ccto. Estruct. Y no estruct.	Agregado de río o triturado.
Pesado	3000 - 5600	3400 – 7500	Ccto. Para proteger de radiación gamma ó X, y contrapesos	Hematita, barita, coridón, magnetita.

Fuente: Rivera Gerardo, (2013)

D. Clasificación según su tamaño

Rivera Gerardo, (2013) menciona que la manera más general de clasificar y diferenciar a los agregados es mediante su tamaño, el cual varía desde fracciones de milímetros hasta varios centímetros de sección; la distribución de partículas según su tamaño se denomina granulometría (pág. 52).

Se muestran las denominaciones más comunes de las fracciones y su aptitud para morteros o concretos según el tamaño de sus partículas:

Tabla 8. Clasificación de los agregados según el tamaño de sus partículas

TAMAÑO EN mm.	DENOMINACIÓN MÁS COMÚN	CLASIFICACIÓN	USO COMO AGREGADO DE MEZCLAS
< 0,002	Arcilla	Fracción muy fina	No recomendable
0,002 - 0,074	Limo	Fracción fina	No recomendable
0,074 - 4,76 #200 - #4	Arena	Agregado fino	Material apto para mortero o concreto
4,76 - 19,1 #4 - 3/4"	Gravilla		Material apto para concreto
19,1 - 50,8 3/4" - 2"	Grava	Agregado grueso	Material apto para concreto
50,8 - 152,4 2" - 6"	Piedra		
> 152,4 6"	Rajón, Piedra bola		Concreto ciclópeo

Fuente: Rivera Gerardo, (2013)

E. Clasificación según su forma y textura superficial

Este tipo de clasificación es importante ya que la forma de los agregados, influye en la trabajabilidad, resistencia y durabilidad de las mezclas, y la textura superficial de las partículas en la manejabilidad y adherencia entre la pasta y el agregado. Rivera Gerardo, (2013) menciona que en cuanto a su forma tenemos:

Tabla 9. Clasificación de las partículas del agregado según su forma

FORMA	DESCRIPCIÓN	EJEMPLO
Redondeadas	Totalmente desgastada por el agua o completamente limada por frotamiento.	
Irregular	Irregularidad natural, o parcialmente limitada por frotamiento y con orillas redondeadas.	Otras gravas, pedernales del suelo o de excavación.
Escamosa	Material en el cual el es pequeño en relación a las otras dos dimensiones.	Roca laminada.
Angular	Posee orillas bien definidas que se forman en la intersección de caras más o menos planas.	Rocas trituradas de todo tipo, escoria triturada.
Alongadas	Material normalmente angular en el cual la longitud es considerablemente mayor que las otras dos dimensiones.	

Fuente: Rivera Gerardo, (2013)

Tabla 10. Clasificación de las partículas del agregado según su textura superficial

TEXTURA	CARACTERÍSTICAS	EJEMPLO
Vítrea	Fractura concoidal.	Pedernal negro, escoria vítrea.
Lisa	Desgastada por el agua, o liso debido a la fractura de roca laminada o de grano	Gravas, pizarras, mármol,
Granular	Fractura que muestra granos más o menos uniformemente redondeados.	Arenisca.
Áspera	Fractura áspera de roca con granos finos o medianos que contienen constituyentes cristalinos no fácilmente visibles.	Basalto, felsita, pórfido, caliza.
Cristalina	Contiene constituyentes cristalinos fácilmente visibles.	Granito, Gabro, Gneis.
Apanalada	Con poros y cavidades visibles	Pómez, escoria espumosa, arcilla expandida.

Fuente: Rivera Gerardo, (2013)

Propiedades químicas

El agregado puede llegar a generar reacciones químicas favorable o desfavorable, como por ejemplo puede llegar a generar una reacción con los álcalis del cemento, produciendo sustancias dañinas para la mezcla, por lo que estas propiedades tienen mucha importancia.

Gómez, Sánchez, Osorio, y Niño (2010), mencionan los siguientes tipos de propiedades químicas en los agregados:

✓ Epitaxia

Esta propiedad es la única reacción química favorable que se sabe hasta el momento, ya que a medida que avanza el tiempo, mejora la adherencia entre los agregados, caliza y la pasta de cemento.

✓ Reacción álcali-agregado

Esta es una reacción química desfavorable que se origina debido a la reacción de sílice activa presente en los agregados con los álcalis del cemento generando compuestos expansivos, destrucción de la masa y perdida de propiedades resistentes.

Para analizar la presencia de sílice activo en el agregado se deben realizar algunas pruebas, como la reactividad potencial mediante el método de barras descrita en la

ASTM C289 o la reactividad potencial a los álcalis según la norma ASTM C586, el ensayo de expansión del mortero según la ASTM C227, las cuales tienen que ir acompañadas con un análisis petrográfico según la norma ASTM C295.

Propiedades físicas

La principal característica que distingue a los agregados los unos de los otros, es la granulometría, para después añadir sobre ellos otras características físicas primordiales, las cuales asociadas a éstas se realizan ensayos para su respectiva medida. A continuación, se describen las propiedades físicas de mayor importancia:

➤ Granulometría

Esta propiedad se refiere al porcentaje de distribución del tamaño partículas de una masa de agregado, el ensayo se realiza con una serie de tamices Standard que van de mayor a menor, los tamices de ensayo para el agregado fino y grueso se encuentran en la NTP 350.001 y el procedimiento de ensayo está en la NTP 400.012. Esta distribución se logra ver en un gráfico llamado curva granulométrica

Los parámetros que se obtienen a partir del análisis granulométrico son los siguientes:

Gómez, Sánchez, Osorio, y Niño (2010), mencionan los siguientes:

- a) Tamaño máximo: Este parámetro es exclusivo del agregado grueso, el cual se refiere a la menor abertura del tamiz que permite el paso total del agregado, indicando el tamaño de la partícula más grande que tiene la muestra.
- b) Tamaño máximo nominal: Indica el tamaño promedio de partículas más grandes que hay dentro de una muestra de agregado, este parámetro también es exclusivo del agregado grueso.
- c) Módulo de finura: Este parámetro se da para el agregado fino, el cual representa qué tan grueso o fino es la muestra, se halla dividiendo la suma de los porcentajes

retenidos acumulados de los tamices Standard a utilizar dividido entre 100. La norma en la que se encuentra el ensayo es la ASTM C125.

Estas arenas se pueden clasificar según el resultado como sigue:

Arenas finas Módulo de Finura entre 0.5-1.5

Arenas medias Módulo de Finura entre 1.5-2.5

Arenas gruesas Módulo de Finura entre 2.5-3.5

- d) Porcentaje de finos: Se define como el porcentaje que pasa el tamiz N°200 (0.075 mm). Se asigna al agregado fino.
- e) Formas de las partículas del agregado: Para que exista una buena mezcla, la forma de las partículas influye mucho en la adherencia que los agregados tengan entre sí, por lo que tiene que ver su redondez, esfericidad, partícula alargada y plana (págs. 18-20).

Densidad

Se define como la relación de peso y volumen de una masa determinada (Gómez, Sánchez, Osorio, y Niño, 2010, pág. 20)

➤ Peso especifico

Pasquel (1998), es el cociente del peso de partículas entre el volumen de las mismas no considerando los vacíos que existen entre ellas. La norma ASTM C-127 y C-128 establecen su procedimiento, expresándolo en función de las condiciones de saturación (pág. 76).

> Porosidad

Es el volumen de espacios dentro de las partículas de los agregados, ésta está relacionada con la absorción.

➤ Absorción

Pasquel (1998), menciona a la absorción como la capacidad de los agregados de llenar con agua los vacíos en el interior de las partículas, esto se realiza mediante el fenómeno de capilaridad. Esta propiedad es importante ya que influye en la mezcla de concreto o mortero disminuyendo el agua en ella, también influye en las propiedades resistentes y en la trabajabilidad, viniendo a ser su cálculo de mucha importancia (pág. 76).

> Peso unitario

Gómez, Sánchez, Osorio, y Niño (2010), lo definen como la relación entre el peso de una muestra de agregado y el volumen que ocupa éste dentro de un recipiente conocido. El peso unitario depende de la granulometría, tamaño, forma y textura del agregado ya sea este grueso o fino.

Existen dos tipos de peso unitario:

Peso unitario compactado: Se define como la relación del peso compactado de la muestra del agregado y el volumen que ocupa. Este valor es utilizado para saber el volumen absoluto de agregado en las mezclas de concreto.

Peso unitario suelto: es la relación que hay entre el peso del agregado de manera suelta o en estado de reposo y el volumen que éste ocupa (pág. 23).

> Humedad

Pasquel (1998), es la relación que existe entre la diferencia del peso inicial de la muestra y el peso seco dividido entre el peso seco, ésta se representa en porcentaje. Es la cantidad de agua superficial retenida en un momento determinado por las partículas del agregado, siendo de importancia ya que influye en el agua de la mezcla, la cual se debe tomar en cuenta junto con la absorción para realizar las determinadas correcciones en el diseño de mezcla (pág. 77).

2.2.6.2.2.1 Agregado fino

Definición

Se define como agregado fino a aquel, proveniente de la desintegración natural o artificial de las rocas, que pasa el tamiz de 3/8" y queda retenido en el tamiz N°200.

Tabla 11. Tamices a utilizar para realizar el análisis granulométrico

Agregado	Tamices normalizados
	150 μm (N°100)
	300 μm (N°100)
FINO	600 μm (N°100)
TINO	1,18 μm (N°100)
	2,36 μm (N°100)
	4,75 μm (N°100)
	9,50 μm (N°100)
	12,5 μm (N°100)
	19,0 μm (N°100)
	25,0 μm (N°100)
GRUESO	37,5 μm (N°100)
GRUESO	50,0 μm (N°100)
	63,0 μm (N°100)
	75,0 μm (N°100)
	90,0 μm (N°100)
	100,0 μm (N°100)

Fuente: NTP 400.037, (2014)

Según la NTP 400.037, el agregado fino debe estar libre de cantidades perjudiciales de impurezas orgánicas, también indica otros factores que deben cumplir los agregados en cuanto a sustancias deletéreas con límites definidos de terrones de arcilla, material más fino que pasa la malla N°200, carbón y lignito, o la pérdida de masa por ataque a sulfatos (págs. 15-16). Asimismo, las normas que regulan las características del agregado fino para morteros de albañilería son la ASTM-C144 y la NTP 399.607.

Las propiedades del agregado fino son las mismas ya mencionadas anteriormente, de las cuales para su medida se realizan los ensayos descritos junto con las propiedades físicas. Estos son: análisis granulométrico con sus respectivos parámetros, peso unitario suelto y compactado, peso específico y absorción y por último el contenido de humedad. Estos datos interferirán en el diseño de mezcla necesario para el mortero en la presente tesis.

2.2.6.2.2.2 Agua

El agua en la mezcla del mortero o concreto es importante, ya que este influirá en la trabajabilidad de la pasta, y a su vez en la resistencia.

Según Pasquel (1998), el agua en la mezcla tiene tres funciones principales: reaccionar con el cemento para hidratarlo, actúa como lubricante contribuyendo en la trabajabilidad de la mezcla, y procurar la estructura de vacíos necesaria en la mezcla para que los productos de hidratación tengan espacio para desarrollarse (pág. 59).

Gutiérrez Libia (2003), menciona que cuando se requiera una mezcla fluida, esto se debe lograr con aditivos plastificantes, ya que el agua que a veces adicionan es una masa que queda dentro de la mezcla y que, al fraguar la mezcla, crea porosidad lo que reduce la resistencia.

El agua que a utilizar en la mezcla de concreto o mortero debe ser apta para el consumo humano, si esta no es potable o de calidad sin comprobar, se debe realizar cubos de mortero con el agua no potable y potable, comparándolos entre sí, las muestras preparadas con agua no potable deben tener una resistencia de 90% a los 7 y 28 días en comparación de las muestras preparadas con agua potable (pág. 46).

También la NTP 339.088, menciona los requisitos que debe cumplir el agua, siendo éste de preferencia potable, en la siguiente tabla se muestran valores máximos permisibles basados en la norma INTITEC 339.088, el cuál debe cumplir el agua de mezcla y curado (Pasquel, 1998, págs. 60):

Tabla 12. Límites permisibles para el agua de mezcla y de curado

Descripción	Límite permisible
1) Sólidos en suspensión	5.000 p.p.m. máximo
2) Materia orgánica	3 p.p.m. máximo
3) Alcalinidad (NaHCO3)	1.000 p.p.m. máximo
4) Sulfato (Ión SO4)	600 p.p.m. máximo
5) Cloruros (Ión CI)	1.000 p.p.m. máximo
6) pH	5 a 8

Fuente: Pasquel, (1998)

El agua de curado, debe cumplir con los mismos requisitos que el agua de mezcla. El curado del concreto tiene por finalidad mantener el concreto saturado, para lograr la hidratación del cemento, que permita el aumento de la resistencia.

Sin embargo, los parámetros para el agua de curado pueden ser menos exigentes que en el caso del agua de mezcla, pudiéndose aceptar disminuirlas a la mitad en la mayoría de los casos (Pasquel, 1998, pág. 65).

2.2.6.3 Propiedades del mortero

2.2.6.3.1 Propiedades del mortero en estado plástico

✓ Trabajabilidad

Bolaños Susan y Guamán Mauricio (2017), es una de las propiedades más importantes, ya que se refiere a la facilidad que tiene la arena de acomodarse a causa de la lubricación de la mezcla de cemento. Esta hace adecuado el manejo del mortero para el obrero, ya sea en la colocación de las unidades de albañilería, para el tarrajeo y otros. La trabajabilidad depende de la correcta ejecución de los ensayos realizados para su diseño como la granulometría, dosificaciones del material y especialmente del contenido de humedad (pág. 12).

Esta propiedad va relacionada con la consistencia que tenga el mortero, ya sea seco, medio o fluido.

✓ Fluidez

Esta propiedad también conocida como consistencia del mortero, se mide a través de un ensayo según la norma NTP 334.057. Se establecen tres tipos de consistencia: Dura, media y fluida. Estos dependerán del tipo de estructuras al que se desea colocar y de las condiciones de colocación según la tabla N°13.

La consistencia del mortero depende de la proporción de arena y cemento y de la forma, textura y módulo de finura de la arena (Gutiérrez Libia, 2003, pág. 120). El beneficio de llegar a un valor correcto del factor de fluidez, será un indicador de que se está llegando a la resistencia requerida y la trabajabilidad necesaria en campo para la mezcla, según el mortero que se requiera, ya sean de asentado o revestimiento.

Tabla 13. Fluidez recomendada del mortero para diversos tipos de estructura y condiciones de colocación

CONSISTENCIA	FLUIDEZ % CONDICIÓN DE COLOCACIÓN		EJEMPLO DE TIPOS DE ESTRUCTURA	EJEMPLO DE SISTEMA DE COLOCACIÓN
Dura (seca)	80-100	Secciones sujetas a vibración	Reparaciones, recubrimiento de túneles, galerías pantallas de cimentación, pisos	Reparaciones, recubrimiento de túneles, galerias pantallas de cimentación, pisos
Media (plástica)	100-120	Sin Vingacion	Pega de mamposteria, baldosines, pañetes y revestimientos	Manual con palas y palustres
Fluida (húmeda)	120-150	Sin vibración	Pañetes, rellenos de maposteria estructural, morteros autonivelantes para pisos	Manual, bombeo, inyección

Fuente: Gutiérrez Libia, (2003)

✓ Retención del agua

Es la capacidad que tiene el mortero de retener agua, éste se mide en unidades de porcentaje. Gutiérrez Libia, 2003, menciona que es la capacidad del mortero para mantener su plasticidad al ponerse en contacto con la superficie sobre la que se colocará. La retención de agua influye en la velocidad de endurecimiento y en la resistencia final, ya que un mortero que no retenga el agua no permite la hidratación del cemento.

Los materiales que ayudan al mortero a tener una buena capacidad de retención de agua son la cal, arena fina dentro de la granulometría normada o incluso plastificante o incorporadores de aire (pág. 119).

✓ Velocidad de endurecimiento

Bolaños Susan y Guamán Mauricio (2017), existen muchos factores como el clima, la temperatura, composición de la mezcla, humedad y otros que influyen en la velocidad de endurecimiento del mortero que viene dado por determinar el tiempo de fraguado inicial y final, encontrándose los valores aceptados entre las 2 y 24 horas. La norma INEN 158 menciona el desarrollo del ensayo (pág. 14).

2.2.6.3.2 Propiedades del mortero en estado endurecido

✓ Retracción

La retracción se debe a la perdida de agua, esta puede ser debido a la evaporación, o absorción de la mampostería, la pérdida de agua produce tensiones internas lo cual genera grietas.

Para mejorar la retracción y evitar el agrietamiento se recomienda utilizar arenas con granos de textura rugosa, y tener en cuenta el clima (Gutiérrez Libia, 2003, pág. 120).

✓ Resistencia

Gutiérrez Libia (2003), la resistencia dependerá del tipo de mortero a utilizar, si éste es de pega el requisito es que proporcione una unión resistente, si será utilizado en mampostería estructural, éste debe tener una resistencia a compresión alta.

El mortero con alta resistencia será aquel que contenga mayor cantidad de cemento para un volumen de mortero, y el que presente mayor densidad, también depende del tamaño de los granos de la arena, ya que un mortero con arena fina será menos denso que uno con arena gruesa, por último, uno de los factores más importantes que influyen en la resistencia del mortero es la cantidad de agua, ya que a menor agua mayor resistencia (pág. 121).

La resistencia se mide mediante ensayos, esto dependerá del tipo de resistencia a ensayar, ya sea resistencia a compresión, tracción o flexión.

Gómez, Sánchez, Osorio, y Niño (2010), la resistencia a la compresión es uno de los criterios para la selección del mortero, el ensayo se encuentra en la NTP 334.051, utilizando cubos de mortero de 5 cm, aunque también se debe tomar en cuenta en los criterios de selección del mortero la adherencia, trabajabilidad y la retención de agua. La resistencia a flexión del mortero es aquella que resiste el agrietamiento, ésta es importante ya que la capacidad a la compresión de una junta horizontal de 9.5 mm, es probablemente el doble del valor obtenido que cuando es ensayados en cubos de mortero de 5 cm. en cuanto a la resistencia a tracción, no es un punto crítico, ya que normalmente el mortero no se somete a tracción, pero cuando si lo es, éste se refuerza con acero (págs. 159-160)

✓ Adherencia

Es una de las propiedades más importantes que tiene el mortero, y una de las normas en las que se encuentra el ensayo de adherencia es en la NCh 167.

La adherencia es la capacidad de responder monolíticamente del mortero y la estructura que esté uniendo, absorbe tensiones normales y tangenciales a la superficie que une el mortero y una estructura. Para que haya una buena adherencia en mampostería, la superficie donde se pondrá el mortero debe ser lo suficientemente rugosa y tener una buena absorción (Gutiérrez Libia, 2003, pág. 120)

Esta propiedad es importante ya que ayuda a resistir el pandeo, cargas transversales y excéntricas como un solo cuerpo, es decir monolíticamente, resultando beneficioso para la estructura (Bolaños Susan y Guamán Mauricio, 2017, pág. 15).

La resistencia de adherencia es importante no solamente para resistir cargas aplicadas, sino también para absorber esfuerzos originados por cambios volumétricos y temperatura. Se mide a través de la determinación del esfuerzo cortante, flexión o tracción requerida para separar unidades de mampostería (Gómez, Sánchez, Osorio, y Niño, 2010, pág. 156).

✓ Durabilidad

La durabilidad es una característica que tiene el mortero, de poder mantenerse o deteriorarse si no se toma en cuenta las consideraciones a las que será expuesta el mortero.

Esta propiedad se refiere a la resistencia que tiene el mortero contra agentes externos, esto dependerá de la temperatura, ya sea en climas fríos debido al hielo o deshielo, o en climas tropicales por ataques de sustancias agresivas como sulfatos y ácidos. La durabilidad además de depender de los materiales utilizados en el mortero, depende del tipo de unidad de mampostería utilizada, siendo también el grado de saturación de los ladrillos una variable importante en la durabilidad de la mampostería (Gómez, Sánchez, Osorio, y Niño, 2010, págs. 160-161).

2.2.6.3.3 Factores que afectan las propiedades del mortero

Existen muchos factores que afectan las propiedades de los morteros, ya sea en propiedades físicas, mecánicas o químicas. Estos factores pueden ser de naturaleza físico-mecánica, físico-química, atmosférica o externa. Los factores físico-mecánicos generan fisuras, desprendimientos y entre otros, los factores físico-químicos pueden llegar a producirse debido al mal manejo durante el proceso constructivo, o al mal curado después de éste, en cambio los factores atmosféricos pueden ser las heladas que se generan mayormente en zonas de bajas temperaturas, o eflorescencias, debido a la reacción de sales y sulfatos, por último dentro de los factores externos está el desgaste, que se genera debido a la suciedad e intemperie a la que el mortero está expuesta. Todos estos son los factores más importantes que afectan al mortero.

Se describen a continuación los factores que afectan al mortero, que consideramos principales para la presente tesis:

✓ Eflorescencia:

Bolaños Susan y Guamán Mauricio (2017) definen la eflorescencia como un depósito blanco de sal soluble en agua, que puede ocasionar que el mortero se desintegre, para que la eflorescencia ocurra es necesaria la combinación de distintos factores como lo es la humedad, una fuente de sales y la evaporación. Estas sales se pueden encontrar en el mismo mortero, de las unidades de albañilería, o incluso pueden llegar a provenir del suelo por capilaridad, la magnitud de la eflorescencia dependerá de la cantidad de sal soluble y de que las condiciones atmosféricas sean óptimas.

Según la norma INEN 2518, 2010 la humedad es el factor más influyente para que aparezca la eflorescencia, ésta puede ingresar de distintas maneras, una de ella es la lluvia.

El origen de las eflorescencias puede ocurrir debido a los componentes del mortero, ya que el agregado, cemento o aditivos que éste tiene pueden contener sales solubles que reaccionarán con factores externos como la humedad, también una de las causas de la eflorescencia pueden ser las unidades de albañilería, ya que tienen sales

solubles en su composición como sulfatos y carbonatos de sodio, potasio, magnesio y calcio, otra de las razones por las que se forma la eflorescencia puede ser debido a la reacción que puede llegar a existir entre el mortero y el ladrillo, los sulfatos del ladrillo reaccionan con la cal liberada del cemento produciendo hidróxidos alcalinos que a su vez reaccionan con el yeso del cemento. Otra causa viene a ser los sulfatos solubles que puede tener el suelo y subir por capilaridad hacia la estructura que al evaporarse producirán eflorescencias (págs. 35-38).

✓ Suciedad:

La contaminación atmosférica es un agente directo del ensuciamiento de fachadas, éstas pueden ser ensuciamiento por depósito y por lavado diferencial (Fiol, 2014). Zuasnábar Karen (2019), el ensuciamiento por depósitos, consiste en el depósito de partículas suspendidas en el aire que por acción de la gravedad se depositan en las fachadas; y el ensuciamiento por lavado diferencial, se da cuando las partículas penetran por los poros superficiales de las fachadas o estas son quitadas por el agua de lluvia produciendo manchas de suciedad en la superficie.

La suciedad produce un efecto visual en el mortero, sin embargo, las fachadas también pueden ser afectadas por lesiones químicas que pueden llegar a producirse debido a la presencia de microrganismos que al desarrollarse en materiales porosos y húmedos, producen mohos e incluso pueden llegar a erosionar la superficie (Fiol, 2014).

2.3 Hipótesis

2.3.1 Hipótesis general

El resultado de la evaluación de las propiedades físico mecánicas y fotocatalíticas del mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85 mejora las propiedades mecánicas, adquiriendo la propiedad fotocatalítica del mortero.

2.3.2 Sub hipótesis

Sub hipótesis 1: Las propiedades mecánicas "fluidez, adherencia, absorción y resistencia a compresión" obtenidas de los testigos de mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85 tendrán una mejora sustancial de las mismas.

Sub hipótesis 2: La auto limpieza aumenta respecto exposición a radiación de tipo ultravioleta del mortero de cemento portland tipo I relación A/C 0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85.

Sub hipótesis 3: La influencia del dióxido de titanio adicionado en mortero de cemento portland tipo I relación A/C 0.85 en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85 aumenta la degradación del gas dióxido de nitrógeno NO2.

Sub hipótesis 4: La variación de los costos de elaboración de mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% aumenta frente al mortero patrón de cemento portland tipo I relación A/C=0.85.

2.4 Definición de variables

2.4.1 Variables independientes

Variable independiente (X1): Mortero adicionado con dióxido de titanio (TiO2).

Descripción: Conglomerado de materiales. Arena, agua y cemento, que se encuentran determinado la adición en concentraciones de dióxido de titanio (TiO2).

Nivel:

- ✓ Características físico-mecánicas de los agregados
- ✓ Dióxido de titanio (TiO2)

Indicadores:

✓ Parámetros que deben cumplir según las N.T.P.

✓ Método de diseño de mezcla de mortero según norma E=070

2.4.2 Variables dependientes

Variable dependiente (Y1): Propiedades físico-mecánicas

Descripción: Cualidades físico-mecánicas presentes en un material que depende de factores externos e interno

Nivel:

- ✓ Fluidez (%)
- ✓ Absorción (%)
- ✓ Adherencia (kg/cm2)
- ✓ Resistencia a la Compresión (kg/cm2)

Indicadores:

- ✓ Diámetro inicial y promedio (cm)
- ✓ Peso sumergido (kg)
- ✓ Peso seco (kg)
- ✓ Fuerza de Adherencia aplicada (kg)
- ✓ Área de adherencia (cm2)
- ✓ Fuerza de resistencia aplicada (kg)
- ✓ Área resistente (cm2)

Variable dependiente (Y2): Propiedades fotocatalíticas

Descripción: Cualidades brindadas a un material debido a la actividad fotocatalítica, causada por la presencia de compuestos que brindan esta característica.

Nivel:

- ✓ Autolimpieza
- ✓ Degradación de dióxido de nitrógeno NO2

Indicadores:

✓ Color

2.4.3 Cuadro de operacionalización de variables

Tabla 14. Cuadro de operacionalización de variables

		CUADRO DE	OPERACIONALIZAC	ION DE VARIABLE	.s				
TÍTULO: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% RESPECTO DEL MORTERO PATRÓN DE CEMENTO – CUSCO 2020									
TIPO DE VARIABLE	DENOMINACION DE LA VARIABLE	DESCRIPCION DE LA VARIABLE	DIMENSION O NIVEL	INDICADORES	UNIDAD DE MEDIDA	INSTRUMENTO			
Dependiente (Y1)	Propiedades físico- mecánicas	Cualidades fisicomecánicas presentes en un material que depende de factores externos e internos	Fluidez	Diámetro inicial Diámetro promedio	Longitud (cm)	NTP 334.057			
			Absorción	Peso sumergido Peso seco	Peso (kg) Peso (kg)	NTP 399.631			
			Adherencia	Fuerza de Adherencia aplicada	Fuerza (kg)	Nch 167			
				Àrea de adherencia	Área (cm2)				
			Resistencia a la Compresión	Fuerza de resistencia aplicada	Fuerza (kg)	NTP 334.051			
				Área resistente	Área (cm2)				
Dependiente (Y2)	Propiedades fotocatalíticas	Cualidades brindadas a un material debido a la actividad fotocatalítica,	Auto limpieza	Color	Cambio de color	Instrumento de recolección de datos			
		causada por la presencia de compuestos que brindan esta característica	Degradación de NO2	Color	Cambio de color	Instrumento de recolección de datos			
Independiente (X1)	Mortero adicionado con dióxido de titanio (TIO2)	Conglomerado de materiales pétreos: arena, cemento y agua adicionado con dióxido de titanio (TIO2)	Características físicas y mecánicas de los agregados	Módulo de fineza Granulometría Peso especifico Cantidad de cemento Relación con agregado	Kg/m3 y %	Instrumento de recolección de datos			

Fuente: Propia

Capitulo III: Metodología

3.1 Metodología de la investigación

3.1.1 Tipo de Investigación

✓ Tipo cuantitativo

Según Fernández (2002) La investigación cuantitativa es aquella en la que se recogen y analizan datos cuantitativos sobre variables. Trata de determinar la fuerza de asociación o correlación entre variables, la generalización y objetivación de los resultados a través de una muestra para hacer inferencia a una población de la cual toda muestra procede. Tras el estudio de la asociación o correlación pretende, a su vez, hacer inferencia causal que explique por qué las cosas suceden o no de una forma determinada. Los fundamentos de la metodología cuantitativa podemos encontrarlos en el positivismo que surge en el primer tercio del siglo XIX como una reacción ante el empirismo que se dedicaba a recoger datos sin introducir los conocimientos más allá del campo de la observación.

Según la definición podemos determinar que nuestra investigación es de tipo cuantitativa, ya que realizamos recolección de datos de muestras, a partir de las mediciones realizadas, el cual será analizado y se obtendrán resultados objetivos.

En cuanto a su finalidad

✓ Aplicada

El aporte de la investigación es dirigido a la mejora de las propiedades físicomecánicas y fotocataliticas, mediante el uso de mortero adicionado con dióxido de titanio (TiO2) en porcentajes de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C= 0.85.

3.1.2 Nivel de la investigación

Nivel descriptivo con implicancias del nivel correlacional:

Según Hernández (2010, pág. 92), este tipo de estudios buscan especificar las propiedades importantes de personas, grupos, comunidades o cualquier otro fenómeno que se sometido a análisis. En un estudio descriptivo se selecciona una serie de cuestiones y se mide cada una de ellas independientemente, de forma tal de describir los que se investiga. Este tipo de estudio puede ofrecer la posibilidad de llevar a cabo algún nivel de predicción (aunque sea elemental). Como aproximación a un aspecto de la realidad social, tenemos en primer lugar (en el sentido de más elemental) las investigaciones de tipo descriptivo. Buena parte de lo que se escribe y estudia sobre lo social no va mucho más allá de este nivel. Consiste fundamentalmente en caracterizar un fenómeno o situación concreta indicando sus rasgos más peculiares o diferenciadores.

Este tipo de estudios correlacional se utilizan para determinar en qué medida dos o más variables están relacionadas entre sí. Se trata de averiguar de qué manera los cambios de una variable influyen en los valores de otra variable. Agrupar una determinada clase de hechos o fenómenos y conocer su distribución es una forma de facilitarla manipulación de los mismos, pero no es explicarlos. Este tipo de investigación tiene un valor explicativo, aunque parcial. (Hernández, 2010, pág. 93).

La investigación tiene una implicancia de nivel correlacionar ya que evalúa el grado de asociación de las variables, mortero adicionado con dióxido de titanio (TiO2) en porcentajes de 3% 5% y 7% respecto a las propiedades físico-mecánicas y fotocatalíticas.

3.1.3 Método de la investigación:

Hipotético – deductivo:

El método hipotético-deductivo lo empleamos corrientemente tanto en la vida ordinaria como en la investigación científica. Es el camino lógico para buscar la solución a los problemas que nos planteamos. Consiste en emitir hipótesis acerca de las posibles soluciones al problema planteado y en comprobar con los datos disponibles si estos están acuerdos con ellas. Cuando

el problema está próximo al nivel observacional, el caso más simple, las hipótesis podemos clasificarlas como empíricas, mientras en los casos más complejos, sistemas teóricos, las hipótesis son de tipo abstracto. (Cegarra, 2012)

El desarrollo de nuestra investigación usa la metodología hipotético-deductivo ya que se planteó una hipótesis general e hipótesis especificas acerca de las soluciones de las propiedades físico-mecánicas, auto limpieza y la degradación de agentes contaminantes presentes en mortero.

3.2. Diseño de investigación:

3.2.1 Diseño metodológico

Experimental-cuasi experimental

✓ Experimental

Cuando a través de un experimento se pretende llegar a la causa de un fenómeno. Su esencia es la de someter el objeto de estudio a la influencia de ciertas variables en condiciones controladas y conocidas por el investigador. (Tamayo, 2004)

✓ Cuasi experimental

Cuando estudia las relaciones causa-efecto, pero no en condiciones de control riguroso de las variables que maneja el investigador en una situación experimental. (Tamayo, 2004)

Dentro de esta categoría y la siguiente se han incluido todos aquellos estudios que, aun teniendo el objetivo de contrastar una hipótesis de relación causal, tienen limitaciones más o menos serias para conseguirlo con éxito. Dentro de este primer grupo se incluyen los diseños con intervención en los que se hacen aplicaciones en situaciones naturales en las cuáles es imposible asignar al azar a los participantes o controlar el orden de aplicación de los niveles de la variable independiente. (Montero León, 2002)

Según estas definiciones, nuestra investigación es experimental de categoría cuasi experimental, ya que la variable "mortero" se adiciona con dióxido de titanio

intencionalmente, para luego determinar las propiedades físico – mecánicas y fotocatalíticas como auto limpieza y degradación de agente contaminante del mortero al inducirlo a radiación de tipo ultra violeta.

3.2.2 Diseño de Ingeniería

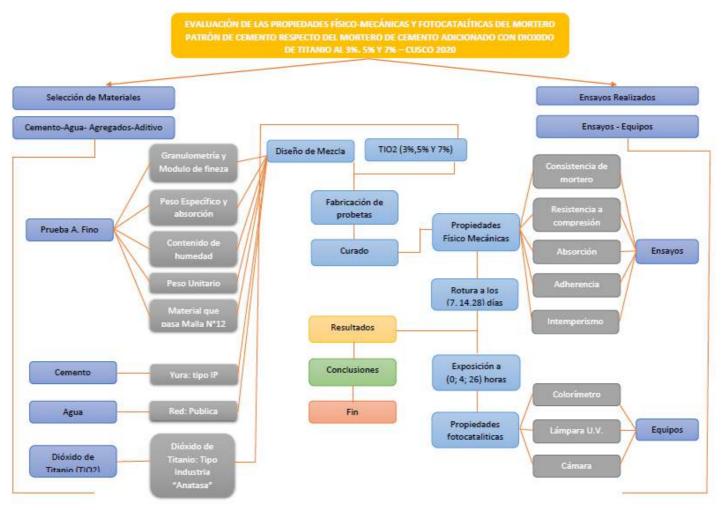


Figura 5: Organigrama de diseño de ingeniería

3.3 Población y muestra

3.3.1 Población

3.3.1.1 Descripción de la población

Para el estudio poblacional de esta investigación se consideró 2 poblaciones:

Población 1: esta población está conformada por las probetas de mortero con relación a/c de 0.85 realizadas con cemento Yura tipo I, agregado fino de Cunyacc, agua potable de la red pública, adicionado con dióxido de titanio (TiO2) al 3%, 5% y 7% respecto a un mortero patrón, curados durante 7,14 y 28 días. El cual los testigos serán de forma cubica de lado de 50 mm x 50 mm. Elaborado según norma NTP 334.051

Población 2: Esta población está conformada por mezclas de mortero con las mismas características de la población 1, adicionado con dióxido de titanio al 3%, 5% y 7%.

3.3.1.2 Cuantificación de la población

Población 1: esta población tiene una cantidad de 96 probetas de mortero que se dividen en 4 grupos: 36 probetas para resistencia a compresión, 20 probetas para absorción, 20 probetas de auto limpieza y 20 probetas de degradación de dióxido de nitrógeno.

Población 2: esta población tiene como 60 secciones de mezcla de mortero distribuidos en 2 grupos: 48 secciones de mortero para adherencia y 12 secciones para consistencia de mortero.

3.3.2 Muestra

3.3.2.1 Descripción de la muestra

Para esta investigación de considero dos muestras:

Muestra 1: Teniendo las mismas características que la población 1.

Muestra 2: teniendo las mismas características que la población 2.

3.3.2.2 Cuantificación de la muestra

Muestra 1: la muestra tiene una cantidad de 96 probetas de mortero que se dividen en 4 grupos: 36 probetas para resistencia a compresión, 20 probetas para absorción, 20 probetas para auto limpieza y 20 probetas para degradación de dióxido de nitrógeno posterior mente ser ensayadas.

Muestra 2: esta muestra tiene 60 secciones de mezcla de mortero distribuidos en 2 grupos: 48 secciones de mortero para adherencia, 12 secciones para consistencia de mortero y posteriormente ser ensayadas.

3.3.2.3. Método de muestreo

El método de muestreo de la presente investigación fue por conveniencia, envista que los elementos de evaluación de las muestras no se realizan mediante criterios estadísticos ni probabilísticos.

3.3.2.4 Criterios de evaluación de muestra

Las muestras son consideradas según ensayos a realizar y cantidad de pruebas necesarias según normas respectivamente.

Muestra N°1: Distribuida según tabla N°15

Tabla 15. Distribución de la muestra N°1

		D	ISTR	IBUC	ION	DE L	MU	IETR	A 1					
									Prob	etas	de N	/lorte	ero	
	Relacion		Porcentaje de Dioxido de Titanio (TIO2)											
ENSAYO			0% 3%			5%			7%		' %			
ENSATO	Agua	Tiempo de Curado (dias)								sub total				
	Cemento		dias			dias			dias			d	ias	
		7	14	28	7	14	28	7	14	28	7	14	28	
Resistencia a compresión	0.85	3	3	3	3	3	3	3	3	3	3	3	3	36
Absorción	0.85		5			5			5				5	20
									Prob	etas	de N	/lorte	ero	
	Relacion		Porcentaje de Dioxido de Titanio (TIO2)											
ENSAYO	Agua		0%			3%			5%			7	' %	sub total
	Cemento		Tie	mpo	de E	xpos	icion	ray	os ult	travi	oleta	(hor	ras)	Sub total
		0	6	26	0	6	26	0	6	26	0	6	26	
Propiedad de autolimpieza	0.85		5			5			5				5	20
Propiedad de degradacion de NO2	0.85		5 5 5 5					20						
TOTAL										96				

Fuente: Propia

Muestra N°2: Distribuida según tabla N°16

Tabla 16. Distribución de la muestra N°2

	DISTRIBUCION DE LA MUETRA 2											
	Relacion											
ENSAYO	Agua	Por	centaje de Dic	sub total								
	Cemento	0%	3%	5%	7%	Sub total						
Consistencia de mortero	0.85	3	3	3	3	12						
			Probetas de Mortero									
	Relacion	Por	centaje de Dic									
ENSAYO	Agua	0%	3%	5%	7%	sub total						
	Cemento		Tiempo d	e Curado (dias	5)	Sub total						
		7	7	7	7							
Adherencia	0.85	12	12	12	12	48						
	60											

Fuente: Propia

3.3.3 Criterios de inclusión

Muestra $N^{\circ}1$: Deberán tener las siguientes condiciones:

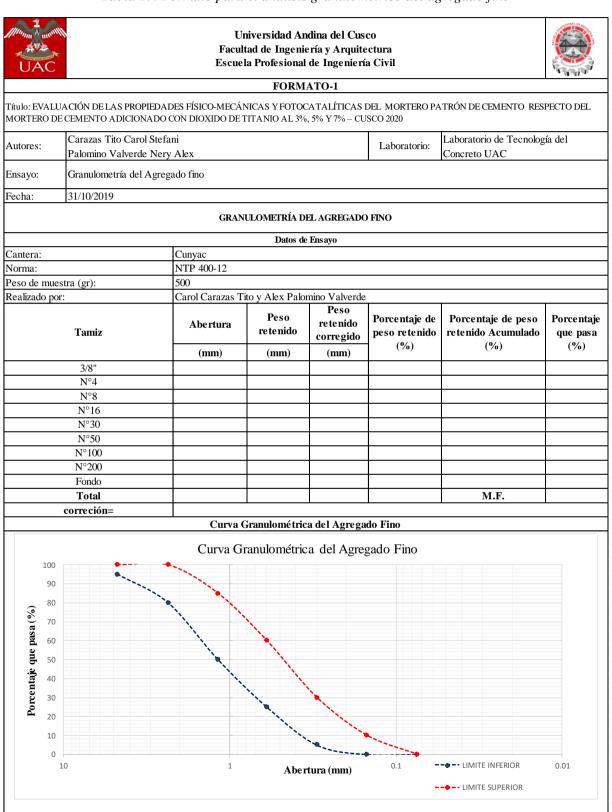
- ✓ Probetas de mortero con relación agua cemento (a/c) 0.85
- ✓ Probetas de mortero curados durante 7; 14 y 28 días.

- ✓ Probetas de mortero con tiempo de exposición de rayos ultravioleta a (t=4) y (t=26) horas.
- ✓ Todas las probetas tendrán las dimensiones cubicas de 50mm x 50mm x 50mm

Muestra N°2: Deberán tener las siguientes condiciones:

- ✓ Mezcla de mortero con relación de agua cemento (a/c) 0.85
- ✓ Secciones de mezcla de mortero en forma de capa vertida sobre la cara del ladrillo 18 huecos King Kong.
- ✓ Secciones de mezcla de mortero curado durante 7 días.

3.4 Instrumentos


3.4.1 Instrumentos de recolección de datos

Para esta investigación los instrumentos de recolección de datos se realizaron mediante fichas, los cuales se presentan a continuación según ensayo:

3.4.1.1 Granulometría de agregado fino

Tabla 17. Formato para el análisis granulométrico del agregado fino

3.4.1.2 Material que pasa por el tamiz $N^{\circ}200$

Tabla 18. Formato para el material que pasa por el tamiz N°200

			Universidad Andina Facultad de Ingeniería y Escuela Profesional de In	Arquitectura						
			FORMATO	-2	•					
				OTOCATALÍTICAS DEL MORTI						
CEMENTO	RESPECTO DEL	MORTERO DE	E CEMENTO ADICIONADO CO	ON DIOXIDO DE TITANIO AL 39	%, 5% Y 7% – CUSCO 2020					
Autores:	Carazas Tito	Carol Stefan	i	Laboratorio: Laboratorio de	e Tecnología del Concreto					
Autores.	Palomino Va	lverde Nery A	Alex	UAC UAC						
Ensayo:	Material que	pasa la malla	N°200 del agregado fino							
Fecha:	05/11/2019									
	MATERIAL QUE PASA EL TAMIZ N°200									
			Datos de Ensay							
Cantera:		Cunyac								
Norma:		NTP 400.01	3							
Peso de mi	ıestra (gr):	500								
Realizado p	or:	Carol Caraza	as Tito y Alex Palomino Val-	verde						
MUESTRA N	°1									
DESCRIP	CIÓN		SÍMBOLO	CANTIDAD	UNIDAD					
Peso de la	muestra		P1		g					
Peso de la	muestra lavada	y secada	P2		g					
Material qu	ie pasa la malla	N°200	(P1-P2)		g					
% que pasa	a la malla N°20	0	A		%					
MUESTRA N	°2									
DESCRIP	CIÓN		SÍMBOLO	CANTIDAD	UNIDAD					
Peso de la	muestra		P1		g					
Peso de la	muestra lavada	y secada	P2		g					
	ie pasa la malla		(P1-P2)		g					
	a la malla N°20	0	A		%					
MUESTRA N	°3									
DESCRIP	CIÓN		SÍMBOLO	CANTIDAD	UNIDAD					
Peso de la	muestra		P1		g					
Peso de la	muestra lavada	y secada	P2		g					
	ie pasa la malla		(P1-P2)		g					
% que pasa	a la malla N°20	0	A		%					
PORCEN	TAJE QUE P.	ASA LA			%					

3.4.1.3 Peso unitario suelto y compactado

Tabla 19. Formato para el peso unitario suelto y compactado del agregado fino

UAC			Facultad de	idad Andina do Ingeniería y A fesional de Ing	rquite ctura	ı							
				FORMATO-3			3.0						
						AS DEL MORTERO PATRÓI TITANIO AL 3%, 5% Y 7% –							
Autores:		Carol Stefani lverde Nery A			Laboratorio:	Laboratorio de Tecnología UAC	del Concreto						
Ensayo:	Peso unitario	tario suelto y compactado											
Fecha:	31/10/2019												
				Datos de Ensayo									
Cantera:		Cunyac											
Norma:		NTP 400.017	7										
Peso de mue	estra (gr):	500											
Realizado po	or:												
			Pes	so Unitario Sue	elto								
Dogg	Cantidad												
Desc	ripcion	Símbolo	P1	P2	P3	reso Promedio	Unidad						
Peso del agu	ıa + recipiente	War					gr						
Peso del	recipiente	Wr					gr						
Peso	lel agua	Wa					gr						
Densida	d del agua	Da					gr/cm3						
	lel recipiente	Vr					cm3						
	stra suelta + piente	G					gr						
	nuestra suelta	Ws					gr						
Peso unit	tario suelto	PUS					gr/cm3						
		I	Peso	<mark>Unitario Comp</mark> a	actado	1							
Desc	ripción	Símbolo		Cantidad		Peso Promedio	Unidad						
	-		P1	P2	P3		1						
	ıa + recipiente	War					gr						
	recipiente	Wr					gr						
	lel agua	Wa					gr						
	d del agua	Da					gr/cm3						
	lel recipiente	Vr					cm3						
	a compactada	G					or						
	ipiente	J					gr						
	la muestra	Wc					gr						
	pactada						_						
Peso unitari	io compactado	PUC					gr/cm3						

3.4.1.4 Peso específico y absorción

Tabla 20. Formato para el peso específico y absorción del agregado fino

		Universidad Andina Facultad de Ingeniería ; Escuela Profesional de I	y Arquitectura		
		FORMATO)-3		•
		AS PROPIEDA DES FÍSICO-MECÁNICAS Y F L MORTERO DE CEMENTO ADICIONADO C			
Autores:		o Carol Stefani alverde Nery Alex	Laboratorio:	Laboratorio de Tecnologi UAC	ía del Concreto
Ensayo:	Peso Espec	eifico y Absorción de Agregado Fino			
Fecha:	05/11/2019				
	•	Datos de Ensa	ayo		
Cantera:		Cunyac			
Norma:		NTP 400-22			
Peso de m	uestra (gr):	500			
Realizado j	oor:	Carol Carazas Tito y Alex Palomino Va	lverde		
N° muestra	ı:				
		Peso Específico y Absorción	n del agregado	fino	
		Descripción	Símbolo	Cantidad	Unidad
Volumen d	e la Fiola		V		ml
Peso De L	a Arena Super	rficialmente Seca + Peso De La Fiola	Wfs		gr
Peso De L Peso Del A	_	rficialmente Seca + Peso De La Fiola +	Wfsa		gr
Peso de la	Arena Seca		A		gr
Peso de A	gua Añadida		W		gr
Peso Espe	ecífico de Ma	nsa	Pem		g/cm3
Peso Espe	ecífico de Ma	sa Saturada con Superficie seca	PeSSS		g/cm3
Peso Espe	cífico Apare	nte	Pea		g/cm3
Absorción			Ab		%

3.4.1.5 Contenido de humedad

Tabla 21. Formato para el contenido de humedad del agregado fino

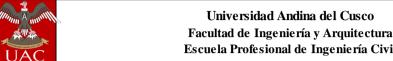
	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil										
			FORMATO)-5							
		AS PROPIEDADES FÍSICO-ME L MORTERO DE CEMENTO AI									
Autores:		o Carol Stefani alverde Nery Alex	Laboratorio:	Laboratorio (UAC	de Tecnología	del Concreto					
Ensayo:	Contenido d	le humedad del agregado fino)								
Fecha:	05/11/2019										
			Datos de Ens	ayo							
Cantera:		Cunyac									
Norma:		NTP 339.185									
Peso de m	ıestra (gr):	500									
Realizado p	or:	Carol Carazas Tito y Alex	Palomino Va	llverde							
		Con	tenido de h	ume dad							
	D			Canti	dad		Unidad				
	Desc	eripción	P1	P2	P3	Prom.	Unidad				
Peso del re	cipiente						gr				
Peso de la	muestra seca	+ recipiente					gr				
Peso de la	muestra hume	da + recipiente					gr				
Peso de la	muestra Seca				_		gr				
Peso de la	muestra Húme	eda					gr				
Contenido de humedad											

3.4.1.6 Diseño de mezcla

Tabla 22. Formato para el diseño de mezcla del mortero de cemento

UAC			Facultad Escuela P	ersidad Andina de Ingeniería y rofesional de In FORMATO-6	Arquitectura			
Título: EVALUACIO RESPECTO DEL M								MENTO
Autores:	Carazas Tito	Carol Stefan	i		Laboratorio:	Laboratori	o de Tecnolog	ía del Concreto
	Palomino Va	lverde Nery	Alex		<u>Lucorutorio</u> .	UAC		
Diseño:	Diseño de m	ezcla del mor	tero de cemei	nto				
		1		Datos de Ensayo				
Cantera de agre	gado fino.	Cunyac						
Proporción:	gado inio.	1	:	4	a/c:		0.85	
Realizado por:		Carol Caraz	as Tito y Alex	Palomino Valve	rde			
Peso específico d	e masa seca:		-	kg/m3	Peso específico	dióxido de		1
Peso específico d	e masa sss:			kg/m3	titanio:			kg/m3
Peso especifico a	•			kg/m3	Absorción:			%
Peso unitario suel				kg/m3	Módulo de finur			
Peso unitario com	-			kg/m3	Partículas <tam< td=""><td></td><td></td><td>%</td></tam<>			%
Peso específico d	el cemento:		. ~ .	kg/m3	Humedad natura	al:		%
		D	iseño de me	zcla del morter	o de cemento			
1° PASO					2° PASO			
Cemento		pie3=		kg	Cemento=		m3	
Arena		pie3=		kg	Arena fina=		m3	
Agua		litros			Agua=		m3	
Aire atrapado		%			Aire atrapado=		m3	
				T	Total(Rendimier	nto)=	m3	
3° PASO				4° PASO				
				Arena fina				
Cemento=		bolsas		húmeda=		kg		
Cemento=		ooisas		Agua				
		kg		efectiva=		litros		
Arena =		kg						
Agua=		litros		MATERIAL	VOLUMEN		PESO	
Aire atrapado=		%		Cemento		m3		kg
				Arena fina		m3		kg
				Agua efectiva		lt/bls		lt/kg
5° PASO: COR	RECCION P	OR FLUID	EZ					
5.1 Diseño patro	ón:			5.2 Agua adici	ional por fluide	z	lt	
cemento=				W%=		%		
arena fina=				W % = AB%=		%		
agua efectiva=				115,0		, 0		
Ü				A/C=				
5.3 Nueva relac	ión:			C=				
cemento=								
arena fina=		_ /						
agua efectiva=	do male -44-	a/c:	:					
5.4 Conversión	ue relación o	orregida:						
cemento=		kg						
arena fina=		kg						
agua=		kg						
usua-		18						

3.4.1.7 Ensayo de fluidez


Tabla 23. Formato para el ensayo de fluidez del mortero

UAC	g.	Universidad Andina del Cusco Facultad de Ingenieria y Arquitectura Escuela Profesional de Ingenieria Civil											
				FORM	IATO-7								
					OTOCATALÍTICA OO DE TITANIO A		ERO PATRÓN DE C - CUSCO 2020	EMENTO					
Autores:		arazas Tito Carol Stefani Laboratorio: Laboratorio de Tecnología del alomino Valverde Nery Alex											
Ensayo:	Fluidez del n	dez del mortero											
Fecha:	12/12/2019	9											
	10	15		Datos d	e Ensayo								
Cantera:		Cunyac											
Norma:		NTP 334.057											
Realizado por	г.	Carol Carazas	Tito y Alex Pa										
	nicial en cm	9		-0.000000000000000000000000000000000000	0000143								
		N		Fluidez d	el mortero	46	No. 40						
Deser	ripción		(cm)	1100000	DP	FLUIDEZ	Promedio					
Desci	12	D1	D2	D3	D4		LICHNIA	Troniculo					
	MS-1												
Sin TiO2	MS-2												
	MS-3												
	M3-1												
3% de TiO2	M3-2												
and the second second	M3-3												
	M5-1	1	3			Ĭ.							
5% de TiO2	M5-2												
	M5-3					1							
SHOWNING SERVICE	M7-1												
7% de TiO2	M7-2					1							
	M7-3						1						

3.4.1.8 Ensayo de resistencia a la compresión

Tabla 24. Formato para el ensayo de resistencia a la compresión del mortero

			Facultad de I Escuela Profe										
UAC				ORMATO									
Título: EVAL	UACIÓN DE L	AS PROPIEDAI				ICAS DEL MOI	RTERO PATRÓN DE						
CEMENTO R 2020	RESPECTO DEI	L MORTERO DE	E CEMENTO AD	ICIONADO (CON DIOXIDO I	DE TITANIO AI	23%, 5% Y 7% – CUSCO						
Autores:		o Carol Stefan alverde Nery A			Laboratorio:		e suelos, concreto y MAX SOLUTIONS S S.R.L.						
Ensayo:	Resistencia	esistencia a la compresión del mortero de cemento de a/c=0.85 a los n días de curado											
Fecha:	30/01/2020												
RI	_	LA COMPRE	SIÓN DEL MOR	TERO DE C	EMENTO A/C=0	0.85 A LOS n D	IAS DE CURADO						
			D	atos de Ensa	yo								
a/c:		0.85											
Tiempo de C	Curado:	n días											
Norma:		NTP 334.05	1										
Realizado po	or:	Carol Caraza	as Tito y Alex I	Palomino Va	alverde								
_	nenes de ero de	Dimension es	Área (cm2)	G(kg)	fc(kg/cm2)	f'c Promedio	s						
	to(cubos)	L (cm)	Area (cm2)	G(Kg)	T C(Kg/CIII2)	(kg/cm2)	5						
	M-1												
Sin TiO2	M-2												
	M-3												
	M3-1					_							
3% TiO2	M3-2					-							
	M3-3												
5% TiO2	M5-1 M5-2					-							
5/0 1102	M5-2 M5-3					1							
	M7-1												
7% TiO2	M7-2					1							
	M7-3]							
Sin TiO2			Se obtie	ne un prome	dio f'c= f'c prom	edio ± s							
3% TiO2			Se obtie	ne un prome	dio f'c= f'c prom	edio ± s							
5% TiO2			Se obtie	ne un prome	dio f'c= f'c prom	edio ± s							
7% TiO2			Se obtie	ne un prome	dio f'c= f'c prom	edio ± s							

3.4.1.9 Ensayo absorción

Tabla 25. Formato para el ensayo de la tasa de absorción del mortero

Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil

	FORMA	ATO 10	
	ACIÓN DE LAS PROPIEDA DES FÍSICO-MECA CEMENTO RESPECTO DEL MORTERO DE CE - CUSCO 2020		
Autores:	Palomino Valverde Nery Alex Carazas Tito Carol Stefani	Laboratorio:	Laboratorio de Tecnología del Concreto UAC
Ensayo:	Tasa de Absorción de agua de especíme	nes de mortero	
Fecha:	21/02/2020		
	TASA DE ABSORCION DE AGUA I	DE ESPECIMENES DE MO	PRTERO
	Datos de	Ensayo	
,	0.05		

a/c: 0.85 Tiempo de Curado: 28 días Norma: NTP 399.631 Realizado por: Carol Carazas Tito y Alex Palomino Valverde Condición: Condición de TiO2

	Dimen	siones				
Mortero	Pomedio Cara Superior (mm)	Pomedio Cara Inferior (mm)	Peso Inicial (gr)	Peso Final (gr)	Absorción (gr/100cm2	Absorción Promedio (gr/100cm2)
	D1	D2				
M-1						
M-2						
M-3						
M-4						
M-5						
		Se o	obtiene un p	romedio A(t))=	

3.4.1.10 Ensayo de adherencia al corte por cizalla

Tabla 26. Formato para el ensayo de adherencia al corte por cizalla del mortero

UAC						Universidad Andin cultad de Ingeniería cuela Profesional de	y Arquitectura Ingeniería Civil								
					E	FORMATO									
Titulo: EVALUACI 7% – CUSCO 2020		PIEDADES FIS	SICO-MECANIC	CAS Y FOTOCA	ATALITICAS DEL MO	RTERO PATRÓN DE C	EMENTO RESPECTO	DEL MORTE	RO DE CEMEN	TO ADICIONA	DO CON DIOX	IDO DE TITA	NIO AL 3%, 5% Y		
Autores:		razas Tito Carol Stefani lomino Valverde Nery Alex Laboratorio: Laboratorio: Laboratorio de Tecnologia del Concreto UAC													
Ensayo:	Adherencia al	rencia al corte por cizalla del mortero													
Fecha:	26/02/2020														
3	33	7				Datos de Ensa	yo								
Cantera:		Cunyac													
Norma:		NCh167													
Realizado por:		Carol Carazas	Tito y Alex Pa	domino Valve	rde										
Condinción:	- 3	Condición de	TiO2												
Relación a/e:		0.85													
***************************************	.00	100000		p1	Adhe	rencia al corte por ciz	alla del mortero	7.	1		(I) (I)				
Descripción	Carga	Dimer	nsiones	Årea (cm²)	Esfuerzo de compresión (σc) en	Esfuerzo de compresión (oc) en	Resistencia Unitaria de Corte	Resistencia Unitaria de Corte por	Coeficiente de fricción	τ'm (Mpa)	t'm Promedio	τ'm	t'm Promedio		
Description	máxima (kg)	Largo(cm)	Ancho(cm)	Artes (cm2)	kg/cm2	Mpa	por cizalla to (kg/cm2)	cizalla to (Mpa)	(μ)	· m (pm)	(Mpa)	(kg/cm2)	(kg/cm2)		
M-1						5									
M-2).					
M-3				(4				5	i.	10				
M-4								,		e.					
M-5						Y 5									
M-6					ř.						J. J.				

3.4.1.11 Ensayo de rodamina

Tabla 27. Formato para el ensayo de rodamina-factor de fotodegradación R4 y R26 del mortero

	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil								
Título: EVA I I	HACIÓN DE LAS DDO	DIEDA DES EÍSICO M	FORMATO 11 IECÁNICAS Y FOTOCA	TALÍTICAS E	NEL MODTED	Ο ΡΑΤΡΟΝ DE A	TEMENTO		
			O CON DIOXIDO DE TI				LEVIENTO		
Autores:	Palomino Valverde Nery Alex Carazas Tito Carol Stefani Ubicación de ensayo: Jerónimo						San		
Ensayo:	Rodamina-Factor de fotodegradación del mortero								
Fecha:	03/02/2020								
	RODAM	INA-FACTOR DE FO	TODREGADACIÓN DE	ESPECÍMEN	ES DEMORTI	R O			
	T		Datos de Ensayo						
a/c:	0.85								
Norma:	UNI 11259								
Realizado po	Carol Carazas Tito	•	alverde						
Condición:	Condición de TiO2								
Muestra	(03/02/2020)	a*(4h) 8:29 pm (03/02/2020)	a*(26h) 6:29 pm (04/02/2020)	R4%	R4%	R26%	R26%		
	a* (0h)	a* (4h)	a* (26h)						
M-1					_				
M-2									
M-3									
M-4					1				
M-5									

3.4.1.12 Ensayo de degradación del NO2

Tabla 28. Formato para el ensayo de degradación de NO2-factor de fotodegradación R4 y R26 del mortero

UAC	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil								
			FORMATO 12						
	LUACIÓN DE LAS								
PATRÓN D	E CEMENTO RES	SPECTO DEL MOF	RTERO DE CEME	NTO ADICI	ONADO CO	N DIOXIDO	DE		
TITANIO A	L 3%, 5% Y 7% – 0					,			
Autores:	Palomino Valverde	•		Ubicación	de ensayo:	Domicilio en	San		
	Carazas Tito Carol	Stefani				Jerónimo			
Ensayo:	Degradación de NO2-Factor de fotodegradación del mortero								
Fecha:	20/04/2020								
a/c:	ADACIÓN DE NO 0.85	02-FACTOR DE H	OTODREGADA Datos de Ensayo	CIÓN DE E	SPECÍMEN	IES DE MOR	RTERO		
Norma:	UNI 11259								
Realizado po	Carol Carazas Tito	y Alex Palomino Va	alverde						
Condición:	Condición de TiO2				•	,	,		
Muestra	b*(0h) 4:20 pm (17/07/2020) b* (0h)	b*(4h) 8:20 pm (17/074/2020) b* (4h)	b*(26h) 6:20 pm (18/07/2020) b* (26h)	R4%	R4%	R26%	R26%		
M-1	, ,	` /	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
M-2					1				
M-3					1				
M-4					1				
M-5									

Fuente: Propia

3.4.2 Instrumentos de ingeniería

3.4.2.1 Granulometría de agregado

Agregado fino:

- ✓ Balanza
- ✓ Máquina de tamizar
- ✓ Bandejas
- ✓ Juego de tamices: 3/8", N°4, N°8, N°16, N°30, N°50, N°100, N°200

3.4.2.2 Material que pasa tamiz $N^{\circ}200$

- ✓ Tamiz N°200
- ✓ Fondo
- ✓ Brocha
- ✓ Bandeja

3.4.2.3 Peso unitario suelto y compactado

- ✓ Recipiente cilíndrico
- ✓ Varilla de 5/8"
- ✓ Balanza

3.4.2.4 peso específico y absorción

- ✓ Picnómetro de 500 ml
- ✓ Bomba de vacíos
- ✓ Balanza
- ✓ Horno
- ✓ Cono de absorción
- ✓ Apisonador
- ✓ Horno

3.4.2.5 Contenido de humedad

- ✓ Balanza
- ✓ Horno

3.4.2.6 Ensayos de consistencia

- ✓ Balanza
- ✓ Mesa de fluidez mecánica
- ✓ Regla
- ✓ Anillo cónico
- ✓ Apisonador
- ✓ Cronómetro

3.4.2.6 Ensayo de resistencia a la compresión

- ✓ Máquina de compresión
- ✓ Regla o wincha

3.4.2.7 Ensayo de absorción

- ✓ Contenedor
- ✓ Horno
- ✓ Balanza
- ✓ Vernier

3.4.2.8 Ensayo de adherencia por cizalle

- ✓ Máquina de compresión
- ✓ Regla o wincha

3.4.2.9 Ensayo de rodamina

- ✓ Colorímetro
- ✓ Rodamina
- ✓ Lámparas de rayos ultravioleta

3.4.2.9 Degradación de dióxido de nitrógeno (NO2)

- ✓ Colorímetro
- ✓ Cobre (Cu)
- ✓ Ácido nítrico (HNO3)
- ✓ Lámparas de rayos U.V

3.5 Procedimiento de recolección de datos

3.5.1 Granulometría del agregado fino

Para la elaboración de probetas de mortero de cemento y arena de la presente investigación se utilizó agregado de la cantera Cunyac.

Figura 6: Compra de agregado de la cantera Cunyac

Fuente: Propia

3.5.1.1 Procedimiento

- a) Se realizó el muestreo correspondiente mediante cuarteo el cual consiste en dividir el agregado diametralmente en cuatro partes iguales, para la determinación de las partes no homogéneas o que contengan algun material orgánico, Se toma como muestra representativa dos partes opuestas que tengan características aproximadamente semejantes.
- b) Posteriormente se procede con el secado del agregado fino en horno a 110 $C^{\circ} \pm 5$ C° durante 24 horas.

Figura 7: Introducción de agregado fino al horno

c) Se procede a pesar una muestra de 0.5 kg, para ser colocada en el juego de tamices: 3/8", #4, #8, #16, #30, #50, #100, #200 y fondo, para proceder con el tamizado mecánico.

Figura 8: Tamizado mecánico del agregado fino

- d) Se prosiguió con los cálculos de porcentaje retenidos, porcentaje que pasa por el juego de tamices. Para la verificación de la curva granulométrica.
- e) Se realizó tres veces este procedimiento de tamizado, en las mismas condiciones y/o características del agregado.

3.5.1.2 Toma de datos

Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil

FORMATO-1

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020

Autores:	Carazas Tito Carol Stefani	Laboratorio:	Laboratorio de Tecnología del Concreto		
	Palomino Valverde Nery Alex	Edooratorio.	UAC		
Ensayo:	Granulometría del Agregado fino				
Fecha:	31/10/2019				

GRANULOMETRÍA DEL AGREGADO FINO

Datos de Ensayo									
Cantera:	Cunyac								
Norma:	NTP 400-12								
Peso de muestra (gr):	500	500							
Realizado por:	Carol Caraza	Carol Carazas Tito y Alex Palomino Valverde							
Tamiz	Abertura	Peso retenido	Peso retenido corregido	Porcentaje de peso retenido	Porcentaje de peso retenido Acumulado	Porcentaje que pasa			
	(mm)	(mm)	(mm)	(%)	(%)	(%)			
3/8"	9.5	0.00							
						1			

Tamiz	Abertura	retenido	corregido	retenido	retenido Acumulado	que pasa
	(mm)	(mm)	(mm)	(%)	(%)	(%)
3/8"	9.5	0.00				
N°4	4.750	0				
N°8	2.360	1.9				
N°16	1.180	86				
N°30	0.600	130				
N°50	0.300	210				
N°100	0.150	40				
N°200	0.075	30				
Fondo		0.4				
Total					M.F.	
correción=						

3.5.2 Material que pasa el tamiz $N^{\circ}200$ del agregado fino

Según la NTP 400.018 este ensayo es para la determinación de materiales finos que pasan por el tamiz normalizado 75 μ m (N°200) mediante el lavado.

3.5.2.1 Procedimiento

- a) Se realizó el muestreo correspondiente del material a ensayar, se prosiguió con el secado al horno del material a 110 $^{\circ}$ ± 5 $^{\circ}$ durante 24 horas.
- b) Posteriormente se realizó el pesado de la muestra seca.

Figura 9: Pesado del agregado fino

Fuente: Propia

c) Se realizó el lavado del material fino mediante el tamiz N°200, para la separación de partículas como arcillas y limos, mediante el lavado.

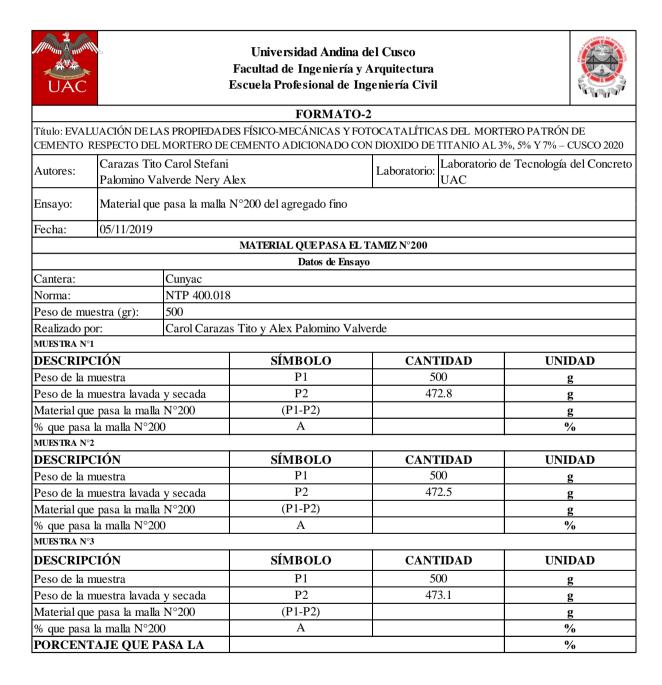


Figura 10: Lavado de arena fina mediante el tamiz N° 200

- d) Posteriormente se realizó el secado de la muestra lavada a temperatura de 110 °C \pm 5 °C durante 24 horas.
- e) Finalmente se realizó el pesado de la muestra seca al horno durante 24 horas, para la determinación de porcentaje de material fino que pasa mediante el tamiz N°200.

3.5.2.2 Toma de datos

3.5.3 Peso unitario suelto y compactado del agregado fino

Según la NTP 400.017 este método de ensayo cubre la determinación del peso unitario suelto o compactado y el cálculo de vacíos en el agregado fino, grueso o en una mezcla de ambos, basados en la misma determinación. Este método se aplica a agregados de tamaño máximo nominal de 150 mm

3.5.3.1 Procedimiento

A: Peso unitario suelto

a) Para realizar el ensayo se hizo el secado de la muestra al horno a 110 °C ± 5 °C Durante 24 horas. Obteniendo como dato necesario determinar el peso del molde y posteriormente el cálculo de su volumen.

Figura 11: Instrumentos y materiales de ensayo

- b) Posteriormente se realizó el llenado del molde, teniendo cuidado que la altura de caída sea 5 cm.
- c) Con la ayuda de la varilla se prosiguió a enrazar el material a nivel de borde del molde.

d) Se realizó el pesado correspondiente del molde incluido lleno y enrasado.

Figura 12: Pesado de molde con el agregado fino

Fuente: Propia

B: Peso unitario compactado

a) Se comenzó a llenar de material mediante el cucharón hasta la tercera parte del molde, posteriormente se apisonó con la varilla de 5/8" proporcionándole 25 golpes, de la misma manera se realizó con la siguiente capa, el cual fue llenado a dos terceras partes del molde, y finalmente para la capa última se llenó de material al molde, procediendo de la misma manera 03 veces el ensayo. Se debe tener en cuenta que el apisonado de la capa de las dos terceras partes del molde y la última capa de llenado del molde, se realizó sin la afectación de la capa anterior inmediata.

Figura 13: Apisonado del agregado fino con 25 golpes

Fuente: Propia

b) Seguidamente se realizó el enrazado del material con la varilla de apisonado usándola como regla, se realizó el pesado correspondiente del molde incluido el material.

Figura 14: Ensayo de agregado fino

3.5.3.2 Toma de datos

Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil

FORMATO-3

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020

2020	KESPECTO DEL	MOKTEKO DE	CEMENTO AL	DICIONADO C	ON DIOXIDO L	DE III ANIO AL 370, 370 1 /70	- COSCO				
Automon	Carazas Tito	Carol Stefani			T 1	Laboratorio de Tecnología del Concreto					
Autores:	Palomino Va	lverde Nery A	Alex		Laboratorio:	UAC					
Ensayo:	Peso unitario	Peso unitario suelto y compactado									
Fecha:	31/10/2019	31/10/2019									
]	Datos de Ensay	0						
Cantera:		Cunyac									
Norma:		NTP 400.017									
Peso de mu	estra (gr):	500									
Realizado p	or:	Carol Caraza	l Carazas Tito y Alex Palomino Valverde								
			Pes	o Unitario Su	ielto						
Dogg	winaián	Símbolo		Cantidad		Peso Promedio	Unidad				
Desc	cripción	Simbolo	P1	P2	P3	reso Promedio	Umdad				
Peso del ag	ua + recipiente	War	5070	5070	5070		gr				
Pago dal recipiante W. 4155 4155 4155					Orm.						

Dogovinoión	Circalacia				Dogo Duomodio	Haidad	
Descripción	Símbolo	P1	P2	P3	Peso Promedio	Unidad	
Peso del agua + recipiente	War	5070	5070	5070		gr	
Peso del recipiente	Wr	4155	4155	4155		gr	
Peso del agua	Wa					gr	
Densidad del agua	Da					gr/cm3	
Volumen del recipiente	Vr					cm3	
Peso muestra suelta + recipiente	G	5463	5452	5469		gr	
Peso de la muestra suelta	Ws					gr	
Peso unitario suelto	PUS					gr/cm3	

Peso Unitario Compactado								
Descripción	Símbolo	Cantidad			Peso Promedio	Unidad		
Descripcion	Sillibolo	P1	P2	P3	reso Fromedio	Ulluau		
Peso del agua + recipiente	War	5070	5070	5070		gr		
Peso del recipiente	Wr	4155	4155	4155		gr		
Peso del agua	Wa					gr		
Densidad del agua	Da					gr/cm3		
Volumen del recipiente	Vr					cm3		
Peso muestra compactada + recipiente	G	5558	5544	5568		gr		
Peso de la muestra compactada	Wc					gr		
Peso unitario compactado	PUC					gr/cm3		

3.5.4 Peso específico y absorción del agregado fino

Según la NTP 400.022 tiene por objeto establecer un procedimiento para determinar la relación de la densidad (masa en una unidad de volumen) del agregado fino respecto a la densidad (una masa de igual volumen) de agua a una temperatura indicada, así determinando el peso específico de masa seca, peso específico de masa saturada, peso específico de masa saturada superficialmente seca y la absorción del agregado fino como: el aumento de la masa del agregado debido al agua que penetra en los poros de las partículas, durante un periodo de tiempo prescrito.

3.5.4.1 Procedimiento

- a) Se realizó el muestreo del agrado aprox. 1 kg, posteriormente se colocó la muestra al horno a 110 °C \pm 5 °C durante un periodo de 24 horas.
- b) Se prosiguió a saturar el agregado fino, el cual debe estar completamente cubierta por agua.
- c) Se extendió el material sobre una bandeja, para poder llevar el agregado al estado saturado superficialmente, aplicándole calor mediante una cocina a gas.

Figura 15: Secado superficialmente seca de agregado fino

d) Cuando la muestra se aprecia al estado superficialmente seco, se procede a colocar el material a una tercera parte del cono metálico y se comienza a apisonar con 25 golpes, se repite este procedimiento dos veces más hasta que quede lleno el cono, se realiza el retirado del cono pretendiendo que el agregado quede de forma cónica. Se realizará varias veces, esto según la NTP 400.022, este procedimiento hasta que el material quede de forma cónica.

Figura 16: Apisonado de agregado fino superficialmente seco

Fuente: Propia

e) Se prosiguió con el pesado del picnómetro vacío, peso con contenido de agua hasta la marca de 500 ml, peso de la muestra de 500 gr superficialmente seca, posteriormente la muestra se colocó dentro del picnómetro.

Figura 17: Pesado y colocado del agregado al interior del picnómetro

Fuente: Propia

f) Se colocó agua al picnómetro hasta la marca indicada 500 ml, seguidamente se extrajo los vacíos del agregado fino dentro del picnómetro con la máquina de bomba de vacíos. Hasta que ya no haya burbujas en el agregado.

Figura 18: Extracción de vacíos, mediante la bomba

3.5.4.2 Toma de datos

	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil							
		FORMATO	-4					
		AS PROPIEDADES FÍSICO-MECÁNICAS Y F L MORTERO DE CEMENTO ADICIONADO C						
Autores:		o Carol Stefani 'alverde Nery Alex	Laboratorio:	Laboratorio de Tecnología del Concret UAC				
Ensayo:	Peso Espec	Peso Específico y Absorción de Agregado Fino						
Fecha:	05/11/2019							
	•	Datos de Ensay	70					
Cantera:		Cunyac						
Norma:		NTP 400-22						
Peso de mu	ıestra (gr):	500						
Realizado p	or:	Carol Carazas Tito y Alex Palomino Va	lverde					
N° muestra) :	1						
		Peso Específico y Absorción	del agregado	fino				
		Descripción	Símbolo	Cantidad	Unidad			
Volumen d	e la Fiola		V	500.0	ml			
Peso De L	a Arena Super	rficialmente Seca + Peso De La Fiola	Wfs	651.1	gr			
Peso De La Peso Del A	_	rficialmente Seca + Peso De La Fiola +	Wfsa	961.5	gr			
Peso de la	Arena Seca		A		gr			
Peso de Ag	gua Añadida		W		gr			
Peso Específico de Masa			Pem		g/cm3			
Peso Específico de Masa Saturada con Superficie seca			PeSSS		g/cm3			
Peso Espe	cífico Apare	nte	Pea		g/cm3			
Absorción			Ab		%			

3.5.5 Contenido de humedad

Según la NTP 339.185 el contenido de humedad es la cantidad de agua evaporable (humedad superficial y/o contenida en poros) mediante secado, presente en el agregado representado en porcentaje, pero que no considera el agua combinado con minerales presentes en el agregado.

3.5.5.1 Procedimiento

a) Se prosiguió a realizar la toma de muestra agregado a humedad natural, registrando su peso correspondiente en una balanza de precisión de 0.1 gr.

Figura 19: Pesado de agregado fino a humedad natural

Fuente: Propia

b) Se colocó una muestra de agregado fino en una bandeja para poder realizar el secado en horno a temperatura constante $110\,^{\circ}\text{C} \pm 5\,^{\circ}\text{C}$ durante 24 horas. Posteriormente se realizó el pesado del agregado seco.

Figura 20: Pesado de agregado fino después de secado al horno

3.5.5.2 Toma de datos

	·	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil							
			FORMATO:	-5					
		AS PROPIEDA DES FÍSICO-M L MORTERO DE CEMENTO A							
Autores:		o Carol Stefani alverde Nery Alex		Laboratorio:	Laboratorio UAC	de Tecnología	del Concreto		
Ensayo:	Contenido o	ontenido de humedad del agregado fino							
Fecha:	05/11/2019								
			Datos de Ensay	70					
Cantera:		Cunyac							
Norma:		NTP 339.185							
Peso de mi	ıestra (gr):	500							
Realizado p	or:	Carol Carazas Tito y Ale	lex Palomino Valverde						
		Con	tenido de hui	ne dad					
	Dog	nuin ai ć n		Can	tidad		Unidad		
	Desc	cripción	P1	P2	Р3	Prom.	Unidad		
Peso del re	cipiente		113	113	113		gr		
Peso de la muestra seca + recipiente			608	606	610		gr		
Peso de la muestra humeda + recipiente			613	613	613		gr		
Peso de la muestra Seca							gr		
Peso de la	muestra Húm	eda					gr		
Contenido de humedad					%				

3.5.6 Ensayo de fluidez

Según NTP 334.057 la fluidez es el aumento del diámetro promedio de la base del mortero, expresado como un porcentaje del diámetro original. Promedio de cuatro lecturas de el mortero expresado en milímetros (mm), menos el diámetro interior de la base del molde en milímetros (mm), entre diámetro interior de la base del molde en milímetros (mm), multiplicado por cien.

3.5.6.1 Procedimiento

a) Se preparó la mesa de fluidez y el molde "anillo cónico" humedeciendo las superficies que estarán en contacto con el mortero, centrar el anillo cónico sobre la mesa de fluidez.

Figura 21: Limpieza mesa de fluidez

Fuente: Propia

b) Preparamos el mortero, previamente dosificado las cantidades de cemento, arena y agua, según el resultado del diseño de mezcla.

Figura 22: Preparado del mortero para la verificación de fluidez

Fuente: Propia

c) Con la ayuda de un cucharón se prosiguió el colocado del mortero dentro del molde "anillo cónico" sobre la mesa de fluidez, este proceso se llevó acabo en dos capas, siendo la primera capa llenada hasta 2/3 del anillo cónico y posteriormente apisonado con 20 golpes, la segunda capa se realizó con el llenado del anillo cónico apisonado con 20 golpes respectivamente sin afectar a la capa inferior.

Figura 23: Colocado y apisonado del mortero dentro del anillo cónico

Fuente: Propia

- d) Se prosiguió con el enrase del mortero sobre anillo cónico. Después de un minuto se retiró verticalmente el anillo cónico y dejar caer la mesa de fluidez desde una altura de 12.7 mm durante 25 golpes en un periodo de tiempo de 15 segundos.
- e) Posteriormente con la ayuda de una regla se realizó la toma de cuatro mediciones del mortero extendido sobre la mesa de fluidez.

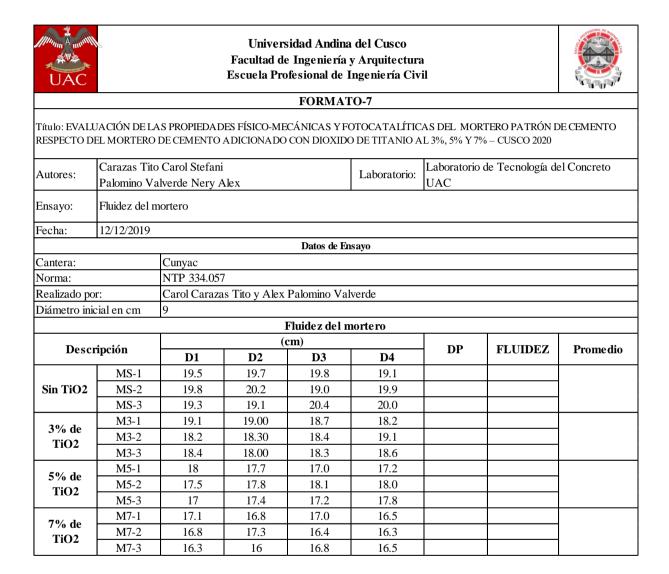


Figura 24: Toma de mediciones del mortero sobre la mesa de fluidez

f) Este proceso se realizó tres veces para cada diseño de mezcla en porcentajes 3%,5% y 7% de dióxido de titanio (TiO2).

3.5.6.2 Toma de datos

3.5.7 Elaboración de probetas de mortero

Se denomina mortero a toda mezcla que contenga aglomerantes como arena y agua pudiendo tener aditivos o no tenerlos, de consistencia plástica, teniendo como principales funciones: estructurales (construcción de muros, paredes, cubiertas) y decorativas (de revestimiento, protección de elementos constructivos).

Según la ley de seguridad y salud en obra (Ley N°29783), para actividades peligrosas como la manipulación del dióxido de titanio (Tio2) susceptibles a originar riesgos graves por inhalación, radiación y otros métodos de contaminación el cual repercutan en la salud de los trabajadores se deben realizar un sistema de gestión de seguridad y salud en el trabajo.

Identificando los peligros posibles, permitiendo valorar los niveles y gravedad del mismo, para tomar decisiones apropiadas sobre la prioridad y tipos de acciones preventivas que se debe adoptar, mediante la utilización de dispositivos, materiales e indumentaria personal (EPP) que se debe proporcionar a cada trabajador para la protección de uno o varios riesgos presentes en el trabajo que amenace la salud, programando actividades de obra a la brevedad posible que produzcan un menor o nulo riesgo en el trabajador.

3.5.7.1 Procedimiento

a) Los materiales como arena, cemento y dióxido de titanio (TiO2) con sus respectivos pesos se colocaron en una bandeja para su mezclado inicial, finalmente se le agrego agua, obteniendo una mezcla homogénea.

Figura 25: Pesado de cemento y dióxido de titanio según diseño de mezcla

b) Se realizó el preparado de la mezcla de mortero de acuerdo al diseño de mezcla, contando con las herramientas y materiales necesarios para la preparación.

Figura 26: Preparación de mezcla de mortero

Fuente: Propia

c) Después de realizar el ensayo de consistencia, se procedió el llenado de las briquetas de mortero, colocándolo en dos capas, la primera capa se realizó con el llenado a 2/3 de la briqueta y posteriormente siendo apisonado con 20 golpes, la segunda capa se realizó con el llenado de la briqueta, con el apisonado de 20 golpes respectivamente y finalmente se realizó el enrase de la briqueta.

Figura 27: Colocado y elaboración de probetas de mortero

d) Este proceso se realizó para cada diseño de mezcla en porcentajes de 3%,5% y 7% de dióxido de titanio (TiO2).

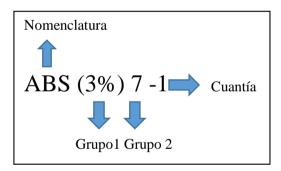


Figura 28: Elaboración de probetas de mortero en porcentajes de 3%,5% y 7%

Fuente: Propia

3.5.7.2 Toma de datos

La toma de datos se realizó con la asignación de un código, designándole letras y números, teniendo las siguientes partes:

Nomenclatura: Indica el ensayo a la que esta designado la probeta de mortero.

Grupo 1: Indica el porcentaje de dióxido de titanio (TiO2) presente en el diseño de mezcla de la probeta de mortero.

Grupo 2: Indica el tiempo de curado de las probetas de mortero.

Cuantía: Indica el número de probeta de mortero, grupo y nomenclatura al cual pertenece.

En la siguiente tabla N°29, se representa las nomenclaturas asignaturas realizadas a todas la probetas de mortero realizado según ensayo a realizar.

Tabla 29. Asignatura de probetas para la investigación

NOMENCLATURA DE PROBETAS DE MORTERO								
RELACION AGUA-CEMENTO (a/c)	RESISTENCIA A COMPRESIÓN	ABSORCIÓN	ADHERENCIA	AUTO LIMPIEZA	DEGRADACION DE DIOXIDO DE NITROGENO (NO2)			
0.84	COM	ABS	ADH	AUT	DGR			

Fuente: Propia

En la tabla N° 30, se puede apreciar los códigos asignados con la nomenclatura COM en tres grupos diferentes, el cual indica el tiempo de curado de las probetas y porcentajes de dióxido de titanio (TiO2).

Tabla 30. Asignatura de probetas para resistencia a la compresión

PROBETAS-RESISTENCIA A LA COMPRESIÓN							
PORCENTAJE DE TIO2	TIEM	TIEMPO DE CURADO EN (DIAS)					
FORCENTAJE DE 1102	7	14	28				
	COM(0%) 7-1	COM(0%) 14-1	COM(0%) 28-1				
SIN TIO2	COM(0%) 7-2	COM(0%) 14-2	COM(0%) 28-2				
	COM(0%) 7-3	COM(0%) 14-3	COM(0%) 28-3				
	COM(3%) 7-1	COM(3%) 14-1	COM(3%) 28-1				
3% DE TIO2	COM(3%) 7-2	COM(3%) 14-2	COM(3%) 28-2				
	COM(3%) 7-3	COM(3%) 14-3	COM(3%) 28-3				
	COM(5%) 7-1	COM(5%) 14-1	COM(5%) 28-1				
5% DE TIO2	COM(5%) 7-2	COM(5%) 14-2	COM(5%) 28-2				
	COM(5%) 7-3	COM(5%) 14-3	COM(5%) 28-3				
	COM(7%) 7-1	COM(7%) 14-1	COM(7%) 28-1				
7% DE TIO2	COM(7%) 7-2	COM(7%) 14-2	COM(7%) 28-2				
	COM(7%) 7-3	COM(7%) 14-3	COM(7%) 28-3				

Fuente: Propia

En la tabla N°31, se muestra los códigos asignados con la nomenclatura ABS y AUT, en dos grupos, el cual indicará el tipo de ensayo y porcentajes de dióxido de titanio (TiO2).

Tabla 31. Asignatura de probetas para absorción y autolimpieza

PROBETAS- ABSORCIÓN -AUTO LIMPIEZA-DEGRADACIÓN DE NO2						
	TIEMPO DE CURADO					
DODGENTA IF DE TIOS		28 (DIAS)				
PORCENTAJE DE TIO2	ABSORCIÓN	AUTO LIMPIEZA	DEGRADACIÓN (NO2)			
	ABS(0%) 28-1	AUT(0%) 28-1	DGR(0%)28-1			
	ABS(0%) 28-2	AUT(0%) 28-2	DGR(0%)28-2			
SIN TIO2	ABS(0%) 28-3	AUT(0%) 28-3	DGR(0%)28-3			
	ABS(0%) 28-4	AUT(0%) 28-4	DGR(0%)28-4			
	ABS(0%) 28-5	AUT(0%) 28-5	DGR(0%)28-5			
	ABS(3%) 28-1	AUT(3%) 28-1	DGR(3%)28-1			
	ABS(3%) 28-2	AUT(3%) 28-2	DGR(3%)28-2			
3% DE TIO2	ABS(3%) 28-3	AUT(3%) 28-3	DGR(3%)28-3			
	ABS(3%) 28-4	AUT(3%) 28-4	DGR(3%)28-4			
	ABS(3%) 28-5	AUT(3%) 28-5	DGR(3%)28-5			
	ABS(5%) 28-1	AUT(5%) 28-1	DGR(5%)28-1			
	ABS(5%) 28-2	AUT(5%) 28-2	DGR(5%)28-2			
5% DE TIO2	ABS(5%) 28-3	AUT(5%) 28-3	DGR(5%)28-3			
	ABS(5%) 28-4	AUT(5%) 28-4	DGR(5%)28-4			
	ABS(5%) 28-5	AUT(5%) 28-3	DGR(5%)28-5			
	ABS(7%) 28-1	AUT(7%) 28-1	DGR(7%)28-1			
	ABS(7%) 28-2	AUT(7%) 28-2	DGR(7%)28-2			
7% DE TIO2	ABS(7%) 28-3	AUT(7%) 28-3	DGR(7%)28-3			
	ABS(7%) 28-4	AUT(7%) 28-4	DGR(7%)28-4			
	ABS(7%) 28-5	AUT(7%) 28-5	DGR(7%)28-5			

En la tabla N°32, se aprecia los códigos asignados con la nomenclatura ADH, indicando el tipo de ensayo y porcentaje de dióxido de titanio (TiO2).

Tabla 32. Asignatura de probetas para adherencia por cizalle

PROBETAS- ADHERENCIA CORTE POR CIZALLE									
TIEMPO DE CURADO	SIN TIO2	3% DE TIO2	5% DE TIO2	7% DE TIO2					
	ADH(0%) 7-1	ADH(3%) 7-1	ADH(5%) 7-1	COM(7%) 28-1					
	ADH(0%) 7-2	ADH(3%) 7-2	ADH(5%) 7-2	COM(7%) 28-2					
7 (DIAS)	ADH(0%) 7-3	ADH(3%) 7-3	ADH(5%) 7-3	COM(7%) 28-3					
7 (DIAS)	ADH(0%) 7-4	ADH(3%) 7-4	ADH(5%) 7-4	COM(7%) 28-4					
	ADH(0%) 7-5	ADH(3%) 7-5	ADH(5%) 7-5	COM(7%) 28-5					
	ADH(0%) 7-6	ADH(3%) 7-6	ADH(5%) 7-6	COM(7%) 28-6					

3.5.8 Ensayo de resistencia a compresión

Resistencia a compresión simple es una de las características mecánicas del concreto, definida como la capacidad de soportar carga por unidad de área, el cual es representado en términos de esfuerzo teniendo como unidades el kilogramo-fuerza entre centímetro cuadrado (kg/cm2), mega pascales (Mpa), libras por pulgada cuadrada (lb/pg2).

3.5.8.1 Procedimiento

- a) Se procedió a retirar las probetas del proceso de curado, con la ayuda de una regla se midió las caras de la probeta de mortero y mediante una escuadra haciendo la verificación de la perpendicularidad de sus caras.
- b) Se colocó la probeta de mortero al interior de la máquina de compresión, realizando el centrado correspondiente del mortero sobre los cabezales de la máquina.

Figura 29: Tesista realizando el ensayo "resistencia a compresión"

Fuente: Propia

c) Se enciende la máquina de compresión axial, ingresando las dimensiones de la probeta, para luego proceder a someter esfuerzos hasta producir la falla de la probeta. registrando la carga máxima aplicada.

Figura 30: Rotura de probeta adicionada con 3% de TiO2 curado durante 28 días

3.5.8.2 Toma de datos

Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil

UAC											
	<u></u>	<u></u>	FC	DRMATO 8	8-A	-					
							RTERO PATRÓN DE 23%, 5% Y 7% – CUSCO				
Autores:		Carol Stefan					le suelos, concreto y MAX SOLUTIONS OS S.R.L.				
Ensayo:	Resistencia a	Resistencia a la compresión del mortero de cemento de a/c=0.85 a los 7 días de curado									
Fecha:	30/01/2020										
Rl	ESISTENCIA A	LA COMPRE	SIÓN DEL MOR	TERO DE CI	EMENTO A/C=0	.85 A LOS 7 D	IAS DE CURADO				
				Oatos de Ensa	yo						
a/c:		0.85	<u>-</u>								
Tiempo de C	Curado:	7 días									
Norma:		NTP 334.05	1								
Realizado po	or:	Carol Caraza	as Tito y Alex l	Palomino Va	alverde						
-	nenes de ero de	Dimension es	Área (cm2)	G(kg)	fc(kg/cm2)	f'c Promedio	s				
cement	to(cubos)	L (cm)		O(Ng)	,	(kg/cm2)					
	M-1	5	25	2769.5	110.78						
Sin TiO2	M-2	5	25	2813.4	112.54						
	M-3	5	25	2978.5	119.14						
	M3-1	5	25	2705.4	108.22						
3% TiO2	M3-2	5	25	2940.8	117.63						
	M3-3	5	25	2951	118.04						
	M5-1	5	25	2719.5	108.78						
5% TiO2	M5-2	5	25	2784.8	111.39						
	M5-3	5	25	2820.5	112.82						
	M7-1	5	25	2473.8	98.95						
7% TiO2	M7-2	5	25	2583.9	103.36						
	M7-3	5	25	2633.9	105.36						
Ci., TiO3	† · · · · ·		C1-4' -		P - C - C						

FORMATO 8-B

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020

	Autores: Carazas Tito Carol Stefani Palomino Valverde Nery Alex		Laboratorio:	Laboratorio de concreto de la UAC
]	Ensayo:	Resistencia a la compresión del mortero de cemento d	e a/c=0.85 a l	os 14 días de curado
F	Fecha:	05/02/2020		

RESISTENCIA A LA COMPRESIÓN DEL MORTERO DE CEMENTO A/C=0.85 A LOS 14 DIAS DE CURADO

]	Datos de Ensay	0		
a/c:		0.85					
Tiempo de C	urado:	14 días					
Norma:		NTP 334.051	1				
Realizado por	r:	Carol Carazas Tito y Alex Palomino Valverde					
Egnogím	namas da	Dimensione				fc	
Especímenes de mortero de cemento(cubos)		L (cm)	Área (cm2)	G(kg)	fc(kg/cm2)	-	s
	M-1	5	25	2800	112.00		

mortero de cemento(cubos)		L (cm)	Área (cm2)	G(kg)	f'c(kg/cm2)	Promedio (kg/cm2)	s		
	M-1	5	25	2800	112.00				
Sin TiO2	M-2	5	25	2970	118.80				
	M-3	5	25	2950	118.00				
	M3-1	5	25	2780	111.20				
3% TiO2	M3-2	5	25	3000	120.00				
	M3-3	5	25	3010	120.40				
	M5-1	5	25	2790	111.60				
5% TiO2	M5-2	5	25	2740	109.60				
	M5-3	5	25	2870	114.80				
	M7-1	5	25	2560	102.40				
7% TiO2	M7-2	5	25	2630	105.20				
	M7-3	5	25	2700	108.00				
Sin TiO2	Se obtiene un promedio f'c=f'c promedio ± s								
3% TiO2	Se obtiene un promedio f'c= f'c promedio ± s								
5% TiO2	Se obtiene un promedio f'c= f'c promedio ± s								
7% TiO2			Se obtie	ene un promed	io f'c= f'c prom	edio ± s	<u>-</u>		

100

Universidad Andina del Cusco

UAC	Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil FORMATO 8-C									
Táulo: EVA I	HACIÓN DE LA	C DDODIED VI				ICA S DEL MO	RTERO PATRÓN DE			
							L 3%, 5% Y 7% – CUSCO			
Autores:		Carol Stefan alverde Nery			Laboratorio:	Laboratorio de concreto de la UAC				
Ensayo:	Resistencia a	a la compresió	ón del mortero o	de cemento d	de a/c=0.85 a l	os 28 días de	curado			
Fecha:	13/02/2020									
RE	SISTENCIA A	LA COMPRES	SIÓN DEL MOR	TERO DE CE	MENTO A/C=0.	85 A LOS 28 I	DIAS DE CURADO			
			Γ	Oatos de Ensay	70					
a/c:		0.85								
Tiempo de C	Curado:	28 días								
Norma:		NTP 334.05	1							
Realizado po	or:	Carol Caraza	as Tito y Alex	Palomino Va	lverde					
Especín	menes de	Dimensione				fc				
	ero de to(cubos)	L (cm)	Área (cm2)	G(kg)	f'c(kg/cm2)	Promedio (kg/cm2)	s			
	M-1	5	25	3970	158.80					
Sin TiO2	M-2	5	25	4010	160.40					
	M-3	5	25	4230	169.20					
	M3-1	5	25	3960	158.40					
3% TiO2	M3-2	5	25	4060	162.40					
	M3-3	5	25	4260	170.40					
	M5-1	5	25	3520	140.80					
5% TiO2	M5-2	5	25	3800	152.00					
	M5-3	5	25	3850	154.00					
İ	M7-1	5	25	3290	131.60					
7% TiO2	M7-2	5	25	3420	136.80					
<u> </u>	M7-3	5	25	3390	135.60					
Sin TiO2			Se obtie	ene un promec	lio f'c= f'c prom	edio ± s				
	1									

3.5.9 Ensayo de absorción

3% TiO2

5% TiO2

7% TiO2

Una de las características de los morteros es la permeabilidad, cantidad de absorción de agua que presenta debido a la porosidad presente en su estructura, como consecuencia de varios factores como la presencia de aire incorporado, presencia de grietas, duración de curado y mala composición del mortero.

Se obtiene un promedio f'c= f'c promedio \pm s

Se obtiene un promedio f'c= f'c promedio \pm s

Se obtiene un promedio f'c = f'c promedio $\pm s$

La impermeabilidad del mortero está asociada en gran medida a la durabilidad de este, también al intemperismo y/o exposición ambiental, daños provenientes de líquidos y gases que lo penetran.

3.5.9.1 Procedimiento

- a) Se procedió a retirar las probetas de mortero del proceso de curado, seguidamente se prosiguió con el secado mediante el horno a temperatura constante de 110 °C \pm 5 °C durante un periodo de tiempo de 24 horas.
- b) Una vez retirada del horno se procedió a enfriar las probetas, mediante una regla metálica se procedió a tomar las medidas de las caras de la probeta de mortero.
- c) Se realizó los pesos correspondientes de cada probeta.
- d) Se procedió con el colocado de las probetas dentro del contenedor de absorción, previamente instalado. Sumergiendo una de las caras de la probeta en agua hasta una altura vertical de 3 mm \pm 0.5 mm. Según NTP 399.631

Figura 31: Colocado de probetas dentro del contenedor de absorción

Fuente: Propia

e) Después de 24 horas, se retiró las probetas del contenedor y se registraron los pesos correspondientes de cada una de las probetas.

3.5.9.2 Toma de datos

Universidad Andina del Cusco

Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil

UAC										
				TO 10-A						
PATRÓN DE						CAS DEL MORTERO N DIOXIDO DE TITANIO AL				
Autores:	Carazas Tito Palomino Va	Carol Stefani lverde Nery A		Labor	ratorio:	Laboratorio de Tecnología del Concreto UAC				
Ensayo:	Tasa de Abso	orción de agua	a de especíme	nes de morter	ro					
Fecha:	21/02/2020									
	TASA	DEABSORC	IÓN DE AGUA	DE ESPECIME	ENES DE MORT	TERO				
			Datos de	e Ensayo						
a/c:	0.85									
Tiempo de										
Curado:	28 días	28 días								
Norma:	NTP 399.631	NTP 399.631								
Realizado										
por:		s Tito y Alex	Palomino Val	lverde						
Condición:	Sin TiO2		1							
	Dimen	siones								
Mortero	Pomedio Cara Superior (mm)	Pomedio Cara Inferior (mm)	Peso Inicial (gr)	Peso Final (gr)	Absorción (gr/100cm2	Absorción Promedio (gr/100cm2)				
	D1	D2								
AbS-1	50.5	50	253.01	273.6						
AbS-2	49.5	50.2	247.5	266.3						
AbS-3	50.1	50.3	253.6	274.8						
AbS-4	50.25	50.1	253.4	273.2						
AbS-5	50.8	50.5	246.5	265.3						

Se obtiene un promedio A(t)=

Universidad Andina del Cusco

Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil

FORMATO 10-B

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO

	CEMENTO RES – CUSCO 2020	SPECTO DEL M	IORTERO DE O	CEMENTO ADI	ICIONADO CO	N DIOXIDO DE TITANIO AL				
A .	Carazas Tito	Carol Stefani		T 1		Laboratorio de Tecnología				
Autores:	Palomino Val	verde Nery A	Alex	Labor	atorio:	del Concreto UAC				
Ensayo:	Tasa de Abso	orción de agua	a de especíme	nes de morte	ro					
Fecha:	21/02/2020									
	TASA	DEABSORC	IÓN DE AGUA	DEESPECIME	NES DE MORT	TERO				
			Datos de	e Ensayo						
a/c:	0.85									
Tiempo de										
Curado:	28 días	28 días								
Norma:	NTP 399.631									
Realizado										
por:	Carol Caraza	s Tito y Alex	Palomino Val	lverde						
Condición:	3% de TiO2									
	Dimen	siones								
	Pomedio	Pome dio			Absorción					
Mortero	Cara	Cara	Peso	Peso Final	(gr/100cm2	Absorción Promedio				
Miditero	Superior	Inferior	Inicial (gr)	(gr)	(g1/100cm2	(gr/100cm2)				
	(mm)	(mm)			,					
	D1	D2								
Ab3-1	51.5	51	245.05	263.5						
Ab3-2	51	50	249.8	268.4						
Ab3-3	50.5	51	240.3	261.3						
Ab3-4	50.4	58	250.45	273.12						
Ab3-5	49.8	50.2	246.53	263.7						

Se obtiene un promedio A(t)=

Universidad Andina del Cusco

Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil

FORMATO 10-C

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%. 5% Y 7% – CUSCO 2020

3%, 5% Y 7% –	CUSCO 2020									
Autores:	Carazas Tito Palomino Val		Alex	Labor	ratorio:	Laboratorio de Tecnología del Concreto UAC				
Ensayo:	Tasa de Absorción de agua de especímenes de mortero									
Fecha:	21/02/2020									
	TASA	DEABSORCIO	ÓN DE AGUA I	DE ESPECIME	NES DE MORT	ERO				
			Datos de	Ensayo						
a/c:	0.85									
Tiempo de										
Curado:	28 días									
Norma:	NTP 399.631									
Realizado por: Condición:	Carol Caraza: 5% de TiO2	•	Palomino Val	lverde	<u> </u>					
	Pomedio	Pomedio								
Mortero	Cara Superior (mm)	Cara Inferior (mm)	Peso Inicial (gr)	Peso Final (gr)	Absorción (gr/100cm2	Absorción Promedio (gr/100cm2)				
	D1	D2								
Ab5-1	51	50.5	247.4	267.1						
Ab5-2	50	49.8	248.1	265.8						
Ab5-3	50.6	49.6	252.4	268.1						
Ab5-4	51.5	51	250.1	266.9						
Ab5-5	Ab5-5 50.5 51.5 245.1 263.9									
		Se o	btiene un p	romedio A(t)=					

105

Universidad Andina del Cusco

Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil

FORMATO 10-D

			FORMA	TO 10-D						
						CAS DEL MORTERO				
		SPECTO DEL M	IORTERO DE O	CEMENTO AD	ICIONADO CO	N DIOXIDO DE TITANIO AL				
3%, 5% Y 7%	- CUSCO 2020									
	Carazas Tito	Carol Stefani				Laboratorio de Tecnología				
Autores:		lverde Nery A		Labor	atorio:	del Concreto UAC				
Ensayo:				nes de mortei	ro	der concreto orre				
Liisayo.	Tasa de Absorción de agua de especímenes de mortero									
Fecha:	21/02/2020									
	TASA	DEABSORC	IÓN DE AGUA	DE ESPECIMI	ENES DE MOR	TERO				
			Datos de	e Ensayo						
a/c:	0.85									
Tiempo de										
Curado:	28 días									
Norma:	NTP 399.631									
Realizado										
por:	Carol Caraza	s Tito y Alex	Palomino Val	lverde						
Condición:	7% de TiO2									
	Dimen	siones								
	Pome dio	Pome dio			Absorción					
Mortero	Cara	Cara	Peso	Peso Final	(gr/100cm2	Absorción Promedio				
MIDITEID	Superior	Inferior	Inicial (gr)	(gr)	(g1/100cm2	(gr/100cm2)				
	(mm)	(mm)			,					
	D1	D2								
Ab7-1	50.4	51	259.2	273.6						
Ab7-2	50.1	50	254.1	268.4						
Ab7-3	50	50.5	251.5	268.7						
Ab7-4	50.7	50.2	254.1	270.2						
Ab7-5	51	50	248.5	264.6						

3.5.10 Ensayo adherencia corte por cizalla

La adherencia es una de las características principales de los morteros, proceso mecánico de unión con los materiales que se encuentra en contacto (ladrillos, piedra, acero, bloques).

Se obtiene un promedio A(t)=

Según Gallegos H, (2005) la adherencia entre el mortero y las unidades de albañilería es producto de la trabazón que se produce cuando cristaliza la lechada que penetra por los poros capilares de la unidad.

3.5.10.1 Procedimiento

a) Previamente se realizó la saturación de los ladrillos por inmersión en agua, durante un periodo de 30 minutos.

Figura 32: Saturado de ladrillos durante 30 minutos

Fuente: Propia

b) Se realizó la mezcla de mortero para cada diseño de mezcla en porcentajes de 3%, 5%
 y 7% de dióxido de titanio (TiO2).

Figura 33: Mezclado de mortero según diseño

c) Se prosiguió con la colocación de mortero sobre el ladrillo, generando una capa de mortero, sobre la misma ejerciendo presión se coloca el ladrillo central, de manera de obtener una junta aproximada de 1 cm. Después de un tiempo aproximado de 1 hora se procede a colocar la segunda capa de mortero y el tercer ladrillo, siguiendo el procedimiento anterior realizado.

Figura 34: Colocado de mortero para la formación de probetas de ladrillo

Fuente: Propia

d) Después de aproximado de 12 horas se procedió a realizar el curado correspondiente por inmersión en agua.

Figura 35: Curado de probetas de ladrillos

e) Inmediatamente después del curado se proseguido a ensayar, adherencia por cizalle las probetas formadas por tres ladrillos pegados por mortero mediante la máquina de compresión axial.



Figura 36: Ensayo de adherencia por cizalle de probetas de ladrillo

3.5.10.2 Toma de datos

0.35

0.35

0.32

0.36

0.33

ADS-2

ADS-3

ADS-4

ADS-5

ADS-6

1040

1030

950

1050

960

12

12

12

12

12

12

12

12

12

12

288

288

288

288

288

3.61

3.58

3.30

3.65

3.33

FORMATO 9-B

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020

Autores:		Carol Stefani Ilverde Nery Alex	Laboratorio:	Laboratorio de Tecnología del Concreto UAC						
Ensayo:	sayo: Adherencia al corte por cizalla del mortero									
Fecha:	26/02/2020									
			Datos	de Ensayo						
Cantera:		Cunyac								
Norma:		NCh167								
Realizado p	or:	Carol Carazas Tito y Alex Palomino Valverde								
Condinción:	dinción: 3% de TiO2									
Relación a/o	in a/c: 0.85									

Adherencia al corte por cizalla del mortero

Descripció	Carga máxima	Dime	nsiones	Área (cm2)	Esfuerzo de compresión (σc)	Esfuerzo de	Resistencia Unitaria de	Resistencia Unitaria de	Coeficiente	τ'm (Mpa)	t'm Promedio	τ'm (kg/cm2)	t'm Promedio
n	(kg)	Largo (cm)	Ancho (cm)	ricu (cinz)	en kg/cm2	en Mpa	Corte por cizalla	Corte por cizalla το (Mpa)	(11)	v in (ivipa)	(Mpa)	(Kg/cm2)	(kg/cm2)
AD3-1	1280	12	12	288	4.44	0.44							
AD3-2	1240	12	12	288	4.31	0.42							
AD3-3	1210	12	12	288	4.20	0.41							
AD3-4	1220	12	12	288	4.24	0.42							
AD3-5	1230	12	12	288	4.27	0.42							
AD3-6	1340	12	12	288	4.65	0.46							

FORMATO 9-C

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020

lAutores:		Carol Stefani Iverde Nery Alex	Laboratorio:	Laboratorio de Tecnología del Concreto UAC				
Ensayo:	Adherencia a	al corte por cizalla del mortero						
Fecha:	26/02/2020	20						
			Datos	de Ensayo				
Cantera:		Cunyac						
Norma:		NCh167						
Realizado po	por: Carol Carazas Tito y Alex Palomino Valverde							
Condinción:	Condinción: 5% de TiO2							
Relación a/c:	ación a/c: 0.85							

Adherencia al corte por cizalla del mortero

Descripció	Carga	Dimensiones		(m (m 0)	Esfuerzo de	Esfuerzo de	Resistencia Unitaria de	Resistencia Unitaria de	Coeficiente	τ'm (Mpa)	t'm Promedio	1 (1/2	t'm
n	* maxima	Largo (cm)	Ancho (cm)	Area (cm2)	compresión (σc) en kg/cm2	en Mpa	Corte por cizalla το (kg/cm2)	Corte por cizalla το (Mpa)	(11)	т ш (мгра)	(Mpa)	τ'm (kg/cm2)	Promedio (kg/cm2)
AD5-1	1600	12	12	288	5.56	0.54							
AD5-2	1560	12	12	288	5.42	0.53							
AD5-3	1460	12	12	288	5.07	0.50							
AD5-4	1490	12	12	288	5.17	0.51							
AD5-5	1510	12	12	288	5.24	0.51							
AD5-6	1570	12	12	288	5.45	0.53							

FORMATO 9-D

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020

1 //0 COBC								
Autores:	Carazas Tito Carol Stefani Palomino Valverde Nery Alex Laboratorio: Laboratorio de Tecnología del Concreto UAC							
Ensayo:	Adherencia al corte por cizalla del mortero							
Fecha:	26/02/2020							
	Datos de Ensayo							

	Datos de Ensayo							
Cantera:	Cunyac							
Norma:	NCh167							
Realizado por:	Carol Carazas Tito y Alex Palomino Valverde							
Condinción:	4% de TiO2							
Relación a/c:	0.85							

Adherencia al corte por cizalla del mortero

Descri	ipció	Carga máxima	Dime	nsiones	Área (cm2)	Esfuerzo de compresión (σc)	Esfuerzo de compresión (σc)	Resistencia Unitaria de	Unitaria de	Coeficiente de fricción		t'm Promedio	τ'm (kg/cm2)	t'm Promedio
n		(kg)	Largo (cm)	Ancho (cm)	, , , , , , , , , , , , , , , , , , , ,	en kg/cm2	en Mpa	Corte por cizalla	Corte por cizalla το (Mpa)	(11)	V (F)	(Mpa)	(- g ,)	(kg/cm2)
AD7	7-1	2060	12	12	288	7.15	0.70							
AD7	7-2	1950	12	12	288	6.77	0.66							
AD7	7-3	2070	12	12	288	7.19	0.70							
AD7	7-4	2100	12	12	288	7.29	0.72							
AD7	7-5	1900	12	12	288	6.60	0.65							
AD7	7-6	2060	12	12	288	7.15	0.70							

3.5.11 Ensavo de rodamina

La rodamina es un compuesto químico ampliamente usado en la biotecnología, como colorante de uso industrial de alimentos, bebidas y otras áreas. Según la norma italiana UNI 11259 la rodamina también es utilizada para la determinación de actividad fotocatalítica de materiales, siendo la fotocatálisis una tecnología verde para el tratamiento de contaminantes de tipo atmosférico y bacteriológico, mediante energía solar.

3.5.11.1 Procedimiento

a) Como primer paso, se realizó el acondicionamiento del contenedor para el ensayo de rodamina según norma italiana UNI 11259. Teniendo como factores de acondicionamiento: ancho, largo y alto, la manipulación de contenedor e instalación de lámparas.

Figura 37: Instrumento de lámpara UV sobre el contenedor

Fuente: Propia

b) Después de retiradas las probetas de mortero del pozo de curado, inmediatamente después de secar por 12 horas dichas probetas, con la ayuda de un pincel se realizó la aplicación de rodamina B sobre una cara de la probeta, se dejó secar durante 30 minutos a temperatura ambiente, seguidamente se realizó la medición inicial a (t=0h) mediante el colorímetro.

Figura 38: Aplicación de rodamina B a probetas de morteros: patrón y modificado al 3%, 5% y 7% de TiO2

c) Se realizó la exposición de las probetas de mortero a rayos UV. Exposición durante (t=4 horas), (t=26h).

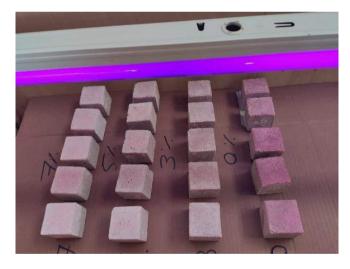


Figura 39: Exposición de probetas a rayos UV

Fuente: Propia

d) Inmediatamente se realizó la medición de la fotodegradación de rodamina B mediante un colorímetro, para los tiempos exposición (t=0), (t=4h) y (t=26h).

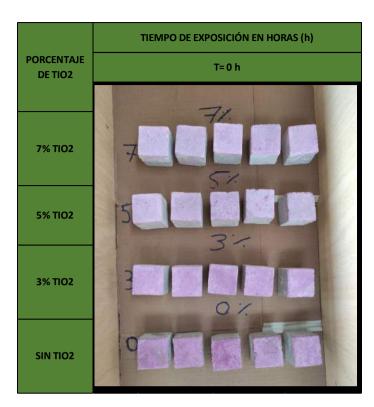


Figura 40: Resumen fotográfico de probetas, sin exposición a rayos UV

Figura 41: Resumen fotográfico de la exposición de probetas a rayo UV, durante un periodo de tiempo (T=4 horas)

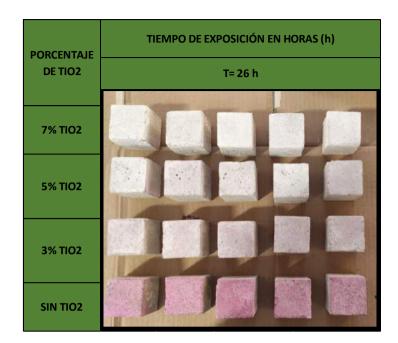


Figura 42: Resumen fotográfico de la exposición de probetas a rayo UV, durante un periodo de tiempo (T=26 horas)

3.5.11.2 Toma de datos

Se presenta el formato de recolección de datos en su forma resumida conteniendo los datos obtenidos de la degradación del colorante rodamina B, durante los periodos de tiempo (t=0), (t=4) y (t=26h).

FORMATO 11-A

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020

3%, 5% Y /% -	- CUSCO 2020										
Autores:	Carazas Tito	Carazas Tito Carol Stefani Ubicación de ensayo: Domicilio en San									
Autores.	Palomino Va	lverde Nery A	Alex	Jerónimo							
Ensayo:	Rodamina-Fa	actor de fotodo	egradación del	mortero							
Fecha:	3/02/2020	5/02/2020									
	RODAMINA-	FACTOR DEF	OTODREGAD	ACIÓN DE ES	PECÍMENES I	DE MORTERO					
			Datos de	Ensayo							
a/c:	0.85										
Norma:	UNI 11259										
Realizado por	: Carol Caraza	s Tito y Alex	Palomino Val	verde							
Condición:	Sin TiO2										
	a*(0h)	a*(4h)	a*(26h)								
	4:29 pm	8:29 pm	6:29 pm								
Muestra	(03/02/202	(03/02/202	(04/02/202	R4%	R4%	R26%	R26%				
	0)	0)	0)								
	a* (0h)	a* (4h)	a* (26h)								
AUTS-1	20.24	19.94	18.71								
AUTS-2	20.37	18.30	17.06								
AUTS-3	23.06	19.74	18.90								
AUTS-4	19.82	17.53	16.10								
AUTS-5	19.93	17.04	16.77								

Universidad Andina del Cusco

Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil

FORMATO 11-B

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020

370, 370 1 770	COBCO 2020										
Autores:		Carol Stefani		Ubicación de ensayo: Domicilio en San Jerónimo							
	Paiomino Va	lverde Nery A	Nex	Jeronino							
Ensayo:	Rodamina-Fa	ctor de fotode	egradación del	mortero							
Fecha:	3/02/2020										
	RODAMINA-	FACTOR DE F	OTODREGAD	ACIÓN DE ES	PECÍMENES I	DE MORTERO					
			Datos de	Ensayo							
a/c:	0.85	1.85									
Norma:	UNI 11259										
Realizado por	Carol Caraza	s Tito y Alex	Palomino Val	verde							
Condición:	3% de TiO2										
	a*(0h)	a*(4h)	a*(26h)								
	4:29 pm	8:29 pm	6:29 pm								
Muestra	(03/02/202	(03/02/202	(04/02/202	R4%	R4%	R26%	R26%				
	0)	0)	0)								
	a* (0h)	a* (4h)	a* (26h)								
AUT3-1	20.09	13.83	5.21								
AUT3-2	19.73	12.90	5.27								
AUT3-3	20.53	13.71	6.10								
AUT3-4	18.76	18.76 12.21 4.74									
AUT3-5	18.57	12.09	5.30								

Universidad Andina del Cusco

Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil

FORMATO 11-C

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIC AL 3%, 5% Y 7% – CUSCO 2020

PATRÓN DE C	EMENTO RES	PECTO DEL M	ORTERO DE C	EMENTO ADI	CIONADO C	ON DIOXIDO D	E TITANIO					
AL 3%, 5% Y 7	% – CUSCO 20	20										
Autores:	Carazas Tito C	Carol Stefani		Ubicación	de ensayo:	Domicilio en S	San Jerónimo					
rutores.	Palomino Valv	erde Nery Alex	X	Obcacion	de chsayo.	Donne mo en c	an scrommo					
Ensayo:	Rodamina-Fac	tor de fotodegr	adación del mo	rtero								
Fecha:	03/02/2020	3/02/2020										
	RODAMIN	A-FACTOR DE	FOTODREGADA	CIÓN DE ESP	ECÍMENES DE	MORTERO						
			Datos de	Ensayo								
a/c:	0.85	.85										
Norma:	UNI 11259											
Realizado por:	Carol Carazas	Tito y Alex Pa	lomino Valverd	e								
Condición:	5% de TiO2											
Muestra	a*(0h) 4:29 pm	a*(4h) 8:29 pm	a*(26h) 6:29 pm	R4%	R4%	R26%	R26%					
Muestia	(03/02/2020)	(03/02/2020)	(04/02/2020)	K4 /0	K4 /0	K20 /0	K20 /0					
	a* (0h)	a* (4h)	a* (26h)									
AUT5-1	17.56	10.87	2.39									
AUT5-2	16.91	16.91 9.58 2.97										
AUT5-3	16.96	10.78	2.76									
AUT5-4	17.25	10.21	1.98									
AUT5-5	17.88											

Universidad Andina del Cusco

Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil

FORMATO 11-D

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO

RESPECTO DE	L MORTERO DE CEMEN	TO ADICIONADO CO	N DIOXIDO DE TITANI	O AL 3%, 5%	Y 7% – CUSC	O 2020						
Autores:	Carazas Tito Carol Ste Palomino Valverde Ne			Ubicación de ensayo: Domicilio en San Jerónimo								
Ensayo:	Rodamina-Factor de fe	otodegradación del m	ortero									
Fecha:	03/02/2020											
	RODAMIN	A-FACTOR DEFOTO	DREGADACIÓN DE ES	SPECÍMENES	DE MORTER	0						
			Datos de Ensayo									
a/c:	0.85	.85										
Norma:	UNI 11259	JNI 11259										
Realizado por	Carol Carazas Tito y A	Alex Palomino Valvei	rde									
Condición:	7% de TiO2											
Muestra	a*(0h) 4:29 pm (03/02/2020)	a*(4h) 8:29 pm (03/02/2020)	a*(26h) 6:29 pm (04/02/2020)	R4%	R4%	R26%	R26%					
	a* (0h)	a* (4h)	a* (26h)									
AUT7-1	15.10	8.43	1.56	•								
AUT7-2	15.16	8.51	1.90									
AUT7-3	16.22	9.08	1.35									
AUT7-4	16.09	9.32	1.31									
AUT7-5	14.97	7.67	1.13									

3.5.12 Ensayo de degradación del dióxido de nitrógeno (NO2)

El dióxido de nitrógeno es un agente contaminante, compuesto químico de fórmula NO2 contribuyente al deterioro de la calidad del aire, razón por la cual es considerado como agente contaminante. Este gas contaminante se encuentra en el aire, el cual es producido principalmente por la actividad humana, mediante el uso del combustible de los automóviles. Teniendo efectos perjudiciales en la salud como problemas respiratorios, desarrollando asma, bronquitis u otras enfermedades. El dióxido de titanio (TiO2) degrada este gas contaminante (NO2), el cual fue usado de manera concentrada solo para fines de ensayo. El uso de los materiales peligrosos en pocas y/o grandes proporciones, según la Ley de seguridad y salud en obra (Ley N°29783), para actividades peligrosas como la manipulación del dióxido de titanio (Tio2) susceptibles a originar riesgos graves por inhalación, radiación y otros métodos de contaminación, debe implementar la utilización de dispositivos, materiales e indumentaria personal (EPP), para su protección correspondiente de uno o varios riesgos.

3.5.12.1 Procedimiento

a) Se realizó la exposición de las probetas de mortero al agente contaminante dióxido de nitrógeno (NO2), producido mediante una reacción redox entre el cobre (CU) y el ácido nítrico (HNO3), el cual estos dos elementos se colocaron dentro de un recipiente hermético junto a las probetas.

Figura 43: Cobre (CU) y ácido nítrico (HNO3)

b) Después de una exposición durante un periodo de 30 minutos se verificó el manchado sobre las probetas, producido por el agente contaminante dióxido de nitrógeno (NO2).

Figura 44: Exposición de probetas con dióxido de nitrógeno (NO2)

Fuente: Propia

c) Inmediatamente después de retiradas las probetas de mortero del recipiente de exposición, se realizó la medición inicial a (t=0h) mediante el colorímetro y fotografías contrastadas, determinando la presencia del dióxido de nitrógeno (NO2) de cada una de las probetas a ensayar.

Figura 45: Imagen inicial y contrastada de probetas con dióxido de nitrógeno (NO2)

Fuente: Propia

d) Se realizó la exposición de las probetas de mortero a rayos UV. Exposición durante, (t=4 horas) y (t=26h).

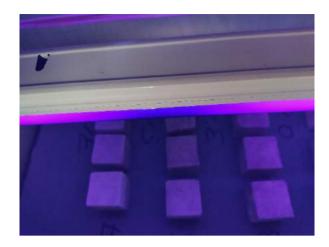


Figura 46: Exposición de probetas a rayos UV con presencia de dióxido de nitrógeno (NO2)
Fuente: Propia

e) Inmediatamente se realizó la medición de la foto degradación del dióxido de nitrógeno (NO2) mediante un colorímetro e imágenes contrastadas, para los tiempos de exposición (t=0), (t=4h) y (t=26h).

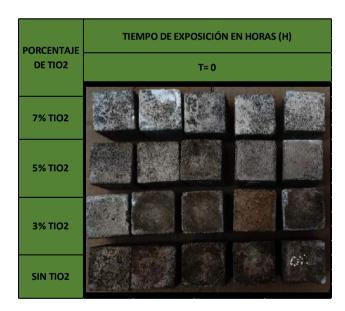


Figura 47: Resumen fotográfico de la exposición de probetas a rayos UV con presencia de dióxido de nitrógeno (NO2), durante un periodo de tiempo inicial $(T=0\ horas)$

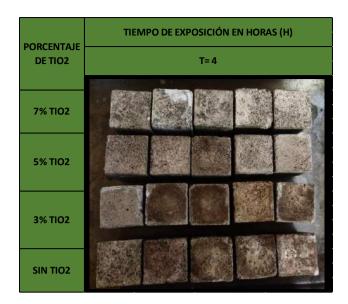


Figura 48: Resumen fotográfico de la exposición de probetas a rayos UV con presencia de dióxido de nitrógeno (NO2), durante un periodo de tiempo (T=4 horas)

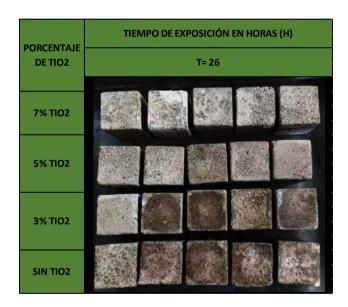
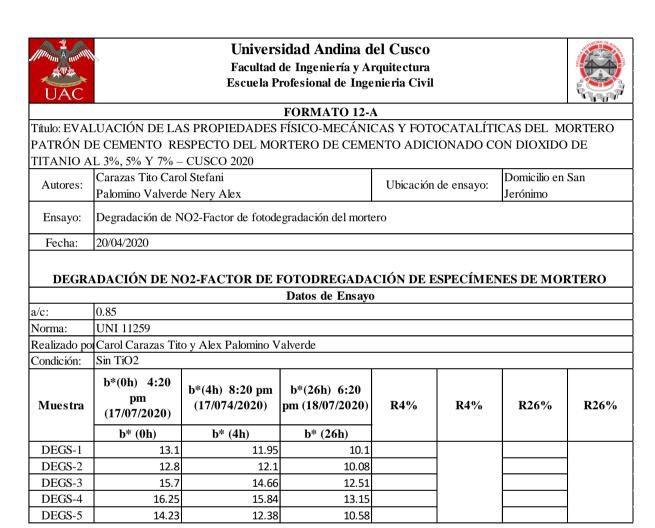



Figura 49: Resumen fotográfico de la exposición de probetas a rayos UV con presencia de dióxido de nitrógeno (NO2), durante un periodo de tiempo (T=26 horas)

3.5.12.2 Toma de datos

Se presenta el formato de recolección de datos en su forma resumida conteniendo los datos obtenidos de la degradación del dióxido de nitrógeno (NO2), durante los periodos de tiempo (t=0), (t=4) y (t=26h).

Universidad Andina del Cusco

Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil

FORMATO 12-B

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÂNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% -CUSCO 2020

Autores:	Carazas Tito Carol Stefani Palomino Valverde Nory Alex Domicilio en San Jerón					
Ensayo:	Degradación de NO2-Factor de fotodegradación del mortero					
Fecha:	20/04/2020					
1	DEGRADACIÓN DE NO2-FACTOR DE FOT	ODREGADACIÓN DE ESPEC <mark>Í</mark> MENE	S DE MORTERO			

i i			Datos de Ensayo			
a/c:	0.85					
Norma:	UNI 11259					
Realizado por	Carol Carazas Tito	y Alex Palomino Valv	erde			
Condición:	3% de TiO2				200	
Muestra	b*(0h) 4:20 pm (17/07/2020)	b*(4h) 8:20 pm (17/074/2020)	b*(26h) 6:20 pm (18/07/2020)			
	b* (0h)	b* (4h)	b* (26h)	ĵ.		
DEG3-1	15.52	14.37	13.22			i i
DEG3-2	18.19	16.65	14.23			
DEG3-3	14.07	13.03	10.62			
DEG3-4	14.36	12.76	10.81			

DEG3-5

14.07

11.48

Universidad Andina del Cusco Facultad de Ingenieria y Arquitectura

9.88

12.16

Escuela Profesional de Ingenieria Civil

FORMATO 12-C

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% -CUSCO 2020

Autores:	Carazas Tito Carol Stefani Palomino Valverde Nery Alex	Ubicación de ensayo:	Domicilio en San Jerônimo			
Ensayo:	Degradación de NO2-Factor de fotodegradación del mortero					
Fecha:	20/04/2020					

DEGRADACIÓN DE NO2-FACTOR DE FOTODREGADACIÓN DE ESPECÍMENES DE MORTERO

			Datos de Ensayo				
a/c:	0.85						
Norma:	UNI 11259						
Realizado po	r Carol Carazas Tito	y Alex Palomino Valv	erde				
Condición:	5% de TiO2	<i>-</i> .					
Muestra	b*(0h) 4:20 pm (17/07/2020)	b*(4h) 8:20 pm (17/074/2020)	b*(26h) 6:20 pm (18/07/2020)				
	b* (0h)	b* (4h)	b* (26h)		1		
DEG5-1	12.47	11.48	9.7		4		71
DEG5-2	13.05	11.96	9.01				ŝ
DEG5-3	15.51	14.31	10.46				ì
DEG5-4	12.64	11.2	9.51				į.

8.13

9.63

DEG5-5

UAC		Facultac	sidad Andina de I de Ingeniería y Arq Profesional de Ingeni	uitectura		
	30	111	FORMATO 12-D	2677 27 1		
	RESPECTO DEL M				L MORTERO PATRÓN DE NNIO AL 3%, 5% Y 7% –	
Autores:	Carazas Tito Carol Palomino Valverde			Ubicación de ensayo:	Domicilio en San Jerônimo	
Ensayo:	Degradación de NO2-Factor de fotodegradación del mortero					
Fecha:	20/04/2020					
a/c: Norma:	0.85 UNI 11259		Datos de Ensayo	Make National Control	V- 111111	
	or Carol Carazas Tito	v Alex Palomino Valv	erde			
Condición:	7% de TiO2				04	
Muestra	b*(0h) 4:20 pm (17/07/2020)	b*(4h) 8:20 pm (17/074/2020)	b*(26h) 6:20 pm (18/07/2020)			
	b* (0h)	b* (4h)	b* (26h)			
DEG7-1	11.81	10.1	7.35		8	
DEG7-2	11.74	10.3	7.53			
DEG7-3	11.21	10.32	7.26			
DEG7-4	11.24	10.16	7.45			
DEG7-5	12.23	10.64	7.16			

3.6 Procesamiento de análisis de datos

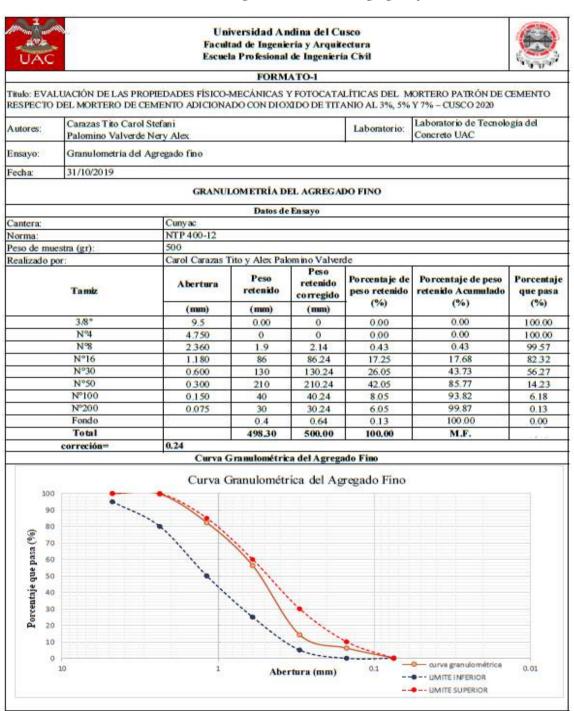
3.6.1 Granulometría del agregado fino

Para el análisis granulométrico del agregado fino se utilizaron los tamices 3/8", N°4, N°8, N°16, N° 30, N°50 y N°100, para determinar la cantidad que se retiene en y el porcentaje que pasa en cada tamiz. La norma que rige este ensayo es la NTP 400.012 y ASTM C136.5.

3.6.1.1 Procesamiento

Para el procesamiento de datos se utilizaron las siguientes fórmulas:

$$\%$$
Retenido = $\frac{Peso\ de\ material\ retenido\ en\ tamiz}{Peso\ total\ de\ la\ muestra}*100$


%Pasante = 100 - %Retenido Acumulado

3.6.1.2 Gráficos y tablas

Teniendo los datos de los pesos retenidos en cada tamiz, procedemos a calcular el porcentaje retenido, para luego hallar el porcentaje retenido acumulado y por último el porcentaje acumulado que pasa por cada tamiz.

Tabla 33. Análisis granulométrico del agregado fino

3.6.1.3 Resumen de análisis

Los datos granulométricos hallados cumplen con los límites granulométricos estipulados por la NTP 400.037

Tabla 34. Granulometría del agregado fino según NTP

Tamiz	Porcentaje que pasa
9,5 mm (3/8 pulg)	100
4,75 mm (No. 4)	95 a 100
2,36 mm (No. 8)	80 a 100
1,18 mm (No. 16)	50 a 85
600 μm (No. 30)	25 a 60
300 μm (No. 50)	05 a 30
150 μm (No. 100)	0 a 10

Fuente: NTP 400.037, (2014)

3.6.2 Módulo de finura

Se define como la sumatoria de los porcentajes retenidos acumulados del tamiz N°3/8" hasta el tamiz N°100 dividido entre 100.

3.6.2.1 Procesamiento

Para su cálculo utilizamos la siguiente fórmula:

$$M.F. = \frac{\Sigma \% \text{Retenidos Acumulados}}{100}$$

3.6.2.2 Gráficos y Tablas

Procedemos a hallar el módulo de finura final:

M.F.	2.41

3.6.2.3 Resumen de análisis

Abanto, 2009, menciona que el módulo de finura es de 2.41 lo cual se encuentra dentro de los parámetros establecidos según la norma ASTM C125, siendo una arena ligeramente fina.

Según la ASTM C125 el módulo de finura de la arena se debe encontrar entre 2.3 y 3.1.

Se estima que las arenas que estén entre los módulos 2.2 y 2.8 producen un concreto de buena trabajabilidad y reducida segregación (pág. 29).

Tabla 35. Clasificación del agregado fino según el módulo de finura

MÓDULO DE FINURA	AGREGADO FINO
Menor que 2.00	Muy fino o extra fino
2.00 - 2.30	Fino
2.30 - 2.60	Ligeramente fino
2.60 - 2.90	Mediano
2.90 - 3.20	Ligeramente grueso
3.20 - 3.50	Grueso
Mayor que 3.50	Muy grueso o extra grueso

Fuente: Rivera. Gerardo, (2015)

3.6.3 Material que pasa el tamiz N°200 -Agregado fino

Es la cantidad de material fino presente en el agregado, que pasa la malla N°200 mediante lavado. El ensayo se encuentra en la norma ASTM-C117 y la NTP 400.018

3.6.3.1 Procesamiento

Para hallar el porcentaje del material que pasa la malla N°200 del agregado fino calculamos la diferencia entre el peso de la muestra inicial y el peso de la muestra lavada y secada, divido entre el peso de la muestra inicial, todo multiplicado por 100.

PORCENTAJE QUE PASA LA MALLA N°200
$$A = (\frac{P1-P2}{P1}) * 100$$

Donde:

P1: Peso de la muestra inicial (kg)

P2: Peso de la muestra lavada y secada (kg)

A: Porcentaje que pasa la malla N°200 (%)

3.6.3.2 Gráficos y tablas

Tabla 36. Material que pasa por el tamiz N°200

UAC	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil							
	FORMATO-2							
			MECÁNICAS Y FOTOCATA					
RESPECTO D	DEL MORTERO DE CEME	NTO A DICIONA	DO CON DIOXIDO DE TITA	NIO AL 3%, 5%	Y7% - CUSCO	2020		
Autores:	Carazas Tito Carol St	efani		Laboratorio:	Laboratorio d	e Tecnología del		
rimores.	Palomino Valverde N	ery Alex		Laboratorio.	Concreto UA	С		
Ensayo:	Material que pasa la r	nalla N°200 del	agregado fino					
Fecha:	05/11/2019							
		MATER	RIAL QUE PASA EL TAMIZ	N°200				
			Datos de Ensayo					
Cantera:		Cunyac						
Norma:								
Peso de muestra (gr): 500								
Realizado po	cado por: Carol Carazas Tito y Alex Palomino Valverde							
MUESTRA Nº1	l							
DESCRIPO	CIÓN		SÍMBOLO	CANTI	DAD	UNIDAD		
Peso de la n	nuestra		P1	500)	g		
Peso de la n	nuestra lavada y secada	l	P2	472.	.8	g		
Material que	e pasa la malla N°200		(P1-P2)	27.2	27.2			
% que pasa	la malla N°200		A	5.44 %		%		
MUESTRA Nº2	2							
DESCRIPO	CIÓN		SÍMBOLO	CANTI	DAD	UNIDAD		
Peso de la n	nuestra		P1	500		g		
Peso de la n	nuestra lavada y secada	ı	P2	472.	.5	g		
Material que	e pasa la malla N°200		(P1-P2)	27.5	5	g		
% que pasa	la malla N°200		A	5.5		%		
MUESTRA Nº3	3							
DESCRIPO	CIÓN		SÍMBOLO	CANTI	DAD	UNIDAD		
Peso de la n	nuestra		P1	500)	g		
Peso de la n	nuestra lavada y secada	P2	473.	473.1				
	e pasa la malla N°200	(P1-P2)	26.9					
	la malla N°200		A	5.38	8	9/0		
PORCENT	TAJE QUE PASA LA	MALLA	5.	.44		%		

3.6.3.3 Resumen de análisis

El porcentaje promedio que se halló de las tres muestras fue de 5.44%.

Muestra 1	Muestra 2	Muestra 3				
5.44	5.5	5.38				
% PROMEDIO= 5.44%						

3.6.4 Peso unitario del agregado fino

El peso unitario es la relación que existe entre la masa de un agregado y una unidad de volumen que este ocupa ya sea con los vacíos incluidos. El ensayo se encuentra en la NTP 400.017.

3.6.4.1 Procesamiento

Utilizamos las siguientes fórmulas:

$$PUS = \frac{(Gs - T)}{V}$$

$$PUS = \frac{(Gc - T)}{V}$$

Donde:

PUS: Peso unitario suelto (gr/cm3)

Gs: Peso de la muestra suelta más recipiente (gr)

T: Peso del recipiente (gr)

PUC: Peso unitario compactado (gr/cm3)

Gc: Peso de la muestra compactada más recipiente (gr)

V: Volumen de recipiente (cm3)

Tabla 37. Peso unitario suelto y compactado del agregado fino

UAC	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil							
			FORM	ATO-3				
	LUA CIÓN DE LAS PROPIE DEL MORTERO DE CEME						CEMENTO	
Autores:	Laboratorio:					Laboratorio de Tecno Concreto UAC	ología del	
Ensayo:	Peso unitario suelto y	compactado						
Fecha:	31/10/2019							
			Datos de	Ensayo				
Cantera:		Cunyac						
Norma:		NTP 400.017						
Peso de m	uestra (gr):	500						
Realizado p	oor:	Carol Carazas			verde			
			Peso Unita	rio Suelto				
	Descripción	Símbolo		Cantidad		Peso Promedio	Unidad	
	Descripcion	Simbolo	P1	P2	P3	reso riometilo	Chiuau	
Peso	Peso del agua + recipiente		5070	5070	5070		gr	
Pe	so del recipiente	Wr	4155	4155	4155		gr	
]	Peso del agua	Wa	915	915	915		gr	
De	ensidad del agua	Da	0.999	0.999	0.999		gr/cm3	
Volu	men del recipiente	Vr	916	916	916		cm3	
Peso mue	stra suelta + recipiente	G	5463	5452	5469		gr	
Peso	de la muestra suelta	Ws	1308	1297	1314		gr	
Pes	o unitario suelto	PUS	1.43	1.42	1.43	1.43	gr/cm3	
		P	eso Unitario	Compactad	lo			
	Descripción	Símbolo		Cantidad		Peso Promedio	Unidad	
	Descripcion	Simbolo	P1	P2	P3	1 CSO 1 TOMECUIO	Chiuau	
Peso	lel agua + recipiente	War	5070	5070	5070		gr	
Pe	so del recipiente	Wr	4155	4155	4155		gr	
]	Peso del agua	Wa	915	915	915		gr	
De	ensidad del agua	Da	0.999	0.999	0.999		gr/cm3	
Volu	men del recipiente	Vr	916	916	916		cm3	
Peso m	uestra compactada + recipiente	G	5558	5544	5568		gr	
Peso de 1	a muestra compactada	Wc	1403	1389	1413		gr	

Fuente: Propia

1.53

1.53

1.54

gr/cm3

PUC

Peso unitario compactado

3.6.4.3 Resumen de análisis

Se obtuvo el promedio de tres muestras para cada tipo de peso unitario, dando como resultado el PUS promedio de 1.43 gr/cm3 y el PUC promedio de 1.53 gr/cm3

Muestra 1	Muestra 2	Muestra 3			
1.43 gr/cm3	1.42 gr/cm3	1.43 gr/cm3			
PUS. PROMEDIO= 1.43 gr/cm3					

Muestra 1	Muestra 2	Muestra 3			
1.53 gr/cm3	1.52 gr/cm3	1.54 gr/cm3			
PUC. PROMEDIO= 1.53 gr/cm3					

3.6.5 Peso específico y absorción del agregado fino

El peso específico o gravedad específica nos da a conocer el volumen que ocupa el agregado en distintas mezclas que contienen este agregado proporcionadas bajo un volumen absoluto. Se halla el peso específico de masa seca del agregado (Pem), peso específico superficialmente saturado (PeSSS), peso específico aparente (Pea) y absorción (Ab) del agregado. La absorción se halla para conocer la masa que incrementa el agregado debido al agua que absorbe debido a los poros que éste tiene, su expresión es en porcentaje de masa seca.

El ensayo se encuentra en la NTP 400.022, expresando que la absorción no incluye el agua adherida en la superficie del agregado.

3.6.5.1 Procesamiento

A continuación, se presentan las fórmulas utilizadas para hallar los resultados del ensayo:

Pem=
$$\frac{A}{(V-W)}$$
 Donde:
A: Peso de la arena seca (gr)
V: Volumen de la fiola (ml)
W: Peso del agua añadida (gr)
Pem: Peso específico de masa seca del agregado (gr/cm3)
Pem: Peso específico superficialmente saturado (gr/cm3)
Pea: Peso específico aparente (gr/cm3)
Ab: Absorción (%)

3.6.5.2 Gráficos y tablas

Tabla 38. Peso específico y absorción del agregado fino

Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil						
		FORMATO-4				
		EDA DES FÍSICO-MECÁ NICA S Y FOTOCA TA NTO A DICIONADO CON DIOXIDO DE TITA			CEMENTO	
Autonosi	Carazas Tito Carol St	efani	Laboratorio:	Laboratorio de Tecno	ología del	
Autores:	Palomino Valverde N	ery Alex	Laboratorio:	Concreto UAC		
Ensayo:	Peso Especifico y Ab	sorción de Agregado Fino				
Fecha:	05/11/2019					
	'	Datos de Ensayo				
Cantera: Cunyac						
Norma:		NTP 400-22				
Peso de mi	ıestra (gr):	500				
Realizado p	oor:	Carol Carazas Tito y Alex Palomino Val	verde			
N° muestra	n:	1				
		Peso Específico y Absorción del ag	regado fino			
	De	scripción	Símbolo	Cantidad	Unidad	
Volumen d	e la Fiola		V	500.0	ml	
Peso De L	a Arena Superficialment	e Seca + Peso De La Fiola	Wfs	651.1	gr	
Peso De La Arena Superficialmente Seca + Peso De La Fiola + Peso Del Agua			Wfsa	961.5	gr	
Peso de la Arena Seca			A	491.2	gr	
Peso de Ag	gua Añadida		W	310.4	gr	
Peso Espe	ecífico de Masa		Pem	2.59	g/cm3	
Peso Espe	ecífico de Masa Satura	da con Superficie seca	PeSSS	2.64	g/cm3	
Peso Espe	ecífico Aparente		Pea	2.72	g/cm3	
Absorción			Ab	1.79	%	

Fuente: Propia

3.6.5.3 Resumen de análisis

En la siguiente tabla se muestran los resultados de las fórmulas aplicadas:

Descripción	Símbolo	Cantidad	Unidad
Peso Específico de Masa	Pem	2.59	g/cm3
Peso Específico de Masa Saturada con			
Superficie seca	PeSSS	2.64	g/cm3
Peso Específico Aparente	Pea	2.72	g/cm3
Absorción	Ab	1.79	%

3.6.6 Contenido de humedad del agregado fino

El contenido de humedad se refiere a la cantidad de agua que existe en el agregado, es decir la humedad evaporable que éste tiene. El ensayo se encuentra en la NTP 339.185 en la cual expresa que esta humedad incluye a la humedad superficial y la de poros.

3.6.6.1 Procesamiento

Para el cálculo, se utilizó la siguiente fórmula, la cual está expresada en porcentaje:

3.6.6.2 Gráficos y tablas

Tabla 39. Contenido de humedad del agregado fino

Munin A munit	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil						
		FORM	ATO-5				
		EDA DES FÍSICO-MECÁNICA S ENTO A DICIONADO CON DIOX					CEMENTO
Autores:	Carazas Tito Carol S Palomino Valverde N			Laboratorio:	Laboratori Concreto I	io de Tecno UAC	logía del
Ensayo:	Contenido de humeda	ad del agregado fino					
Fecha:	05/11/2019						
		Datos de	Ensayo				
Cantera:		Cunyac					
Norma:		NTP 339.185					
Peso de mi	ıestra (gr):	500					
Realizado p	or:	Carol Carazas Tito y Alex P	alomino Val	verde			
		Contenido d	e humedad				
	Descrip	ción		Cantid	ad		Unidad
	Descrip	CIOII	P1	P2	P3	Prom.	Chidad
Peso del re	cipiente		113	113	113	i i	gr
Peso de la	muestra seca + recipien	ite	608	606	610	S	gr
Peso de la muestra humeda + recipiente			613	613	613		gr
Peso de la muestra Seca			495.00	493.00	497.00		gr
Peso de la muestra Húmeda			500.00	500.00	500.00		gr
Contenido	de humedad		1.01	1.42	0.60	1.01	%

3.6.6.3 Resumen de análisis

El contenido de humedad promedio es de 1.01%, resultado del promedio de tres muestras indicadas en la tabla $N^{\circ}39$.

Dogovinoión	Cantidad				Unided
Descripción	P1	P2	Р3	Prom.	Unidad
Contenido de humedad	1.01	1.42	0.60	1.01	%

3.6.7 Diseño de mezcla de mortero con dióxido de titanio

Los morteros tienen distintos usos, en este caso el objetivo de la tesis se orienta a morteros de revestimiento, por lo cual no se necesita una resistencia alta ya que no cumple una función estructural, pero si necesita de una buena superficie y acabado final. El dióxido de titanio se compró mediante la página web de AQCIATEX que es una empresa de productos químicos ubicada en Lima, la cual ofrece su venta por un precio unitario de S/.20.00 por kilo de dióxido de titanio.

En este caso elegimos la proporción inicial de cemento:arena de 1:4 para pañetes finos según la tabla N°40.

Tabla 40. Usos del mortero de cemento

MORTERO	USOS
1:1	Mortero muy rico para impermeabilizaciones. Rellenos
1:2	Para impermeabilizaciones y pañetes de tanques subterráneos. Rellenos
1:3	Impermeabilizaciones menores. Pisos
1:4	Pega para ladrillos en muros y baldosines. Pañetes finos
1:5	Pañetes exteriores. Pega para ladrillos y baldosines, pañetes y mampostería en general. Pañetes no muy finos.
1:6 y 1:7	Pañetes interiores. Pega para ladrillos y baldosines, pañetes y mampostería en general. Pañetes no muy finos
1:8 y 1:9	Pegas para construcciones que se van a demoler pronto. Estabilización de taludes en cimentaciones.

Fuente: Rivera, Gerardo, (2015)

Hallamos la relación agua/cemento de 0.85 de acuerdo a la resistencia de 130 kg/cm2, establecida por nuestra proporción inicial 1:4 elegida en la tabla N°41.

Tabla 41. Resistencia de morteros cemento y arena según su proporción en volumen

TIPO DE	PROPOR	RESISTENCIA	
MORTERO	CEMENTO	ARENA	kg/cm2
	1	1	
Ricos	1	2	160
	1	3	
Ordinarios	1	4	130
Ordinarios	1	5	98
	1	6	75
Pobres	1	8	50
	1	10	30

Fuente: Martínez Karen, (2019)

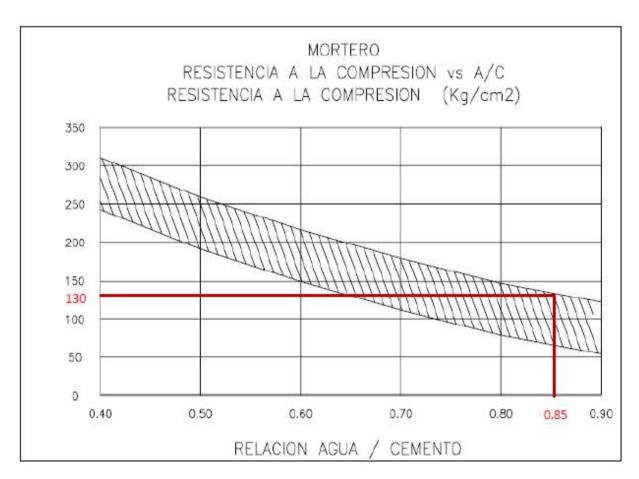


Figura 50: Resistencia a la compresión de morteros vs. A/C

Fuente. Rivera Gerardo, (2015)

Una de las propiedades más importantes del mortero es la consistencia, que según la tabla N°42 para el mortero de revestimiento el porcentaje de fluidez debe estar entre 100-120%, es decir debe tener una consistencia media (plástica).

Tabla 42. Fluidez del mortero

% FLUIDEZ	CONSISTENCIA	TIPO DE ESTRUCTURA	CONDICIÓN DE COLOCACIÓN	SISTEMA DE COLOCACIÓN
80-100	Dura (seca)	Reparaciones, recubrimiento de túneles, galerías, pantallas de cimentación, pisos.	Secciones sujetas a vibración.	Proyección neumática con vibradores de formaleta.
100-120	Media(plástica)	Pega de mampostería, baldosines, pañetes y revestimientos.	Sin vibración.	Manual con palas y palustres.
120-150	Fluida(húmeda)	Rellenos de mampostería estructural.	Sin vibración.	Manual, bombeo, inyección.

Fuente: Rivera Gerardo, (2015)

Recopilamos los datos necesarios para el diseño de mezcla en la tabla N°43.

Tabla 43. Resumen las propiedades de los componentes del mortero para el diseño de mezcla

Agregado fino					
Peso específico de masa seca	2590.72	kg/m3			
Peso específico de masa sss:	2637.13	kg/m3			
Peso especifico aparente:	2716.81	kg/m3			
Peso unitario suelto seco:	1426.26	kg/m3			
Peso unitario compactado:	1530.34	kg/m3			
Absorción:	1.79	7.			
Módulo de finura:	2.41				
Partículas <tamiz n°200:<="" td=""><td>5.44</td><td>×</td></tamiz>	5.44	×			
Humedad natural:	1.01	7.			
Cemento					
Peso específico del cemento:	2850	kg/m3			
Dióxido de Titanio					
Peso específico dióxido de titanio:	400	kg/m3			

3.6.7.1 Procesamiento

1° PASO: CÁLCULO CANTIDAD DE MATERIAL INICIAL

Si la dosificación para el mortero es de 1:4, entonces:

Cemento: 1 pie3= 42.5 kg

Arena: 4 pie3

Usamos la siguiente fórmula para hallar la cantidad de arena

4pie3 *
$$\frac{1m3}{35.3147pie3}$$
 * *PUS*
4pie3 * $\frac{1m3}{35.3147pie3}$ * 1426.26 kg/m3
Arena=161.55 kg

Usamos la siguiente fórmula para hallar la cantidad de agua, en función a la relación agua cemento de 0.85:

Para el aire atrapado se tiene:

Aire atrapado: 7.5 %

2° PASO: CÁLCULO DE VOLUMEN DE MATERIAL

Calculamos el volumen del cemento:

Cemento =
$$\frac{\text{Peso de bolsa de cemento}}{\text{Peso específico del cemento}}$$

= $\frac{42.5kg}{2850kg/m3}$
*Cemento= 0.014912281 m3

Calculamos el volumen de arena:

Arena fina =
$$\frac{\text{Peso de arena fina}}{\text{Peso específico de la arena fina}}$$
$$= \frac{161.55kg}{2590.72 \, kg/m3}$$
$$*\text{Arena fina} = 0.062357248 \, \text{m}3$$

Calculamos el volumen del agua:

$$\mathbf{Agua} = \frac{\mathbf{Peso\ bolsa\ de\ cemento\ x\ relacion\ A/C}}{\mathbf{Peso\ específico\ del\ agua}}$$

$$=\frac{42.5kg*0.85}{1000\;kg/m3}$$

*Agua= 0.036125 m3

Sumamos los volúmenes obtenidos, para hallar el volumen de aire atrapado:

*Sub Total= 0.113395 m3

*Aire atrapado= (7.5% *Sub Total) = 0.00850459 m

Calculamos el rendimiento, que será la suma total de los volúmenes obtenidos:

*Total (Rendimiento)= 0.121899118 m3

3° PASO: CÁLCULO DE MATERIAL SEGÚN RENDIMIENTO

Calculamos las cantidades de cemento, arena, agua y aire atrapado con las siguientes fórmulas:

Cemento (bolsa) =
$$\frac{1}{\text{Rendimiento}}$$

$$=\frac{1}{0.121899118}$$

*Cemento=8.2 bolsas= 8.2*42.5kg= 348.5 kg

Arena fina = Cemento (bolsas) x Peso arena fina

*Arena (kg)=8.2*161.55kg= 1324.71 kg

Agua = Cemento (kg) x Relación A/C

*Agua (litros)= 348.5*0.85= 296.225 litros

*Aire atrapado= 7.5 %

4° PASO. CÁLCULO DE LA CANTIDAD DE AGUA Y ARENA

Hallamos la cantidad de arena y agua para la cantidad de cemento hallada (8.2bolsas)

Arena fina húmeda = Arena seca x
$$(1+\frac{w\%}{100})$$

Arena fina húmeda = 1324.71 kg(1+(1.01/100)) = 1338.105 kg

Agua efectiva = Agua -
$$(\frac{w\%-abs\%}{100})x$$
 Arena fina

Agua efectiva= 296.225 lt-((1.01-1.79)/100) 1324.71 kg = 306.56 litros

MATERIAL	VOLUMEN	PESO			
Cemento	1	m3	1	kg	
Arena fina	4	m3	3.840	kg	
Agua efectiva	37.39	lt/bls	0.8798	lt/kg	

Se realizó el ensayo de fluidez, resultando la fluidez inicial de 93.5% el cual nos da una consistencia de tipo seca, lo que no se encuentra dentro del rango plástico que se requiere, por lo que se añadió 0.132 lt de agua a la proporción inicial para lograr la consistencia deseada.

Abajo se presentan los resultados del ensayo de consistencia con el agua añadida, se observa que el porcentaje promedio se encuentra dentro del rango plástico.

Fluidez del mortero								
Docorio	a a i á m	(cm)				-	FILLIDEZ.	Duamadia
Descripción		D1	D2	D3	D4	DP	FLUIDEZ	Promedio
	MS-1	19.5	19.7	19.8	19.1	19.525	116.94%	
Sin TiO2	MS-2	19.8	20.2	19.0	19.9	19.725	119.17%	118.33%
	MS-3	19.3	19.1	20.4	20.0	19.7	118.89%	

5° PASO: CORRECCIÓN POR FLUIDEZ

5.1 Diseño patrón:

Cemento= 1

Arena fina= 3.84

Agua efectiva= 0.879764706

5.2 Agua adicional por fluidez =0.132 lt

A/C = 0.85

C = (0.879764706 + 0.132) / 0.85 = 1.190

5.3 Nueva relación:

Cemento= 1.190

Arena fina= 3.840

Agua efectiva= 1.012

5.4 Conversión de relación corregida: Dividimos la nueva relación entre 1.190

cemento=	1	kg
arena fina=	3.23	kg
agua=	0.85	kg

Hallamos el peso requerido para 1 m3 de mortero para cada componente del mortero:

1° PASO: CÁLCULO CANTIDAD DE MATERIAL INICIAL

Cemento= 1 pie3= 42.5 kg

Arena= 3.23 pie3= 3.23*42.5=130.29 kg

Agua=0.85*42.5= 36.125 litros

Aire atrapado = 7.5 %

2° PASO: CÁLCULO DE VOLUMEN DE MATERIAL

Cemento=	0.014912281	m3
Arena fina=	0.050291091	m3
Agua=	0.036125	m3
Aire atrapado=	0.007599628	m3
Total (Rendimiento)=	0.108928	m3

3° PASO: CÁLCULO FINAL DE MATERIAL SEGÚN RENDIMIENTO

Cemento (bls)= 9.18 bolsas= 390.15 kg

Arena (kg)= 3.23*390.15= 1258.642047 kg

Agua (litros)= 0.85*390.15=331.6275 litros

3.6.7.2 Gráficos y tablas

Tabla 44. Diseño de mezcla de mortero

		1	Tabla	44. Di	seño de me:	zcla de mo	rtero		
UAC				Facultad	ersidad Andina o de Ingeniería y Profesional de In	Arquitectura geniería Civil			
					FORMATO-	<u> </u>			
					NICAS Y FOTOCA ON DIOXIDO DE TI				ENTO
Autores:	Carazas Tito Palomino Va					Laboratorio:	Laborator	rio de Tecnologí	a del Concreto
Diseño:	Diseño de me	ezcla del n	nortero de	e cemente	0				
					Datos de Ensayo				
Cantera de a	gregado	C							
fino:		Cunyac							
Proporción:			1	:	4	a/c:		0.85	
Realizado por	r :	Carol Ca		-	Palomino Valverd	e			
Peso específic	o de masa sec	a:	2	590.72	kg/m3	Peso específico	dióxido de	400	kg/m3
Peso específic	o de masa sss:	:	2	637.13	kg/m3	titanio:		-700	Ag/III
Peso especific	o aparente:		2	716.81	kg/m3	Absorción:		1.79	%
Peso unitario s	uelto seco:		1-	426.26	kg/m3	Módulo de finu	ra:	2.41	
Peso unitario c	ompactado:		1.	530.34	kg/m3	Partículas <tan< td=""><td>niz N°200:</td><td>5.44</td><td>%</td></tan<>	niz N°200:	5.44	%
Peso específic	o del cemento:			2850	kg/m3	Humedad natur	al:	1.01	%
			Disc	eño de n	nezcla del morte	ro de cemento			
1° PASO						2° PASO			
Cemento	1	pie3=		42.5	kg	Cemento=	0.01491	228 m3	
Arena		pie3=	1	161.55	kg	Arena fina=	0.06235		
Agua	36.125	-				Agua=		125 m3	
Aire atrapado	7.5					Aire atrapado=			
						Total(Rendimie			
3° PASO					4° PASO	`			
					Arena fina	1220 105	1		
Cemento=	8.2	bolsas			húmeda=	1338.105	kg		
					A cure of active —				
	348.5	kg			Agua efectiva=	306.56	litros		
Arena =	1324.71	kg							
Agua=	296.225	litros			MATERIAL	VOLUMEN	1	PESO	_
Aire atrapado=	= 7.5	%			Cemento	1	m3	1	kg
					Arena fina	4	m3	3.840	kg
					Agua efectiva	37.39	lt/bls	0.8798	lt/kg
5° PASO: CO	DRRECCION	POR FI	LUIDEZ						
5.1 Diseño pa	atrón:				5.2 Agua adici	onal por fluide	z 0.	132 lt	
cemento=	1				W%=	1.01	%		
arena fina=	3.84				W %= AB%=		% %		
agua efectiva=					AD /0 =	1.79	/0		
ugua ereenva-	0.0770				A/C=	0	.85		
					C=		.90		
5.3 Nueva rel	lación:								
cemento=	1.190								
arena fina=	3.840								
agua efectiva=			a/c: 0.85						
5.4 Conversi	ón de relació	n corregi	da:						
İ		ı							
cemento=	1	kg							
		kg							
cemento= arena fina= agua=	3.23	kg							

3.6.7.3 Resumen de análisis

A continuación, se muestran las proporciones finales del diseño de mezcla para el mortero sin TiO2, al 3% de TiO2, al 5% de TiO2 y al 7% de TiO2:

Sin TiO2					
Descripción	Para 1	m3			
Cemento	1 kg	390.15	kg		
Arena	3.23kg	1258.642	kg		
Agua	0.85 lt	331.628	litros		

3% de TiO2					
Descripción Proporción Para 1 r					
Cemento	1 kg	390.15	kg		
Arena	3.23 kg	1258.642	kg		
TiO2	0.03 kg	11.7045	kg		
Agua	0.85 lt	331.628	litros		

5% de TiO2					
Descripción Proporción Para 1 m3					
Cemento	1 kg	390.15	kg		
Arena	3.23 kg	1258.642	kg		
TiO2	0.05 kg	19.5075	kg		
Agua	0.85 lt	331.628	litros		

7% de TiO2											
Descripción Proporción Para 1 m3											
Cemento	1 kg	390.15	kg								
Arena	3.23 kg	1258.642	kg								
TiO2	0.07 kg	27.3105	kg								
Agua	0.85 lt	331.628	litros								

3.6.8 Ensayo de fluidez del mortero

Este ensayo de fluidez sirve para determinar la trabajabilidad del mortero siendo esta una de las propiedades más importantes de éste. El ensayo se encuentra en la NTP 334.057.

3.6.8.1 Procesamiento

La siguiente formula se utilizó para hallar la fluidez, expresada en porcentaje:

$$FLUIDEZ = \frac{DP - DI}{DI} X 100$$

Donde:

DP: Diámetro promedio (cm)

DI: Diámetro inicial (cm)

3.6.8.2 Gráficos y tablas

Tabla 45. Ensayo de fluidez del mortero

			-	-							
UAC)		acultad de In	nd Andina de ngeniería y A sional de Ing							
			FC	ORMATO-7							
	UA CIÓN DE LA S P EL MORTERO DE							DE CEMENTO			
Autores:	Carazas Tito Ca Palomino Valve				Laboratorio:	Laboratorio d UAC	le Tecnología	del Concret			
Ensayo:	Fluidez del morte	ero									
Fecha:	12/12/2019										
			Da	tos de Ensayo							
Cantera:		Cunyac									
Norma:		NTP 334.057									
Realizado po	or:	Carol Carazas Tito y Alex Palomino Valverde									
Diámetro ini	cial en cm (DI):	9									
			Fluid	ez del morte	10						
Dos	cripción		(c	m)		DP	FLUIDEZ	Promedio			
Des	cripcion	D1	D2	D3	D4	DF	FLUIDEZ	Flomeulo			
	MS-1	19.5	19.7	19.8	19.1	19.525	116.94%				
Sin TiO2	MS-2	19.8	20.2	19.0	19.9	19.725	119.17%	118.33%			
	MS-3	19.3	19.1	20.4	20.0	19.7	118.89%				
3% de	M3-1	19.1	19.000	18.7	18.2	18.75	108.33%				
TiO2	M3-2	18.2	18.300	18.4	19.1	18.5	105.56%	105.83%			
1102	M3-3	18.4	18.000	18.3	18.6	18.325	103.61%				
5% de	M5-1	18	17.7	17.0	17.2	17.475	94.17%				
TiO2	M5-2	17.5	17.8	18.1	18.0	17.85	98.33%	95.09%			
1102	M5-3	17	17.4	17.2	17.8	17.35					
7% de	M7-1	17.1	16.8	17.0	16.5	16.85	87.22%				
TiO2	M7-2	16.8	17.3	16.4	16.3	16.7	85.56%	85.00%			
<u>-</u>	M7-3	16.3	16	16.8	16.5	16.4	82.22%				

3.6.8.3 Resumen de análisis

El porcentaje promedio para la mezcla del mortero patrón es de 118.33%, para el 3% es de 105.83%, para el 5% es de 95.09% y para el 7% es de 85%. De los cuales se puede ver que para el mortero patrón y el mortero de 3% la fluidez del mortero se encuentra dentro del rango plástico, pero de los otros porcentajes de mortero al 5 y 7% se encuentran en el rango de fluidez seco, haciendo de estos dos últimos no muy trabajable al mortero.

3.6.9 Ensayo de resistencia a la compresión del mortero

La resistencia a compresión del mortero es una propiedad que consiste en cargar una fuerza a las probetas cúbicas de mortero de 5x5x5 cm como lo indica la NTP 334.051. Esta propiedad depende de la relación agua/cemento y de la cantidad de cemento que tiene.

3.6.9.1 Procesamiento

Para hallar la resistencia a compresión del mortero se utilizó la siguiente fórmula, los resultados se muestran en las tablas N°46, 47 y 48:

$$f'c(kg/cm2) = \frac{G}{A}$$

Donde:

G: Carga aplicada (kg-f)

A: Área de contacto (cm2)

3.6.9.2 Gráficos y tablas

Tabla 46. Resistencia a compresión del mortero a los 7 días

UAC		Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil FORMATO 8-A												
TO 1 ENALLY	CIÓN DEL AGE	DODIED A DEC EÍCICO			ICAS DEL MORTERO F	NA TRÁNI DE CEMEN	TO DECREOTO DEL							
		CIONADO CON DIOXI				'A I RON DE CEMEN	TO RESPECTO DEL							
Autores:	Carazas Tito (Palomino Valv	Carol Stefani verde Nery Alex		Laboratorio:	Laboratorio de suelos, concreto y asfalto, GEOMAX SOLUTIONS INGENIEROS S.R.L.									
Ensayo:	Resistencia a	la compresión del mo	ortero de cemen	to de a/c=0.85 a	a los 7 días de curado									
Fecha:	30/01/2020)/01/2020												
	RESISTEN	ICIA A LA COMPRES	IÓN DEL MORT	ERO DE CEMEN	TO A/C=0.85 A LOS 7	DIAS DE CURADO								
			Da	tos de Ensayo	-									
a/c:		0.85												
Tiempo de Cu	rado:	7 días												
Norma:		NTP 334.051												
Realizado por:		Carol Carazas Tito	y Alex Palomino	o Valverde										
_	s de mortero nto(cubos)	Dimensiones L (cm)	Área (cm2)	G(kg)	fc(kg/cm2)	f'c Promedio (kg/cm2)	s							
	M-1	5	25	2769.5	110.78									
Sin TiO2	M-2	5	25	2813.4	112.54	114.15	4.41							
	M-3	5	25	2978.5	119.14									
	M3-1	5	25	2705.4	108.22									
3% TiO2	M3-2	5	25	2940.8	117.63	114.63	5.56							
	M3-3	5	25	2951	118.04									
	M5-1	5	25	2719.5	108.78									
5% TiO2	M5-2	5	25	2784.8	111.39	111.00	2.05							
	M5-3	5	25	2820.5	112.82									
	M7-1	5	25	2473.8	98.95									
7% TiO2	M7-2	5	25	2583.9	103.36	102.55	3.28							
	M7-3	5 25 2633.9 105.36												
Sin TiO2					114.15 ± 4.41 kg/cm2									
3% TiO2					114.63 ± 5.56 kg/cm2									
5% TiO2					111.0 ± 2.05 kg/cm2									
7% TiO2			Se obtiene u	ın promedio f'c=	$102.55 \pm 3.28 \text{ kg/cm}2$									

Tabla 47. Resistencia a compresión del mortero a los 14 días

Universidad Andina del C

UAC			Universida Facultad de In Escuela Profesi		quitectura						
			FOR	RMATO 8-B			l .				
		PROPIEDA DES FÍSIC CIONA DO CON DIO			TICAS DEL MORTERO P % – CUSCO 2020	ATRÓN DE CEMEN	NTO RESPECTO DEL				
Autores:	Carazas Tito (Palomino Val	Carol Stefani verde Nery Alex			Laboratorio:	Laboratorio de concreto de la UA					
Ensayo:	Resistencia a	la compresión del r	nortero de cement	o de a/c=0.85	a los 14 días de curado						
Fecha:	05/02/2020										
	RESISTEN	ICIA A LA COMPRI	SIÓN DEL MORTE	ERO DE CEMEN	TO A/C=0.85 A LOS 14	DIAS DE CURADO)				
			Dat	tos de Ensayo							
a/c:		0.85									
Tiempo de Cu	ırado:	14 días									
Norma:		NTP 334.051									
Realizado por	:		o y Alex Palomino	Valverde							
_	es de mortero nto(cubos)	Dimensiones L (cm)	Área (cm2)	G(kg)	f'c(kg/cm2)	f c Promedio (kg/cm2)	s				
	M-1	5	25	2800	112.00						
Sin TiO2	M-2	5	25	2970	118.80	116.27	3.72				
	M-3	5	25	2950	118.00						
	M3-1	5	25	2780	111.20						
3% TiO2	M3-2	5	25	3000	120.00	117.20	5.20				
	M3-3	5	25	3010	120.40						
	M5-1	5	25	2790	111.60						
5% TiO2	M5-2	5	25	2740	109.60	112.00	2.62				
	M5-3	5	25	2870	114.80						
	M7-1	5	25	2560	102.40	_					
7% TiO2	M7-2	5	25	2630	105.20	105.20	2.80				
	M7-3	5	25	2700	108.00						
Sin TiO2	Se obtiene un promedio f'c= 116.27 ± 3.72 kg/cm2										
3% TiO2	Se obtiene un promedio f'c= 117.20 ± 5.20 kg/cm2										
5% TiO2			Se obtiene	un promedio f'c	$= 112 \pm 2.62 \text{ kg/cm}2$						
	1			74 00	40740 4001 / 4						

Fuente: Propia

Se obtiene un promedio f'c= $105.20 \pm 2.80 \text{ kg/cm2}$

7% TiO2

Tabla 48. Resistencia a compresión del mortero a los 28 días

			Universida Facultad de In Escuela Profesi	•	quitectura							
0/10			FOR	RMATO 8-C								
		PROPIEDA DES FÍSIC CIONA DO CON DIO			ICAS DEL MORTERO F 6 – CUSCO 2020	ATRÓN DE CEMEN	TO RESPECTO DEL					
Autores:	Carazas Tito Palomino Val	Carol Stefani verde Nery Alex			Laboratorio:	Laboratorio de o	concreto de la UAC					
Ensayo:	Resistencia a	la compresión del r	nortero de cement	o de a/c=0.85 a	a los 28 días de curado	1						
Fecha:	13/02/2020											
	RESISTEN	ICIA A LA COMPRI	SIÓN DEL MORTE	ERO DE CEMEN	TO A/C=0.85 A LOS 28	DIAS DE CURADO						
			Dat	tos de Ensayo								
a/c:		0.85										
Tiempo de Cu	ırado:	28 días										
Norma:		NTP 334.051										
Realizado por	:		o y Alex Palomino	Valverde	T							
•	es de mortero nto(cubos)	Dimensiones L (cm)	Área (cm2)	G(kg)	fc(kg/cm2)	f'c Promedio (kg/cm2)	s					
	M-1	5	25	3970	158.80							
Sin TiO2	M-2	5	25	4010	160.40	162.80	5.60					
	M-3	5	25	4230	169.20							
	M3-1	5	25	3960	158.40							
3% TiO2	M3-2	5	25	4060	162.40	163.73	6.11					
	M3-3	5	25	4260	170.40							
	M5-1	5	25	3520	140.80							
5% TiO2	M5-2	5	25	3800	152.00	148.93	7.11					
	M5-3	5	25	3850	154.00							
	M7-1	5	25	3290	131.60	_ l						
7% TiO2	M7-2	5	25	3420	136.80	134.67	2.72					
	M7-3	5	25	3390	135.60							
Sin TiO2					$162.80 \pm 5.60 \text{ kg/cm2}$							
3% TiO2					163.73 ± 6.11 kg/cm2							
5% TiO2		Se obtiene un promedio f'c= 148.93 ± 7.11 kg/cm ²										

Fuente: Propia

Se obtiene un promedio f'c= $134.67 \pm 2.72 \text{ kg/cm2}$

Figura 51: Resistencia a compresión del mortero a los 7 días

Fuente: Propia

7% TiO2

Figura 52: Resistencia a compresión del mortero a los 14 días

Fuente: Propia

Figura 53: Resistencia a compresión del mortero a los 28 días

Fuente: Propia

3.6.9.3 Resumen de análisis

Los datos siguientes fueron hallados en las tablas N°46, 47 y 48, hallando una resistencia promedio de las muestras de mortero para los 7, 14 y 28 días para cada una de las condiciones

ya sea sin TiO2, al 3% de TiO2, al 5% de TiO2 y al 7% de TiO2. Podemos ver que para el mortero patrón es decir sin TiO2 cumple con los parámetros establecidos por la norma.

Descripción	Resistencia	Resistencia a la compresión (kg/cm2)								
Descripcion	7 días	14 días	28 días							
Sin TiO2	114.152	116.27	162.800							
3%	114.630	117.200	163.733							
5%	111.000	112.000	148.933							
7%	102.555	105.200	134.667							

3.6.10 Ensayo de adherencia del mortero

El ensayo de adherencia del mortero endurecido es una de las propiedades que tiene una relación estrecha con la unidad de albañilería. Este ensayo puede realizarse por flexión o tracción directa. La NCh 2471 realiza el ensayo de adherencia del mortero por tracción directa. Según Gallegos, H., & Casanonne, C. (2005) indican que la mejora de adherencia depende de la resistencia al corte por cizalle, por lo que según la Norma Chilena 167 nos dice que el ensayo de adherencia se efectúa sometiendo a las probetas formadas por tres unidades de albañilería al corte por cizalle.

3.6.10.1 Procesamiento

Utilizamos las siguientes fórmulas para hallar la adherencia y la resistencia unitaria al corte por cizalla, utilizando las tablas $N^{\circ}49$ y 50.

Donde:

 $A = \frac{P}{S}$

P: Carga máxima (kg/cm2)

S: Área bruta total de las superficies de pega (cm2)

σc ο A: Esfuerzo de compresión perpendicular a la junta o Adherencia (kg/cm2) que luego deberá ser convertido a Mpa para reemplazarlo en la fórmula de la resistencia al corte por cizalle (τ'm)

 $\tau'_m = \tau_o + (f)\sigma_c$

τ'm: Resistencia al corte por Cizalle (Mpa)

f o (μ): Coeficiente de fricción

το: Resistencia Unitaria al Corte por cizalla cuando no

El tipo de mortero según la tabla N°49 es de tipo A ya que nuestra proporción final de la mezcla es de 1:3

Tabla 49. Tipos de mortero (Proporciones en volumen)

. CON CEMENTO PORTLAND

Mortero tipo	Cemento portland	Cal	Arena
Α	1	$0 - \frac{1}{4}$	3
В	1	1/2	4-41/2
C	1	1	5-6
D	. 1	2	8 – 9

Fuente: Gallegos Hector & Casabonne Carlos, (2005)

En este caso elegimos el tipo de unidad de albañilería que es de arcilla extruida y según el tipo de mortero de tipo A según la tabla $N^{\circ}49$, la resistencia unitaria al corte por cizalla (τo) es de 0.34 y el coeficiente de fricción (f) es de 0.5

Tabla 50. Valores al corte de cizalle (το) y del coeficiente de fricción (f) para diferentes unidades y morteros

Unidad	Mortero tipo	$\tau_{\rm o}~(MPa)$	f
Arcilla extruida	A	0,34	0,5
	В	0,32	0,5
Arcilla moldeada	A	0,26	0,4
	В	0,22	0,4
Sílice-cal	В	0,18	0,4

Fuente: Gallegos Hector & Casabonne Carlos, (2005)

3.6.10.2 Gráficos y tablas

Tabla 51. Adherencia al corte por cizalla del mortero sin TiO2

					100000011110000		por eizana aei mo	71010 5111 1102						
UAC	Universid	ad Andina de	el Cusco				ngeniería y Arquitectura rofesional de Ingeniería Ci	vil				Facultad		
							FORMATO 9-A							
Título: EVALUACIÓ	N DE LAS PRO	PIEDADES FÍS	SICO-MECÁNIO	CAS Y FOTOCA	ATALÍTICAS DEL MORTE	RO PATRÓN DE CEMENTO	O RESPECTO DEL MORTERO E	DE CEMENTO ADICIONADO C	ON DIOXIDO DE TIT	TANIO AL 3%,	5% Y 7% – CUSCC	2020		
Autores:		Carol Stefan			Laboratorio:		Laboratorio de Tecnología d	el Concreto UAC						
Ensayo:	Adherencia	a cizalle del m	nortero											
Fecha:	26/02/2020													
							Datos de Ensayo							
Cantera:		Cunyac												
Norma:		NCh167	, and the second											
Realizado por:		Carol Caraza	as Tito y Alex	Palomino Val	lverde									
Condinción:		Sin TiO2												
Relación a/c:		0.85												
						Adherencia a	l corte por cizalla del mort	ero						
	Carga	Dimer	nsiones		Esfuerzo de	Esfuerzo de	Resistencia Unitaria de	Resistencia Unitaria de						
Descripción	máxima (kg)	Largo (cm)	Ancho (cm)	Área (cm2)		compresión (σc) en Mpa	Corte por cizalla το (kg/cm2)	Corte por cizalla το (Mpa)	Coeficiente de fricción (μ)	τ'm (Mpa)	t'm Promedio (Mpa)	τ'm (kg/cm2)	t'm Promedi (kg/cm2)	
ADS-1	950	12	12	288	3.30	0.32	3.47	0.34	0.50	0.50		5.12		
ADS-2	1040	12	12	288	3.61	0.35	3.47	0.34	0.50	0.52	1	5.27	1	
ADS-3	1030	12	12	288	3.58	0.35	3.47	0.34	0.50	0.52	0.51	5.26	5.20	
ADS-4	950	12	12	288	3.30	0.32	3.47	0.34	0.50	0.50	1	5.12	1	
ADS-5	1050	12	12	288	3.65	0.36	3.47	0.34	0.50	0.52	1	5.29	1	
ADS-6	960	12	12	288	3.33	0.33	3.47	0.34	0.50	0.50		5.13	1	

Tabla 52. Adherencia al corte por cizalla del mortero al 3% de TiO2

	Universid	ad Andina de	el Cusco				ngeniería y Arquitectura rofesional de Ingeniería Ci	vil				Facultad		
UAC							FORMATO 9-B						THUT	
Título: EVALUACIÓ	N DE LAS PRO	PIEDADES FÍS	SICO-MECÁNIO	CAS Y FOTOCA	TALÍTICAS DEL MORTE		O RESPECTO DEL MORTERO D	E CEMENTO ADICIONADO C	ON DIOXIDO DE TIT	CANIO AL 3%,	5% Y 7% – CUSCO	2020		
Autores:		Carol Stefan			Laboratorio:		Laboratorio de Tecnología d	el Concreto UAC						
Ensayo:	Adherencia	encia al corte por cizalla del mortero												
Fecha:	26/02/2020													
	•						Datos de Ensayo							
Cantera:		Cunyac												
Vorma:		NCh167												
Realizado por:		Carol Caraza	as Tito y Alex	Palomino Val	verde									
Condinción:		3% de TiO2												
Relación a/c:		0.85												
						Adherencia a	l corte por cizalla del mort	ero						
Descripción	Carga máxima (kg)		Ancho (cm)	Área (cm2)	Esfuerzo de compresión (σc) en kg/cm2	Esfuerzo de compresión (σc) en Mpa	Resistencia Unitaria de Corte por cizalla το (kg/cm2)	Resistencia Unitaria de Corte por cizalla το (Mpa)	Coeficiente de fricción (μ)	τ'm (Mpa)	t'm Promedio (Mpa)	τ'm (kg/cm2)	t'm Prome (kg/cm2)	
AD3-1	1280	12	12	288	4.44	0.44	3.47	0.34	0.50	0.56		5.69		
AD3-2	1240	12	12	288	4.31	0.42	3.47	0.34	0.50	0.55	1	5.62		
AD3-3	1210	12	12	288	4.20	0.41	3.47	0.34	0.50	0.55	0.55	5.57	5.64	
AD3-4	1220	12	12	288	4.24	0.42	3.47	0.34	0.50	0.55 0.55 0.55		5.59		
AD3-5	1230	12	12	288	4.27	0.42	3.47	0.34	0.50			5.60		
AD3-6	1340	12	12	288	4.65	0.46	3.47	0.34	0.50	0.57	1	5.79		

Tabla 53. Adherencia al corte por cizalla del mortero al 5% de TiO2

	Universid	ad Andina de	el Cusco				geniería y Arquitectura rofesional de Ingeniería Ci	vil				Facultad	
							FORMATO 9-C						
Título: EVALUACIÓ	ON DE LAS PRO	PIEDADES FÍS	SICO-MECÁNIC	CAS Y FOTOCA	TALÍTICAS DEL MORTE	RO PATRÓN DE CEMENTO) RESPECTO DEL MORTERO D	E CEMENTO ADICIONADO C	ON DIOXIDO DE TIT	ANIO AL 3%,	5% Y 7% – CUSCC	2020	
Autores:		Carol Stefan			Laboratorio:		Laboratorio de Tecnología de	el Concreto UAC					
Ensayo:	Adherencia	Adherencia al corte por cizalla del mortero											
Fecha:	26/02/2020												
	•						Datos de Ensayo						
Cantera:	Cunyac												
Norma:	NCh167												
Realizado por:		Carol Caraza	as Tito y Alex	Palomino Val	verde								
Condinción:		5% de TiO2											
Relación a/c:		0.85											
						Adherencia a	l corte por cizalla del mort	ero					
D ' ''	Carga	Dimer	nsiones	(a)	Esfuerzo de	Esfuerzo de	Resistencia Unitaria de	Resistencia Unitaria de	Coeficiente de		t'm Promedio		t'm Promedic
Descripción	máxima (kg)	Largo (cm)	Ancho (cm)	Årea (cm2)	compresión (σc) en kg/cm2	compresión (σc) en Mpa	Corte por cizalla το (kg/cm2)	Corte por cizalla το (Mpa)	fricción (μ)	τ'm (Mpa)	(Mpa)	τ'm (kg/cm2)	(kg/cm2)
AD5-1	1600	12	12	288	5.56	0.54	3.47	0.34	0.50	0.61		6.24	
AD5-2	1560	12	12	288	5.42	0.53	3.47	0.34	0.50	0.61	1	6.18	
AD5-3	1460	12	12	288	5.07	0.50	3.47	0.34	0.50	0.59	0.60	6.00	6.13
AD5-4	1490	12	12	288	5.17	0.51	3.47	0.34	0.50	0.59		6.05	
AD5-5	1510	12	12	288	5.24	0.51	3.47	0.34	0.50	0.60		6.09	
AD5-6	1570	12	12	288	5.45	0.53	3.47	0.34	0.50	0.61	ĺ	6.19	

Tabla 54. Adherencia al corte por cizalla del mortero al 7% de TiO2

UAC	Universida	Universidad Andina del Cusco de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil FORMATO 9-D												
							FORMATO 9-D							
Título: EVALUACIÓ	ON DE LAS PRO	PIEDADES FÍS	ICO-MECÁNIC	AS Y FOTOCA	TALÍTICAS DEL MORTE	RO PATRÓN DE CEMENTO) RESPECTO DEL MORTERO E	DE CEMENTO ADICIONADO C	ON DIOXIDO DE TIT	ANIO AL 3%,	5% Y 7% – CUSCO	2020		
Autores:		Carol Stefani			Laboratorio:		Laboratorio de Tecnología d	lel Concreto UAC						
Ensayo:	Adherencia al corte por cizalla del mortero													
Fecha:	26/02/2020													
							Datos de Ensayo							
Cantera:		Cunyac												
Norma:		NCh167	Ch167											
Realizado por:		Carol Caraza	as Tito y Alex	Palomino Val	verde									
Condinción:		4% de TiO2												
Relación a/c:		0.85												
						Adherencia a	l corte por cizalla del mort	ero						
	Carga	Dimer	siones		Esfuerzo de	Esfuerzo de	Resistencia Unitaria de	Resistencia Unitaria de	G 6: 4 1				t'm Promedio	
Descripción	máxima (kg)	Largo (cm)	Ancho (cm)	Área (cm2)	compresión (σc) en kg/cm2	compresión (σc) en Mpa	Corte por cizalla το (kg/cm2)	Corte por cizalla το (Mpa)	Coeficiente de fricción (μ)	τ'm (Mpa)	t'm Promedio (Mpa)	τ'm (kg/cm2)	(kg/cm2)	
AD7-1	2060	12	12	288	7.15	0.70	3.47	0.34	0.50	0.69		7.04		
AD7-2	1950	12	12	288	6.77	0.66	3.47	0.34	0.50	0.67	1	6.85		
AD7-3	2070	12	12	288	7.19	0.70	3.47	0.34	0.50	0.69	0.68	7.06	6.98	
AD7-4	2100	12	12	288	7.29	0.72	3.47	0.34	0.50	0.70	Ī	7.11		
AD7-5	1900	12	12	288	6.60	0.65	3.47	0.34	0.50	0.66	1	6.77		
AD7-6	2060	12	12	288	7.15	0.70	3.47	0.34	0.50	0.69	1	7.04		

3.6.10.3 Resumen de análisis

A continuación, mostramos los resultados hallados según la tabla N°51, 52, 53 y 54:

Condición	Adherencia a cizalla (kg/cm2)
0%	5.20
3%	5.64
5%	6.13
7%	6.98

3.6.11 Ensayo de la tasa de absorción de agua del mortero

La absorción del mortero es una de las propiedades del mortero endurecido, lo cual determina la durabilidad a lo largo de la vida útil de éste. La norma que basa este ensayo es la NTP 399.631.

3.6.11.1 Procesamiento

Para el cálculo de la absorción expresada en porcentaje se utilizó la siguiente formula:

$$AT = (W_T - W_0) \times 10000 / (L_1 \times L_2)$$

Donde:

WT: Peso final del espécimen en el tiempo T en gramos

Wo: Peso inicial del espécimen en gramos

L1: Longitud promedio de la superficie del cubo del espécimen en mm

L2: Ancho promedio de la superficie del cubo del espécimen en mm

3.6.11.2 Gráficos y tablas

Tabla 55. Tasa de absorción de agua de especímenes de mortero sin TiO2

Universidad Andina del Cusco

Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil

FORMATO 10-A

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020

Autores:	Carazas Tito Carol Stefani Palomino Valverde Nery Alex			Lat	poratorio:	Laboratorio de Tecnología del Concreto	
Ensayo:	Tasa de Absorción de agua de especímenes de mortero						
Fecha:	21/02/2020	21/02/2020					
	TASA D	EABSORCIÓN			DEMORTERO		
			Datos de En	sayo			
a/c:	0.85						
Tiempo de Curado:	28 días						
Norma:	NTP 399.631						
Realizado por:	Carol Carazas	Гito y Alex Pal	omino Valvero	le			
Condición:	Sin TiO2					T	
Mortero	Pomedio Cara Superior (mm)	Pomedio Cara Inferior (mm)	Peso Inicial (gr)	Peso Final (gr)	Absorción (gr/100cm2)	Absorción Promedio (gr/100cm2)	
	D1	D2					
AbS-1	50.5	50	253.01	273.6	81.54		
AbS-2	49.5	50.2	247.5	266.3	75.66		
AbS-3	50.1	50.3	253.6	274.8	84.13	78.65	
AbS-4	50.25	50.1	253.4	273.2	78.65		
AbS-5							

Fuente: Propia

Se obtiene un promedio $A(t) = 78.65 \text{ gr}/100 \text{cm}^2$

Tabla 56. Tasa de absorción de agua de especímenes de mortero al 3% de TiO2

Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil

FORMATO 10-B

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020

Autores:	Carazas Tito Ca	rol Stefani	Laboratorio:		Laboratorio de	
Autores.	Palomino Valver	de Nery Alex		Tecn		Tecnología del Concreto
Ensayo:	Tasa de Absorción de agua de especímenes de mortero					
Fecha:	21/02/2020					
	TASA DE	ABSORCIÓN I	DE AGUA DE E	SPECIMENES	DEMORTERO	
]	Datos de En	sayo		
a/c:	0.85					
Tiempo de Curado:	28 días					
Norma:	NTP 399.631					
Realizado por: Condición:	Carol Carazas T 3% de TiO2	ito y Alex Palo	mino Valvero	le		
	Dimensiones					
Mortero	Pomedio Cara Superior (mm)	Pomedio Cara Inferior (mm)	Peso Inicial (gr)	Peso Final (gr)	Absorción (gr/100cm2)	Absorción Promedio (gr/100cm2)
	D1	D2				
Ab3-1	51.5	51	245.05	263.5	70.25	
Ab3-2	51	50		268.4	72.94	
Ab3-3	50.5	51	240.3	261.3	81.69	74.22
Ab3-4	50.4	58	250.45	273.12	77.55	
Ab3-5	49.8	50.2	246.53	263.7	68.68	

Fuente: Propia

Se obtiene un promedio A(t)= 74.22 gr/100cm2

Tabla 57. Tasa de absorción de agua de especímenes de mortero al 5% de TiO2

Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil

FORMATO 10-C

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020

<u> </u>						
Autores:	Carazas Tito Ca	ırol Stefani		Lal	boratorio:	Laboratorio de
Autores.	Palomino Valve	rde Nery Alex		La	boratorio.	Tecnología del Concreto
Ensayo:	Tasa de Absorción de agua de especímenes de mortero					
Fecha:	21/02/2020					
	TASA DI	E ABSORCIÓN I	DE AGUA DE E	SPECIMENES	DEMORTERO	
			Datos de En	sayo		
a/c:	0.85					
Tiempo de Curado:	28 días					
Norma:	NTP 399.631	NTP 399.631				
Realizado por: Condición:	Carol Carazas 7	Tito y Alex Palo	omino Valvero	le		
	Dimensiones					
	Pomedio	Pome dio	D	D E'1	A1	Alexandra Barrer Pa
Mortero	Cara	Cara Inferior	Peso	Peso Final	Absorción	Absorción Promedio
	Superior (mm)	(mm)	Inicial (gr)	(gr)	(gr/100cm2)	(gr/100cm2)
	D1	D2				
Ab5-1	51	50.5	247.4	267.1	76.49	
Ab5-2	50	49.8	248.1	265.8	71.08	1
Ab5-3	50.6	49.6	252.4	268.1	62.56	69.28
Ab5-4	51.5	51	250.1	266.9	64.00]

Fuente: Propia

Se obtiene un promedio A(t)= 69.28 gr/100cm2

245.1

263.9

51.5

72.29

50.5

Ab5-5

Tabla 58. Tasa de absorción de agua de especímenes de mortero al 7% de TiO2

Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil

FORMATO 10-D

Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020

					,	
Autores:	Carazas Tito Ca	rol Stefani		Laboratorio: Laboratorio de Tecnología del Co		Laboratorio de
Autores.	Palomino Valver	rde Nery Alex				Tecnología del Concreto
Ensayo:	Tasa de Absorción de agua de especímenes de mortero					
Fecha:	21/02/2020					
	TASA DE	ABSORCIÓN I	DE AGUA DE E	SPECIMENES	DEMORTERO	
]	Datos de En	sayo		
a/c:	0.85					
Tiempo de Curado:	28 días					
Norma:	NTP 399.631					
Realizado por: Condición:	Carol Carazas T	ito y Alex Palo	omino Valverd	le		
Condicion:	Dimensiones					
	Pomedio	Pomedio				
	Cara	Cara	Peso	Peso Final	Absorción	Absorción Promedio
Mortero	Superior	Inferior	Inicial (gr)	(gr)	(gr/100cm2)	(gr/100cm2)
	(mm)	(mm)	_	_		
	D 1	D2				
Ab7-1	50.4	51	259.2	273.6	56.02	
Ab7-2	50.1	50	254.1	268.4	57.09	
Ab7-3	50	50.5	251.5	268.7	68.12	61.52
Ab7-4	50.7	50.2	254.1	270.2	63.26]
Ab7-5	51	50	248.5	264.6	63.14	

Fuente: Propia

Se obtiene un promedio A(t)= 61.52 gr/100cm2

3.6.11.3 Resumen de análisis

Se muestra el porcentaje de absorción promedio hallado de las tablas N°55, 56, 57 y 58.

Condición	Porcentaje de Absorción promedio (gr/100cm2)
Sin TiO2	78.65
3%	74.22
5%	69.28
7%	61.52

3.6.12 Rodamina - Factor de fotodegradación de color

La autolimpieza se mide mediante el ensayo de factor de fotodegradación. La norma UNI 11259 refiere este ensayo para determinar la actividad fotocatalítica del mortero utilizando un colorante orgánico, de color violeta, llamado rodamina B, y sometiéndolo a radiación UV-A, para los parámetros de medición se utilizó el sistema CIELAB, el eje L varía de negro a blanco, el eje a varia de rojo a verde, y el eje b de azul a amarillo. La medición se hizo a las 0 horas, 4 horas y 26 horas, mediante el uso de un colorímetro.

3.6.12.1 Procesamiento

Utilizamos la siguiente fórmula para hallar el factor de fotodegradación a las 4 horas (R4) y a las 26 horas (R26):

$$R4 = \frac{a * (0h) - a * (4h)}{a * (0h)} \times 100$$

$$R26 = \frac{a * (0h) - a * (26h)}{a * (0h)} \times 100$$

a*(0h): Factor de color a las cero horas

a*(4h): Factor de color a las cuatro horas

a*(26h): Factor de color a las veintiséis horas

3.6.12.2 Gráficos y tablas

Tabla 59. Rodamina - Factor de fotodegradación R4 y R26 de mortero sin TiO2

	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingeniería Civil						
			FORMATO 11-A				
			ÁNICAS Y FOTOCATA CON DIOXIDO DE TITA				MENTO
Autores:	Carazas Tito Carol S Palomino Valverde N			Ubicación	de ensayo:	Domicilio en Jerónimo	San
Ensayo:	Ensayo: Rodamina-Factor de fotodegradación del mortero						
Fecha:	: 03/02/2020						
	RODAMI	NA-FACTOR DE FOT	ODREGADACIÓN DE F	SPECÍMENES	DEMORTER	О.	
			Datos de Ensayo				
a/c:	0.85						
Norma:	UNI 11259						
Realizado por:	Carol Carazas Tito y	Alex Palomino Val	verde				
Condición:	Sin TiO2					_	•
Muestra	a*(0h) 4:29 pm (03/02/2020)	a*(4h) 8:29 pm (03/02/2020)	a*(26h) 6:29 pm (04/02/2020)	R4%	R4%	R26%	R26%
	a* (0h)	a* (4h)	a* (26h)				
AUTS-1	20.24	19.94	18.71	1.48%]	7.56%	
AUTS-2	20.37	18.30	17.06	10.16%]	16.25%]
AUTS-3	23.06	19.74	18.90	14.40%	10.42%	18.04%	15.29%
AUTS-4	19.82	17.53	16.10	11.55%]	18.77%	
AUTS-5	19.93	17.04	16.77	14.50%		15.86%	

Fuente: Propia

Tabla 60. Rodamina - Factor de fotodegradación R4 y R26 de mortero al 3% de TiO2

		Facultad Escuela F	sidad Andina del de Ingeniería y Arq Profesional de Ingeni FORMATO 11-B JÁNICAS Y FOTOCATA CON DIOXIDO DE TITA	uitectura ieria Civil			MENTO
Autores:	Carazas Tito Carol Stefani Palomino Valverde Nery Alex Ubicación de ensayo: Jerónimo			San			
Ensayo:	Ensayo: Rodamina-Factor de fotodegradación del mortero						
Fecha:	03/02/2020						
	RODAMI	NA-FACTOR DE FOT	ODREGADACIÓN DE F	SPECÍMENES	S DE MORTER	O	
			Datos de Ensayo				
a/c:	0.85						
Norma:	UNI 11259						
Realizado por:	Carol Carazas Tito y	Alex Palomino Val	verde				
Condición:	3% de TiO2						
Muestra	a*(0h) 4:29 pm (03/02/2020)	a*(4h) 8:29 pm (03/02/2020)	a*(26h) 6:29 pm (04/02/2020)	R4%	R4%	R26%	R26%
	a* (0h)	a* (4h)	a* (26h)				
AUT3-1	20.09	13.83	5.21	31.16%	_	74.07%]
AUT3-2	19.73	12.90	5.27	34.62%	_	73.29%]
AUT3-3	20.53	13.71	6.10	33.22%	33.76%	70.29%	72.77%
AUT3-4	18.76	12.21	4.74	34.91%	_	74.73%]
AUT3-5	18.57	12.09	5.30	34.89%		71.46%	

Tabla 61. Rodamina - Factor de fotodegradación R4 y R26 de mortero al 5% de TiO2

Mining Amening	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil						
			FORMATO 11-C				
			ÁNICAS Y FOTOCATA CON DIOXIDO DE TITA				MENTO
Autores:		Ubicación de ensavo:			Domicilio en Jerónimo	San	
Ensayo:		olomino Valverde Nery Alex Jerónimo odamina-Factor de fotodegradación del mortero					
Fecha:	03/02/2020						
	RODAMI	NA-FACTOR DE FOT	ODREGADACIÓN DE I	ESPECÍMENE	S DE MORTER	O	
			Datos de Ensayo				
a/c:	0.85						
Norma:	UNI 11259						
Realizado por:	Carol Carazas Tito y	Alex Palomino Val	verde				
Condición:	5% de TiO2						
Muestra	a*(0h) 4:29 pm (03/02/2020)	a*(4h) 8:29 pm (03/02/2020)	a*(26h) 6:29 pm (04/02/2020)	R4%	R4%	R26%	R26%
	a* (0h)	a* (4h)	a* (26h)				
AUT5-1	17.56	10.87	2.39	38.10%	_	86.39%	_
AUT5-2	16.91	9.58	2.97	43.35%	_	82.44%	_
AUT5-3	16.96	10.78	2.76	36.44%	39.59%	83.73%	85.53%
AUT5-4	17.25	10.21	1.98	40.81%		88.52%	
AUT5-5	17.88	10.86	2.40	39.26%		86.58%	

Fuente: Propia

Tabla 62. Rodamina -Factor de fotodegradación R4 y R26 de mortero al 7% de TiO2

	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil FORMATO 11-D Título: EVALUACIÓN DE LAS PROPIEDADES FÍSICO-MECÁNICAS Y FOTOCATALÍTICAS DEL MORTERO PATRÓN DE CEMENTO RESPECTO DEL MORTERO DE CEMENTO ADICIONADO CON DIOXIDO DE TITANIO AL 3%, 5% Y 7% – CUSCO 2020						
Autores:	Carazas Tito Carol S Palomino Valverde N			Ubicación	de ensayo:	Domicilio en Jerónimo	San
Ensayo:	Ensayo: Rodamina-Factor de fotodegradación del mortero						
Fecha:	a: 03/02/2020						
	RODAMI	NA-FACTOR DEFOT	ODREGADACIÓN DE E	SPECÍMENES	S DE MORTER	Ю.	
			Datos de Ensayo				
a/c:	0.85						
Norma:	UNI 11259						
Realizado por:	Carol Carazas Tito y	Alex Palomino Val	verde				
Condición:	7% de TiO2						
Muestra	a*(0h) 4:29 pm (03/02/2020) a* (0h)	a*(4h) 8:29 pm (03/02/2020) a* (4h)	a*(26h) 6:29 pm (04/02/2020) a* (26h)	R4%	R4%	R26%	R26%
AUT7-1	15.10	8.43	1.56	44.17%		89.67%	
AUT7-2	15.16	8.51	1.90	43.87%	1	87.47%	1
AUT7-3	16.22	9.08	1.35	44.02%	44.58%	91.68%	90.62%
AUT7-4	16.09	9.32	1.31	42.08%	1	91.86%	1
AUT7-5	14.97	7.67	1.13	48.76%	1	92.45%	1

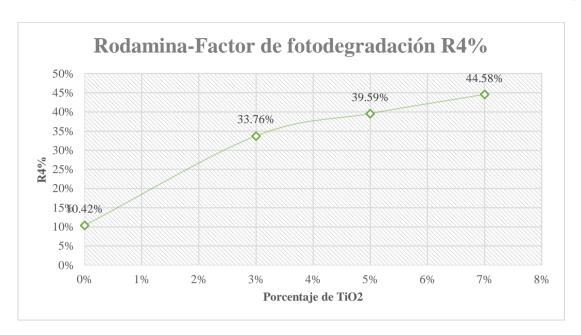


Figura 54: Rodamina -Factor de fotodegradación del mortero R4 a las 4 horas

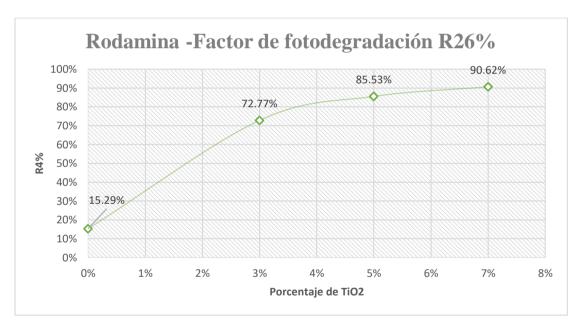


Figura 55: Rodamina -factor de fotodegradación del mortero R26 a las 26 horas

Fuente: Propia

3.6.12.3 Resumen de análisis

A continuación, se muestran los resultados obtenidos de las tablas N° 59, 60, 61 y 62, presentando los factores promedio para cada condición a las 4 y 26 horas.

Condición	R4 promedio	R26 promedio
Sin TiO2	10.42%	15.29%
3%	33.76%	72.77%
5%	39.59%	85.53%
7%	44.58%	90.62%

3.6.13 Degradación de dióxido de nitrógeno - factor de fotodegradación de color

La degradación del NO2 se decidió medir mediante el ensayo de factor de fotodegradación. Según la Norma de Unificación Italiana Nacional, UNI 11259 refiere el ensayo del factor fotodegradación de color para determinar la actividad fotocatalítica del mortero, en este caso exponiendo las muestras de mortero al gas NO2, y sometiéndolo a radiación UV-A. La medición se hace a las 0 horas, 4 horas y 26 horas.

3.6.13.1 Procesamiento

Utilizamos la siguiente fórmula para hallar el factor de fotodegradación a las 4 horas (R4) Y a las 26 horas (R26) de los especímenes expuestos al gas NO2:

$$R4 = \frac{a * (0h) - a * (4h)}{a * (0h)} \times 100$$

$$R26 = \frac{a * (0h) - a * (26h)}{a * (0h)} \times 100$$

a*(0h): Factor de color a las cero horas

a*(4h): Factor de color a las cuatro horas

a*(26h): Factor de color a las veintiséis horas

3.6.13.2 Gráficos y tablas

Tabla 63. Degradación de dióxido de nitrógeno - Factor de fotodegradación R4 y R26 de especímenes de mortero sin TiO2

	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil						
			FORMATO 12-A				
Título: EVALU	UACIÓN DE LAS P	ROPIEDADES FÍSI	ICO-MECÁNICAS Y	FOTOCATA	ALÍTICAS D	EL MORTE	RO PATRÓN
DE CEMENT	O RESPECTO DEL	MORTERO DE CI	EMENTO ADICIONA	ADO CON E	DIOXIDO DE	TITANIO A	L 3%, 5% Y 7%
- CUSCO 202	20						
Autores:	Carazas Tito Carol S	tefani		T.Th.::4	de ensayo:	D 11	San Jerónimo
Autores:	Palomino Valverde N	Nery Alex		Obleacion	de ensayo:	Domicilo en	San Jeronino
Ensayo:	Degradación de NO2-Factor de fotodegradación del mortero						
Fecha:	20/04/2020						
a/c:	0.85 UNI 11259	NO2-FACTOR DE	FOTODREGADAC Datos de Ensayo	IÓN DE ES	SPECÍMENI	ES DE MOR	ΓERO
Norma:	0111111111						
	Carol Carazas Tito y Sin TiO2	Alex Palomino Valv	erde				
Condición:	SIII TIO2					ı	
Muestra	b*(0h) 4:20 pm (17/07/2020)	b*(4h) 8:20 pm (17/074/2020)	b*(26h) 6:20 pm (18/07/2020)	R4%	R4%	R26%	R26%
	b* (0h)	b* (4h)	b* (26h)	. =			
DEGS-1	13.1	11.95	10.1	8.78%	4	22.90%	
DEGS-2	12.8 12.1 10.08 5.47% 21.25%					21.040/	
DEGS-3	15.7	14.66		6.62%	7.28%	20.32%	21.84%
DEGS-4	16.25	15.84	13.15	2.52%	4	19.08%	
DEGS-5	14.23	12.38	10.58	13.00%		25.65%	

Fuente: Propia

Tabla 64. Degradación de dióxido de nitrógeno - Factor de fotodegradación R4 y R26 de especímenes de mortero al 3% de TiO2

	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil						
			FORMATO 12-B				
			CO-MECÁNICAS Y				
DE CEMENT - CUSCO 20:		. MORTERO DE CI	EMENTO ADICIONA	ADO CON E	DIOXIDO DE	TITANIO A	L 3%, 5% Y 7%
Autores:	Carazas Tito Carol S Palomino Valverde N			Ubicación	de ensayo:	Domicilio en	San Jerónimo
Ensayo:	o: Degradación de NO2-Factor de fotodegradación del mortero						
Fecha:	20/04/2020						
a/c:	GRADACIÓN DE N	NO2-FACTOR DE	FOTODREGADAC Datos de Ensayo	IÓN DE ES	PECÍMENE	ES DE MOR	ГЕКО
Norma:	UNI 11259						
	: Carol Carazas Tito y	Alex Palomino Valv	erde				
Condición:	3% de TiO2						
Muestra	b*(0h) 4:20 pm (17/07/2020)	b*(4h) 8:20 pm (17/074/2020)	b*(26h) 6:20 pm (18/07/2020)	R4%	R4%	R26%	R26%
DEGG 4	b* (0h)	b* (4h)	b* (26h)	=		110001	
DEG3-1	15.52	14.37	13.22	7.41%	4	14.82%	
DEG3-2 DEG3-3	18.19 14.07	16.65 13.03	14.23 10.62	8.47% 7.39%	9.60%	21.77%	23.12%
DEG3-3 DEG3-4	14.07	13.03	10.62	11.14%	9.00%	24.52%	23.12%
DEG3-4 DEG3-5	14.36	12.76	9.88	13.57%	1	24.72%	1
DEG3-3	14.07	12.16	9.88	13.37%		29.70%	I

167

Tabla 65. Degradación de dióxido de nitrógeno - Factor de fotodegradación R4 y R26 de especímenes de mortero al 5% de TiO2

		ate m	torrere un ero ue	1102			
Minim A mouth	Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura						
UAC	Escuela Profesional de Ingenieria Civil						
0.10			FORMATO 12-C				. 0.0
Título: EVAL	UACIÓN DE LAS P	ROPIEDADES FÍSI	ICO-MECÁNICAS Y	FOTOCATA	ALÍTICAS D	EL MORTE	RO PATRÓN
DE CEMENT - CUSCO 20		. MORTERO DE CI	EMENTO ADICIONA	ADO CON D	DIOXIDO DE	TITANIO A	L 3%, 5% Y 79
Autores:	Carazas Tito Carol S Palomino Valverde N			Ubicación	de ensayo:	Domicilio en	San Jerónimo
Ensayo:	Ensayo: Degradación de NO2-Factor de fotodegradación del mortero						
Fecha:	20/04/2020						
		NO2-FACTOR DE	FOTODREGADAC Datos de Ensayo	TIÓN DE ES	PECÍMENE	ES DE MOR	ΓERO
a/c:	0.85						
Norma:	UNI 11259						
	: Carol Carazas Tito y	Alex Palomino Valv	erde				
Condición:	5% de TiO2		T				ı
Muestra	b*(0h) 4:20 pm (17/07/2020)	b*(4h) 8:20 pm (17/074/2020)	b*(26h) 6:20 pm (18/07/2020)	R4%	R4%	R26%	R26%
	b* (0h)	b* (4h)	b* (26h)				
DEG5-1	12.47	11.48	9.7	7.94%		22.21%	
DEG5-2	13.05	11.96	9.01	8.35%]	30.96%	
DEG5-3	15.51	14.31	10.46	7.74%	10.31%	32.56%	27.93%
DEG5-4	12.64	11.2	9.51	11.39%		24.76%	
DEG5-5	11.48	9.63	8.13	16.11%		29.18%	

Fuente: Propia

Tabla 66. Degradación de dióxido de nitrógeno - Factor de fotodegradación R4 y R26 de especímenes de mortero al 7% de TiO2

		ae m	ortero al 7% de	1102			
Universidad Andina del Cusco Facultad de Ingeniería y Arquitectura Escuela Profesional de Ingenieria Civil							
			FORMATO 12-D				
DE CEMENT	O RESPECTO DEL		CO-MECÁNICAS Y EMENTO ADICIONA				
- CUSCO 202 Autores:	Carazas Tito Carol S			Ubicación	de ensayo:	Domicilio en	San Jerónimo
Ensayo:	Palomino Valverde NO2 Degradación de NO2	•	ndación del mortero				
Fecha:	Fecha: 20/04/2020						
DEC	GRADACIÓN DE M	NO2-FACTOR DE	FOTODREGADAC	IÓN DE ES	PECÍMENI	ES DE MOR	ΓERO
			Datos de Ensayo				
a/c:	0.85						
Norma:	UNI 11259						
Realizado por:	Carol Carazas Tito y	Alex Palomino Valv	erde				
Condición:	7% de TiO2						
Muestra	b*(0h) 4:20 pm (17/07/2020)	b*(4h) 8:20 pm (17/074/2020)	b*(26h) 6:20 pm (18/07/2020)	R4%	R4%	R26%	R26%
	b* (0h)	b* (4h)	b* (26h)				
DEG7-1	11.81	10.1	7.35	14.48%		37.76%	
DEG7-2	11.74	10.3	7.53	12.27%		35.86%	
DEG7-3	11.21	10.32	7.26	7.94%	11.46%	35.24%	36.81%
DEG7-4	11.24	10.16	7.45	9.61%		33.72%	
DEG7-5	12.23	10.64	7.16	13.00%		41.46%	

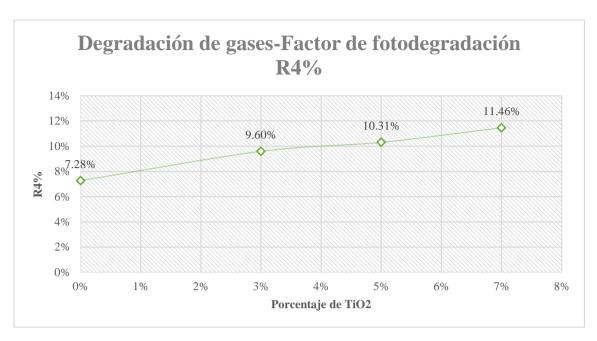


Figura 56: Degradación de dióxido de nitrógeno - factor de fotodegradación del mortero R4 a las 4 horas

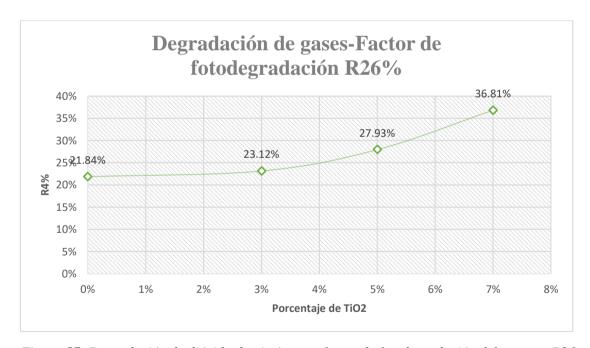


Figura 57: Degradación de dióxido de nitrógeno - factor de fotodegradación del mortero R26 a las 26 horas

3.6.13.3 Resumen de análisis

A continuación, se muestran los resultados obtenidos de la tabla N°63, 64, 65 y 66, presentando los factores promedio obtenidos para cada condición a las 4 y 26 horas. Estos parámetros son medidos a esas horas ya que la norma UNI 11259 así lo indica, en base a diferentes ensayos que se realizaron para generar dicha norma.

Condición	R4	R26
Condicion	promedio	promedio
Sin TiO2	7.28%	21.84%
3%	9.60%	23.12%
5%	10.31%	27.93%
7%	11.46%	36.81%

170

Capítulo IV: Resultados

4.1 Resultados del ensayo de resistencia a la compresión

A continuación, mostramos un resumen de los resultados obtenidos del ensayo de resistencia a compresión promedio de las muestras de mortero a los 7, 14 y 28 días con los distintos porcentajes de dióxido de titanio incorporados en la mezcla:

Tabla 67. Resumen de resultados de ensayo de resistencia a compresión

Días de	Porcentaje de TiO2				
curado	0%	3%	5%	7%	
7	114.15	114.63	111.00	102.55	
14	116.27	117.20	112.00	105.20	
28	162.80	163.73	148.93	134.667	

Fuente: Propia

En la figura siguiente, mostramos la comparación de los resultados de resistencia a compresión, con los distintos porcentajes de dióxido de titanio adicionados, a los 7, 14 y 28 días de curado.

Figura 58: Días de curado vs. Resistencia a compresión (kg/cm2)

De la figura N°58, se observa que la resistencia a compresión para un 3% de dióxido de titanio incrementó muy poco comparado con el mortero patrón, sin embargo, para la resistencia a compresión del 5% y 7% ésta bajo considerablemente, respecto del mortero patrón, por lo que a más porcentaje de dióxido de titanio éste hace disminuir la resistencia a compresión.

Análisis estadístico de resistencia a la compresión a 7, 14 y 28 días de curado

Para el análisis estadístico de los resultados de la resistencia a la compresión de las probetas de mortero patrón frente a un mortero adicionado con dióxido de titanio (TIO2) en porcentajes de 3% 5% y 7%, se realizó la prueba estadística de ANOVA (prueba de comparaciones de medias de dos o más poblaciones) y la prueba de rango múltiple TUKEY, usando estas dos pruebas como herramientas, para determinar las diferencias estadísticas entre sus medias de los diferentes tratamientos de dióxido de titanio a diferentes edades de curado, mediante la utilización del programa estadístico SPSS (Statistical Package for the Social Sciences). Según tabla N°68.

Tabla 68. Resumen de resistencia a la compresión utilizada en programa SPSS

PORCENTAJE DE (TIO2)		LA COMPRESION DI (kg/cm2) O DE CURADO EN (D	
DE (1102)	7	14	28
0%	110.78	112.00	158.80
0%	112.54	118.80	160.40
0%	119.14	118.00	169.20
3%	108.22	111.20	158.40
3%	117.63	120.00	162.40
3%	118.04	120.40	170.40
5%	108.78	111.60	140.80
5%	111.39	109.60	152.00
5%	112.82	114.80	154.00
7%	98.85	102.40	131.60
7%	103.36	105.20	136.80
7%	105.36	108.00	135.60

Prueba estadística de ANOVA

Esta prueba se realizará por tener variables cuantitativas, existiendo dos o más grupos de comparación y comparando las diferencias entre sus medias correspondientes de cada grupo, la prueba se realizó de acuerdo a las hipótesis de ANOVA como son hipótesis la nula Ho y alterna Ha, teniendo un nivel de significancia del 5% de la prueba.

Hipótesis de ANOVA

Hipótesis nula (Ho)= Las medias de los grupos son todos iguales

Hipótesis alterna (Ha)= No todas las medias de los grupos son iguales. (Al menos una de las medias es distinta)

Tabla 69. Anova de un factor de resistencia a la compresión a respecto a los diferentes tratamientos de TiO2 de probetas de mortero

ANOVA							
		Suma de cuadrados	gl	Media cuadrática	F	Sig.	
resistencia a los 7 dias	Entre grupos	282,764	3	94,255	5,747	,021	
	Dentro de grupos	131,198	8	16,400			
	Total	413,962	11				
resistencia a los 14 dias	Entre grupos	269,120	3	89,707	6,457	,016	
	Dentro de grupos	111,147	8	13,893			
	Total	380,267	11				
resistencia a los 28 dias	Entre grupos	1689,067	3	563,022	17,772	,001	
	Dentro de grupos	253,440	8	31,680			
	Total	1942,507	11				

Fuente: Propia

El resultado de la prueba de ANOVA de los grupos de resistencia a la compresión del mortero a edades de 7,14 y 28 días de curado con respecto un mortero patrón y mortero en porcentajes de 3%,5% y 7% adicionado de TiO2, tiene un valor de significancia (α=0.05) frente al valor de probabilidad (sig.) es mayor, por lo tanto se rechaza la hipótesis nula y se acepta la hipótesis alterna: "Al menos una de las medias de los grupos de resistencia a la compresión según el

173

diferente"

tiempo de curado con respecto a distintos tratamientos de TiO2 en las probetas de mortero es

Prueba estadística Tukey

Una vez rechazada la hipótesis nula, se procede a realizar las comparaciones de las medias, para determinar cuáles son las medias distintas, realizando el procedimiento POST HOC, mediante la prueba TUKEY.

Tabla 70. Comparaciones múltiples de resistencia a la compresión a 7, 14 y 28 días de curado respecto a los diferentes tratamientos de TiO2

		Comparacio	nes múltiples				
HSD Tukey							
Variable dependiente	(I) porcentaje de tio2	(J) porcentaje de tio2	Diferencia de medias (I-J)	Desv. Error	Sig.	Intervalo de con	lianza al 95% Límite superior
resistencia a los 7 dias	0%tio2	3%tio2	-,47667	3,30654	,999	-11,0654	10,1120
		5%tio2	3,15667	3,30654	,778	-7,4320	13,745
		7%tio2	11,63000*	3,30654	,032	1,0413	22,218
	3%tio2	0%tio2	,47667	3,30654	,999	-10,1120	11,065
		5%tio2	3,63333	3,30654	,700	-6,9554	14,2220
		7%tio2	12,10667	3,30654	,026	1,5180	22,6954
	5%tio2	0%tio2	-3,15667	3,30654	,778	-13,7454	7,4320
		3%tio2	-3,63333	3,30654	,700	-14,2220	6,9554
		7%tio2	8,47333	3,30654	,123	-2,1154	19,0620
	7%tio2	0%tio2	-11,63000 [*]	3,30654	,032	-22,2187	-1,0413
		3%tio2	-12,10667 [*]	3,30654	,026	-22,6954	-1,5180
		5%tio2	-8,47333	3,30654	,123	-19,0620	2,115
resistencia a los 14 dias	0%tio2	3%tio2	-,93333	3,04339	,989	-10,6793	8,812
		5%tio2	4,26667	3,04339	,532	-5,4793	14,012
		7%tio2	11,06667*	3,04339	,027	1,3207	20,812
	3%tio2	0%tio2	,93333	3,04339	,989	-8,8127	10,679
		5%tio2	5,20000	3,04339	,379	-4,5460	14,946
		7%tio2	12,00000*	3,04339	,018	2,2540	21,746
	5%tio2	0%tio2	-4,26667	3,04339	,532	-14,0127	5,4793
		3%tio2	-5,20000	3,04339	,379	-14,9460	4,5460
		7%tio2	6,80000	3,04339	,194	-2,9460	16,5460
	7%tio2	0%tio2	-11,06667	3,04339	,027	-20,8127	-1,3207
		3%tio2	-12,00000*	3,04339	,018	-21,7460	-2,2540
		5%tio2	-6,80000	3,04339	,194	-16,5460	2,9460
resistencia a los 28 dias	0%tio2	3%tio2	-,93333	4,59565	,997	-15,6502	13,783
		5%tio2	13,86667	4,59565	,065	-,8502	28,583
		7%tio2	28,13333 [*]	4,59565	,001	13,4164	42,850
	3%tio2	0%tio2	,93333	4,59565	,997	-13,7836	15,650
		5%tio2	14,80000*	4,59565	,049	,0831	29,516
		7%tio2	29,06667	4,59565	,001	14,3498	43,783
	5%tio2	0%tio2	-13,86667	4,59565	,065	-28,5836	,850
		3%tio2	-14,80000	4,59565	,049	-29,5169	-,083
		7%tio2	14,26667	4,59565	,057	-,4502	28,9836
	7%tio2	0%tio2	-28,13333	4,59565	,001	-42,8502	-13,416
		3%tio2	-29,06667 [*]	4,59565	,001	-43,7836	-14,3498
		5%tio2	-14,26667	4,59565	,057	-28,9836	,4502

De la tabla de comparaciones múltiples de TUKEY a distintas edades de curado y tratamientos, el resultado de los datos de resistencia a la compresión son los siguientes:

- Existen diferencias significativas entre las resistencias a la compresión a los 7, 14 y 28 días de curado del mortero patrón frente al mortero con 7% adicionado con dióxido de titanio TiO2 ya que, el valor de p es menor a 0.05.
- La resistencia a la compresión a los 7, 14 y 28 días de curado de probetas de mortero patrón frente al mortero adicionado con 3% y 5% de dióxido de titanio TiO2, los valores de p son mayores a 0.05 por lo tanto no existen diferencias significativas entre los tres grupos de probetas.
- La resistencia a la compresión a los 7, 14 y 28 días de curado de las probetas de mortero con 7% frente al mortero adicionado con 5% de dióxido de titanio TiO2, el valor de p son mayores a 0.05 por lo tanto no existen diferencias significativas entre los 2 grupos de probetas.
- No existen diferencias significativas entre las resistencias a la compresión a los 7 y 14 días de curado de las probetas del mortero 3% frente al mortero 5% adicionado con dióxido de titanio TiO2 ya que, el valor de p es mayor a 0.05.
- Existen diferencias significativas entre las resistencias a la compresión a los 28 días de curado de las probetas del mortero 3% frente al mortero 5% adicionado con dióxido de titanio TiO2 ya que, el valor de p es menor a 0.05

Tabla 71. Homogeneidad de subconjuntos a los 7 días de curado respecto a los diferentes tratamientos de TiO2

Resistencia a los 7 dias							
HSD Tukey ^a							
		Subconjunto p	ara alfa = 0.05				
porcentaje de tio2	N	1	2				
7%tio2	3	102,5233					
5%tio2	3	110,9967	110,9967				
0%tio2	3		114,1533				
3%tio2	3		114,6300				
Sig.		,123	,700				
Se visualizan las medias para los grupos en los subconjuntos homogéneos.							

Según tabla N°71, de acuerdo a la prueba de comparaciones de las medias para los distintos tratamientos de dióxido de titanio se infiere que, la resistencia a compresión a los 7 días de curado es homogéneos entre los tratamientos de 7% y 5% de TiO2. De igual manera existe homogeneidad entre los tratamientos 3%,5% y mortero patrón siendo parte de un mismo subconjunto.

Tabla 72. Homogeneidad de subconjunto resistencia a compresión a los 14 días de curado respecto a los diferentes tratamientos de TiO2

Resistencia a los 14 dias							
HSD Tukey ^a							
		Subconjunto p	ara alfa = 0.05				
porcentaje de tio2	N	1	2				
7%tio2	3	105,2000					
5%tio2	3	112,0000	112,0000				
0%tio2	3		116,2667				
3%tio2	3		117,2000				
Sig.		,194	,379				
Se visualizan las medias para los grupos en los subconjuntos homogéneos.							

Fuente: Propia

Según tabla N°72 de acuerdo a la prueba de comparaciones de las medias para los distintos tratamientos de dióxido de titanio se infiere que, la resistencia a compresión a los 14 días de curado son homogéneos entre los tratamientos de 7% y 5% de TiO2. De igual manera existe homogeneidad entre los tratamientos 3%,5% y mortero patrón siendo parte de un mismo subconjunto, no existiendo diferencias significativas entre los tratamientos.

Tabla 73. Homogeneidad de subconjuntos de resistencia a compresión a los 28 días de curado respecto a los diferentes tratamientos de TiO2

Resistencia a los 28 dias							
HSD Tukey ^a							
Subconjunto para alfa = 0.05							
porcentaje de tio2	Ν	1	2	3			
7%tio2	3	134,6667					
5%tio2	3	148,9333	148,9333				
0%tio2	3		162,8000	162,8000			
3%tio2	3			163,7333			
Sig.		,057	,065	,997			
Se visualizan las medias para los grupos en los subconjuntos homogéneos.							

Según tabla N°73 de acuerdo a la prueba de comparaciones de las medias para los distintos tratamientos de dióxido de titanio se infiere que, la resistencia a compresión a los 28 días de curado son homogéneos para los tratamientos de 7% y 5%; tratamiento 3%, 5% y mortero patrón. Siendo parte de un mismo subconjunto y no existiendo diferencias significativas entre los tratamientos.

4.2 Resultados del ensayo de adherencia por cizalla

A continuación, mostramos un resumen de los resultados obtenidos del ensayo de adherencia al corte por cizalla promedio de las muestras de mortero con los distintos porcentajes de dióxido de titanio incorporados en la mezcla:

Tabla 74. Resumen de resultados de ensayo de adherencia al corte por cizalla

Condición	Adherencia al corte por cizalla (Mpa)	Adherencia al corte por cizalla (kg/cm2)
0%	0.51	5.20
3%	0.55	5.64
5%	0.60	6.13
7%	0.68	6.98

En la figura siguiente, mostramos la comparación de los resultados de adherencia al corte por cizalla promedio, al 3%, 5% y 7% de dióxido de titanio respecto del mortero patrón:

Figura 59: Adherencia al corte por cizalla del mortero

Fuente: Propia

De la figura N°59, se observa que la adherencia al corte por cizalla incrementó respecto del mortero patrón para el 3% en un 8.5%, para el 5% en un 17.9% y para el 7% hasta un 34.2%.

Análisis estadístico de adherencia al corte por cizalla a los 7 días de curado respecto a los distintos tratamientos de dióxido de titanio TiO2.

Para el análisis estadístico de los resultados de adherencia corte por cizalla de las probetas de mortero patrón frente a un mortero adicionado con dióxido de titanio (TiO2) en porcentajes de 3% 5% y 7%, se realizó la prueba de ANOVA de un factor y la prueba de rango múltiple TUKEY para determinar la diferencias estadísticas entre los diferentes tratamientos de dióxido de titanio a 7 días de curado, mediante la utilización del programa estadístico SPSS (Statistical Package for the Social Sciences). Según tabla N°75.

Tabla 75. Resumen de adherencia al corte por cizalla utilizada en programa SPSS

TIEMPO DE	ADHERENCIA CORTE POR CIZALLA (kg/cm2) PORCENTAJE DE TiO2						
CURADO	0%	3%	5%	7%			
	5.12	5.69	6.24	7.04			
	5.27	5.62	6.18	6.85			
7 DIAS	5.26	5.57	6.00	7.06			
/ DIAS	5.12	5.59	6.05	7.11			
	5.29	5.60	6.09	6.77			
	5.13	5.79	6.19	7.04			

Prueba estadística de ANOVA

Esta prueba se realizará por tener variables cuantitativas, existiendo dos o más grupos de comparación y comparando las diferencias entre sus medias correspondientes, la prueba se realizó de acuerdo a las hipótesis de ANOVA como son hipótesis la nula Ho y alterna Ha, teniendo un nivel de significancia del 5% de la prueba.

Hipótesis de ANOVA

Hipótesis nula (Ho)= Las medias de los grupos son todos iguales

Hipótesis alterna (Ha)= No todas las medias de los grupos son iguales. (Al menos una de las medias es distinta)

Tabla 76. Anova de un factor de adherencia al corte por cizalla respecto a los diferentes tratamientos de TiO2 de probetas de mortero

ANOVA							
adherencia corte por cizalla a los 7 dias							
	Suma de cuadrados	gl	Media cuadrática	F	Sig.		
Entre grupos	10,451	3	3,484	343,144	,000		
Dentro de grupos	,203	20	,010				
Total	10,654	23					

El resultado de la prueba de ANOVA de los grupos de adherencia corte por cizalla a los 7 días de curado respecto al mortero patrón y morteros en porcentajes 3%,5% y 7% adicionados con TiO2, tienen un valor de significancia (α=0.05) frente al valor de probabilidad (sig.) es mayor, por lo tanto se rechaza la hipótesis nula y se acepta la hipótesis alterna: "Al menos una de las medias de los grupos de adherencia corte por cizalla a los 7 días de curado con respecto a distintos tratamientos de TiO2 en las probetas de mortero es diferente"

Prueba estadística Tukey

Una vez rechazada la hipótesis nula, se procede a realizar las comparaciones de las medias, para determinar cuáles son las medias distintas, realizando el procedimiento POST HOC, mediante la prueba TUKEY.

Tabla 77. Comparaciones múltiples de adherencia al corte por cizalla a los 7 días de curado respecto a los diferentes tratamientos de TiO2

		Comparacione				
Variable dependiente: HSD Tukey	adherencia corte por ci	zalla a los 7 dias				
(I) porcentaje de tio2	(J) porcentaje de tio2	Diferencia de medias (I-J)	Desv. Error	Sig.	Intervalo de con Límite inferior	fianza al 95% Límite superior
0%tio2	3%tio2	-,44500	,05817	,000	-,6078	-,2822
	5%tio2	-,92667*	,05817	,000	-1,0895	-,7638
	7%tio2	-1,78000*	,05817	,000	-1,9428	-1,6172
3%tio2	0%tio2	,44500*	,05817	,000	,2822	,6078
	5%tio2	-,48167*	,05817	,000	-,6445	-,3188
	7%tio2	-1,33500*	,05817	,000	-1,4978	-1,1722
5%tio2	0%tio2	,92667	,05817	,000	,7638	1,0895
	3%tio2	,48167*	,05817	,000	,3188	,6445
	7%tio2	-,85333	,05817	,000	-1,0162	-,6905
7%tio2	0%tio2	1,78000*	,05817	,000	1,6172	1,9428
	3%tio2	1,33500	,05817	,000	1,1722	1,4978
	5%tio2	,85333*	,05817	,000	,6905	1,0162

Existen diferencias significativas entre los distintos tratamientos de morteros con porcentajes de 3%, 5% y 7% adicionado con dióxido de titanio (TiO2) frente al mortero patrón ya que, el valor de p es menor a 0.05 para todos los tratamientos.

Tabla 78. Homogeneidad de subconjuntos de adherencia al corte por cizalla a los 7 días de curado respecto a los diferentes tratamientos de TiO2

Adherencia corte por cizalla a los 7 dias					
HSD Tukey ^a					
Subconjunto para alfa = 0.05					
Porcentaje de tio2	N	1	2	3	4
0%tio2	6	5,1983			
3%tio2	6		5,6433		
5%tio2	6			6,1250	
7%tio2	6				6,9783
Sig.		1,000	1,000	1,000	1,000

Fuente: Propio

Según tabla N°78, de acuerdo a la prueba de comparaciones de las medias para los distintos tratamientos de dióxido de titanio se infiere que, la adherencia corte por cizalla a los 7 días de curado, del mortero patrón frente los tratamientos a 3%, 5%, 7% adicionado con dióxido de titanio TiO2, no presentan homogeneidad entre sí, por lo tanto se infiere que los tratamientos presentan diferencias significativas entre cada una de ellas.

4.3 Resultados del ensayo de absorción del mortero

A continuación, mostramos un resumen de los resultados obtenidos del ensayo de absorción promedio del mortero con los distintos porcentajes de dióxido de titanio incorporados en la mezcla:

Tabla 79. Resumen de resultados del ensayo absorción del mortero

Condición	Tasa de Absorción (gr/100 cm2)
0%	78.65
3%	74.22
5%	69.28
7%	61.52

En la siguiente figura N°60, mostramos la comparación de los resultados de absorción promedio, al 3%, 5% y 7% de dióxido de titanio respecto del mortero patrón:

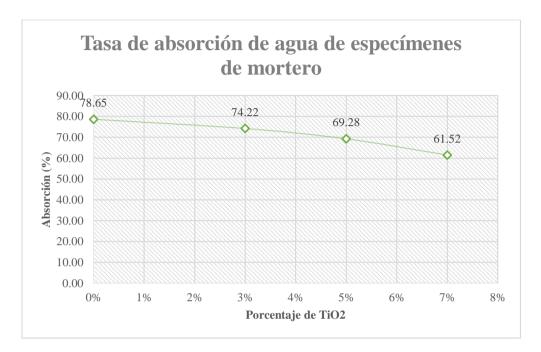


Figura 60: Tasa de absorción de agua de especímenes de mortero

Fuente: Propia

De la figura N°60, se observa que la tasa de absorción disminuyó respecto del mortero patrón, para el 3% en un 5.6%, para el 5% en un 11.9% y para el 7% hasta un 21.8%.

Análisis estadístico de absorción de agua a 24 horas respecto a los distintos tratamientos de dióxido de titanio TiO2

Para el análisis estadístico de los resultados de tasa de absorción de agua de las probetas de mortero patrón frente a un mortero adicionado con dióxido de titanio (TiO2) en porcentajes de 3%, 5% y 7%, se realizó la prueba de ANOVA de un factor y la prueba de rango múltiple TUKEY para determinar la diferencia estadística entre los diferentes tratamientos de dióxido de titanio a 24 horas, mediante la utilización del programa estadístico SPSS (Statistical Package for the Social Sciences). Según tabla N°80.

Tabla 80. Resumen de tasa de absorción de agua utilizados en programa SPSS

TIENADO	m2)			
TIEMPO SUMERGIDO		PORCENTA	JE DE (TiO2)	
SOWIENGIDO	0%	3%	5%	7%
	81.54	70.25	76.49	56.02
	75.66	72.94	71.08	57.09
24 HORAS	84.13	81.69	62.56	68.12
	78.65	77.55	64.00	63.26
	73.28	68.68	72.29	63.14

Prueba estadística de ANOVA

Esta prueba se realizará por tener variables cuantitativas, existiendo dos o más grupos de comparación, comparando las diferencias entre sus medias correspondientes, la prueba se realizó de acuerdo a las hipótesis de ANOVA como son hipótesis la nula Ho y alterna Ha, teniendo un nivel de significancia del 5% de la prueba.

Hipótesis de ANOVA

Hipótesis nula (Ho)= Las medias de los grupos son todos iguales

Hipótesis alterna (Ha)= No todas las medias de los grupos son iguales. (Al menos una de las medias es distinta)

Tabla 81. Anova de un factor de tasa de absorción de agua a 24 horas respecto a los diferentes tratamientos de TiO2

			ANOVA			
1	tasa de absorcion d	le agua 24 horas				
		Suma de cuadrados	gl	Media cuadrática	F	Sig.
1	Entre grupos	808,054	3	269,351	10,080	,001
1	Dentro de grupos	427,548	16	26,722		
	Total	1235,602	19			

183

El resultado de la prueba de ANOVA del grupo de tasa de absorción de agua de mortero a 24 horas de sumersión con respecto al mortero patrón y 3%,5% y 7% adicionado de TiO2 en probetas de mortero tiene un valor de significancia (α=0.05) frente al valor de probabilidad (sig.) es mayor, por lo tanto se rechaza la hipótesis nula y se acepta la hipótesis alterna: "Al menos una de las medias de los grupos tasa de absorción de agua según el tiempo de sumersión con respecto a distintos tratamientos de TiO2 en las probetas de mortero es diferente"

Prueba estadística Tukey

Una vez rechazada la hipótesis nula, se procede a realizar las comparaciones de las medias, para determinar cuáles son las medias distintas, realizando el procedimiento POST HOC, mediante la prueba TUKEY.

Tabla 82. Comparaciones múltiples de tasa de absorción de agua a 24 horas respecto a los diferentes tratamientos de TiO2

	(Comparacione	s múltiples			
Variable dependiente: HSD Tukey	tasa de absorcion de a	igua 24 horas				
					Intervalo de con	fianza al 95%
(I) porcentaje de tio2	(J) porcentaje de tio2	Diferencia de medias (I-J)	Desv. Error	Sig.	Límite inferior	Límite superior
0%tio2	3%tio2	4,43000	3,26936	,543	-4,9237	13,7837
	5%tio2	9,36800*	3,26936	,050	,0143	18,7217
	7%tio2	17,12600 [*]	3,26936	,000	7,7723	26,4797
3%tio2	0%tio2	-4,43000	3,26936	,543	-13,7837	4,9237
	5%tio2	4,93800	3,26936	,455	-4,4157	14,2917
	7%tio2	12,69600*	3,26936	,006	3,3423	22,0497
5%tio2	0%tio2	-9,36800 [*]	3,26936	,050	-18,7217	-,0143
	3%tio2	-4,93800	3,26936	,455	-14,2917	4,4157
	7%tio2	7,75800	3,26936	,123	-1,5957	17,1117
7%tio2	0%tio2	-17,12600 [*]	3,26936	,000	-26,4797	-7,7723
	3%tio2	-12,69600 [*]	3,26936	,006	-22,0497	-3,3423
	5%tio2	-7,75800	3,26936	,123	-17,1117	1,5957

Fuente: Propia

De la tabla de comparaciones múltiples de TUKEY a 24 horas respecto a distintos tratamientos, el resultado de los datos de tasa de absorción de agua son los siguientes:

- Existen diferencias significativas de la tasa de absorción de agua a las 24 horas del mortero patrón frente al mortero con 5%, 7% adicionado con dióxido de titanio TiO2 ya que, el valor de p es menor a 0.05.
- La tasa de absorción de agua a 24 horas de probetas de mortero patrón frente al mortero adicionado con 3% de dióxido de titanio TiO2, el valor de p es mayor a 0.05 por lo tanto no existen diferencias significativas entre los dos grupos de probetas.
- ➤ La tasa de absorción de agua a 24 horas de las probetas de mortero con 5% frente al mortero de 7% adicionado con dióxido de titanio TiO2, el valor de p es mayor a 0.05 por lo tanto no existen diferencias significativas entre los 2 grupos de probetas.
- No existen diferencias significativas entre la tasa de absorción de agua de las probetas del mortero 3% frente al mortero 5% adicionado con dióxido de titanio TiO2 ya que, los valores de p son mayores a 0.05

Tabla 83. Homogeneidad de subconjuntos de tasa de absorción de agua a 24 horas respecto a los diferentes tratamientos de TiO2

Tasa de absorcion de agua 24 horas								
HSD Tukey ^a								
Subconjunto para alfa = 0.05								
Porcentaje de tio2	N	1	2	3				
7%tio2	5	61,5260						
5%tio2	5	69,2840	69,2840					
3%tio2	5		74,2220	74,2220				
0%tio2	5			78,6520				
Sig.		,123	,455	,543				

Según tabla N°83, de acuerdo a la prueba de comparaciones de las medias para los distintos tratamientos de dióxido de titanio se infiere que, la tasa de absorción de agua a 24 horas, son homogéneos para los tratamientos de 7% y 5%; 3% y 5%; 3% y mortero patrón. Siendo estos grupos parte de un mismo subconjunto.

4.4 Resultados del ensayo de rodamina – factor de fotodegradación de color R4 Y R26

A continuación, mostramos un resumen de los resultados obtenidos en el ensayo de rodaminafactor de fotodegradación promedio del mortero con los distintos porcentajes de dióxido de titanio incorporados en la mezcla:

Tabla 84. Resumen de resultados del ensayo de rodamina –factor de fotodegradación de color R4 y R26

Condición	R4 promedio	R26 promedio	
Sin TiO2	10.42%	15.29%	
3%	33.76%	72.77%	
5%	39.59%	85.53%	
7%	44.58%	90.62%	

Fuente: Propia

En la siguiente figura, mostramos la comparación de los resultados del ensayo de rodamina mediante el factor de fotodegradacion de color promedio R4 (4 horas) y R26 (26 horas), al 3%, 5% y 7% de dióxido de titanio respecto del mortero patrón:

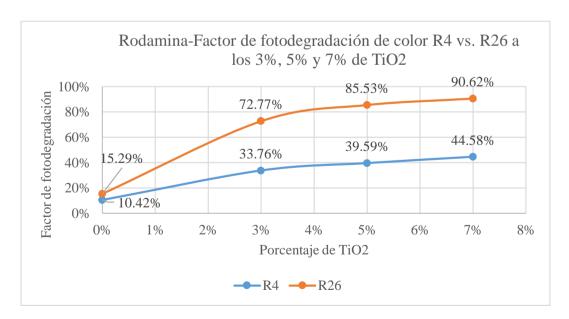


Figura 61: Rodamina - Factor de fotodegradación de color R4 vs. R26 al 3%,5% y 7% de TiO2

De la figura N°61, se observa que el factor de fotodegradación de color para las 4 horas (R4) del mortero patrón fue de 10.42 %, para el 3% fue de 33.76%, para el 5% fue de 39.59% y para el 7% el color se degradó en un 44.58%. En cambio, para las 26 horas (R26), el factor de fotodegradación del mortero patrón fue de 15.29 %, para el 3% fue de 72.77%, para el 5% fue de 85.53% y para el 7% el color se degradó en un 90.62%.

Si realizamos una comparación de porcentaje del mortero patrón para las 26 horas de medición respecto de los morteros adicionados al 3%, 5% y 7 % de TiO2, se obtiene que el factor de fotodegradación de color se incrementa, para el 3% en 375.8%, para el 5% en 459.2% más y para el 7% en 492.5%.

Análisis estadístico de auto limpieza de rodamina B para los factores R4 y R26 respecto a diferentes tratamientos

Para el análisis estadístico de los resultados de la degradación de la rodamina B de las probetas de mortero patrón frente a un mortero adicionado con dióxido de titanio (TiO2) en porcentajes de 3% 5% y 7%, se realizó la prueba de ANOVA de un factor y la prueba de rango múltiple TUKEY para determinar las diferencias estadísticas entre los diferentes tratamientos de dióxido de titanio para los factores R4 y R26, mediante la utilización del programa estadístico SPSS (Statistical Package for the Social Sciences). Según tabla N°85.

Tabla 85. Resumen de degradación de rodamina B utilizados en programa SPSS

PORCENTAJE DE (TiO2)	AUTO LIMPIEZA	DE RODAMINA B (%)
DE (1102)	R4	R26
0%	11.36	17.44
0%	10.16	16.25
0%	14.40	18.04
0%	11.55	18.77
0%	14.50	15.86
3%	31.16	74.07
3%	34.62	73.29
3%	33.22	70.29
3%	34.91	74.73
3%	34.89	71.46
5%	38.10	86.39
5%	43.35	82.44
5%	36.44	83.73
5%	40.81	88.52
5%	39.26	86.58
7%	44.17	89.67
7%	43.87	87.47
7%	44.02	91.68
7%	42.08	91.86
7%	48.76	92.45

Prueba estadística de ANOVA

Esta prueba se realizará por tener variables cuantitativas, existiendo dos o más grupos de comparación, comparando las diferencias entre sus medias correspondientes, la prueba se realizó de acuerdo a las hipótesis de ANOVA como son hipótesis la nula Ho y alterna Ha, teniendo un nivel de significancia del 5% de la prueba.

Hipótesis de ANOVA

Hipótesis nula (Ho)= Las medias de los grupos son todos iguales

Hipótesis alterna (Ha)= No todas las medias de los grupos son iguales. (Al menos una de las medias es distinta)

Tabla 86. Anova de un factor de degradación de rodamina B para los factores R4 y R26 respecto a los diferentes tratamientos de TiO2 de probetas de mortero

ANOVA									
		Suma de cuadrados	gl	Media cuadrática	F	Sig.			
auto limpieza R4 (%)	Entre grupos	3010,176	3	1003,392	205,277	,000			
	Dentro de grupos	78,208	16	4,888					
	Total	3088,383	19						
auto limpieza R26 (%)	Entre grupos	17034,775	3	5678,258	1514,860	,000			
	Dentro de grupos	59,974	16	3,748					
	Total	17094,748	19						

El resultado de la prueba de ANOVA de los grupos de degradación de rodamina B de los factores R4 y R26. Con respecto al mortero patrón y porcentajes al 3%,5% y 7% adicionado de TiO2 tiene un valor de significancia (α=0.05) frente al valor de probabilidad (sig.) es mayor, por lo tanto, se rechaza la hipótesis nula y se acepta la hipótesis alterna: "Al menos una de las medias de los grupos de degradación de rodamina B para los factores R4 y R26 respecto a distintos tratamientos de TiO2 en las probetas de mortero es diferente"

Tabla 87. Comparaciones múltiples de degradación de rodamina B para los factores R4 y R26 respecto a los diferentes tratamientos de TiO2 de probetas de mortero

		Comparaci	ones múltiple	s			
HSD Tukey							
			Diferencia de			Intervalo de con	fianza al 95% Límite
Variable dependiente	(I) porcentaje de tio2	(J) porcentaje de tio2	medias (I-J)	Desv. Error	Sig.	Límite inferior	superior
auto limpieza R4 (%)	0%tio2	3%tio2	-21,36600	1,39828	,000	-25,3665	-17,3655
		5%tio2	-27,19800 [*]	1,39828	,000	-31,1985	-23,197
		7%tio2	-32,18600 [*]	1,39828	,000	-36,1865	-28,1855
	3%tio2	0%tio2	21,36600	1,39828	,000	17,3655	25,3665
		5%tio2	-5,83200*	1,39828	,004	-9,8325	-1,8315
		7%tio2	-10,82000	1,39828	,000	-14,8205	-6,8195
	5%tio2	0%tio2	27,19800	1,39828	,000	23,1975	31,1985
7%tio2		3%tio2	5,83200	1,39828	,004	1,8315	9,8325
		7%tio2	-4,98800	1,39828	,012	-8,9885	-,9875
	0%tio2	32,18600	1,39828	,000	28,1855	36,186	
		3%tio2	10,82000	1,39828	,000	6,8195	14,820
		5%tio2	4,98800	1,39828	,012	,9875	8,988
auto limpieza R26 (%) 0%tio2	0%tio2	3%tio2	-55,49600 [*]	1,22448	,000	-58,9993	-51,9927
		5%tio2	-68,26000*	1,22448	,000	-71,7633	-64,7567
		7%tio2	-73,35400	1,22448	,000	-76,8573	-69,8507
	3%tio2	0%tio2	55,49600 [*]	1,22448	,000	51,9927	58,9993
		5%tio2	-12,76400*	1,22448	,000	-16,2673	-9,2607
		7%tio2	-17,85800 [*]	1,22448	,000	-21,3613	-14,3547
	5%tio2	0%tio2	68,26000 [*]	1,22448	,000	64,7567	71,7633
		3%tio2	12,76400*	1,22448	,000	9,2607	16,2673
		7%tio2	-5,09400*	1,22448	,004	-8,5973	-1,5907
	7%tio2	0%tio2	73,35400*	1,22448	,000	69,8507	76,8573
		3%tio2	17,85800*	1,22448	,000	14,3547	21,3613
		5%tio2	5,09400	1,22448	,004	1,5907	8,5973

De la tabla de comparaciones múltiples de TUKEY para los factores R4 y R26 de la degradación de la rodamina B respecto a distintos tratamientos, el resultado de los datos son los siguientes:

Existen diferencias significativas entre los factores R4 y R26 de degradación de la rodamina B de las probetas de morteros con porcentajes de 3%, 5% y 7% adicionado con

dióxido de titanio TiO2 frente al mortero patrón ya que, el valor de p es menor a 0.05 para todos los factores y tratamientos.

Tabla 88. Homogeneidad de subconjuntos de degradación de rodamina B para el factor R4 respecto a los diferentes tratamientos de TiO2

	Auto limpieza R4 (%)							
	HSD Tukey ^a							
	Subconjunto para alfa = 0.05							
1.	Porcentaje de tio2	N	1	2	3	4		
	0%tio2	5	12,3940					
	3%tio2	5		33,7600				
	5%tio2	5			39,5920			
	7%tio2	5				44,5800		
	Sig.		1,000	1,000	1,000	1,000		

Fuente: Propia

Según tabla N°88, de acuerdo a la prueba de comparaciones de las medias para los distintos tratamientos de dióxido de titanio se infiere que, la degradación de la rodamina B para el factor R4 respecto al mortero patrón y los tratamientos a 3%, 5%, 7% adicionado con dióxido de titanio TiO2, no presentan homogeneidad entre sí, por lo tanto, se infiere que los tratamientos presentan diferencias significativas cada una de ellas.

Tabla 89. Homogeneidad de subconjuntos de degradación de rodamina B para el factor R26 respecto a los diferentes tratamientos de TiO2

Auto limpieza R26 (%)							
HSD Tukey ^a							
Subconjunto para alfa = 0.05							
Porcentaje de tio2	N	1	2	3	4		
0%tio2	5	17,2720					
3%tio2	5		72,7680				
5%tio2	5			85,5320			
7%tio2	5				90,6260		
Sig.		1,000	1,000	1,000	1,000		

Según tabla N°89, de acuerdo a la prueba de comparaciones de las medias para los distintos tratamientos de dióxido de titanio se infiere que, la degradación de la rodamina B para el factor R26, respecto al mortero patrón y los tratamientos a 3%, 5%, 7% adicionado con dióxido de titanio TiO2, no presentan homogeneidad entre sí, por lo tanto, se infiere que los tratamientos presentan diferencias significativas cada una de ellas.

4.5 Resultados del ensayo de degradación del gas dióxido de nitrógeno (NO2) en el mortero

A continuación, mostramos un resumen de los resultados obtenidos en el ensayo de degradación de NO2-factor de fotodegradación promedio del mortero con los distintos porcentajes de dióxido de titanio incorporados en la mezcla:

Tabla 90. Resumen de resultados del ensayo de degradación del NO2 –factor de fotodegradación de color R4 y R26

Condición	R4 promedio	R26 promedio
Sin TiO2	7.28%	21.84%
3%	9.60%	23.12%
5%	10.31%	27.93%
7%	11.46%	36.81%

Fuente: Propia

En la siguiente figura, mostramos la comparación de los resultados del ensayo de degradación del NO2 mediante el factor de fotodegradacion de color promedio R4 (4 horas) y R26 (26 horas), al 3%, 5% y 7% de dióxido de titanio respecto del mortero patrón:

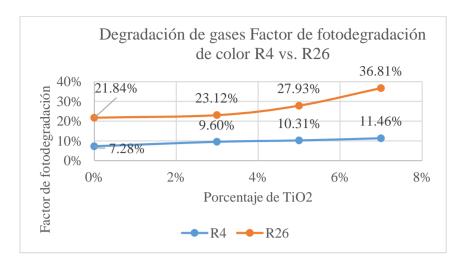


Figura 62: Degradación del NO2 - Factor de fotodegradación de color R4 vs. R26 al 3%,5% y 7% de TiO2

De la figura N°62, se observa que el factor de fotodegradación de color para las 4 horas (R4) del mortero patrón fue de 7.28 %, para el 3% fue de 9.60%, para el 5% fue de 10.31% y para el 7% el color se degradó en un 11.46%. En cambio, para las 26 horas (R26), el factor de fotodegradación del mortero patrón fue de 21.84%, para el 3% fue de 23.12%, para el 5% fue de 27.93% y para el 7% el color se degradó en un 36.81%.

Si realizamos una comparación de porcentaje del mortero patrón para las 26 horas de medición respecto de los morteros adicionados al 3%, 5% y 7 % de TiO2, se obtiene que el factor de fotodegradación de color se incrementa, para el 3% en 5.9%, para el 5% en 27.9% más y para el 7% en 68.5%.

Análisis estadístico de auto limpieza de rodamina B para los factores R4 y R26 respecto a diferentes tratamientos

Para el análisis estadístico de los resultados de la degradación del dióxido de nitrógeno (NO2) de las probetas de mortero patrón frente a un mortero adicionado con dióxido de titanio (TiO2) en porcentajes de 3% 5% y 7%, se realizó la prueba de ANOVA de un factor y la prueba de rango múltiple TUKEY para determinar las diferencias estadísticas entre los diferentes tratamientos de dióxido de titanio para los factores R4 y R26, mediante la utilización del programa estadístico SPSS (Statistical Package for the Social Sciences). Según tabla N°91.

Tabla 91. Resumen de degradación de dióxido de nitrógeno (NO2) utilizados en programa SPSS

PORCENTAJE DE (TiO2)	DEGRADACION DE DIOXIDO DE NITROGEN (NO2) EN PORCENTAJE (%)					
	R4	R26				
0%	8.78	22.90				
0%	5.47	21.25				
0%	6.62	20.32				
0%	2.52	19.08				
0%	13.00	25.65				
3%	7.41	14.82				
3%	8.47	21.77				
3%	7.39	24.52				
3%	11.14	24.72				
3%	13.57	29.78				
5%	7.94	22.21				
5%	8.35	30.96				
5%	7.74	32.56				
5%	11.39	24.76				
5%	16.11	29.18				
7%	14.48	37.76				
7%	12.27	35.86				
7%	7.94	35.24				
7%	9.61	33.72				
7%	13.00	41.46				

Prueba estadística de ANOVA

Esta prueba se realizará por tener variables cuantitativas, existiendo dos o más grupos de comparación, comparando las diferencias entre sus medias correspondientes, la prueba se realizó de acuerdo a las hipótesis de ANOVA como son hipótesis la nula Ho y alterna Ha, teniendo un nivel de significancia del 5% de la prueba.

Hipótesis de ANOVA

Hipótesis nula (Ho)= Las medias de los grupos son todos iguales Hipótesis alterna (Ha)= No todas las medias de los grupos son iguales. (Al menos una de las medias es distinta)

Tabla 92. Anova de un factor de degradación del dióxido de nitrógeno (NO2) para los factores R4 y R26 respecto a los diferentes tratamientos de TiO2 de probetas de mortero

ANOVA								
		Suma de cuadrados	gl	Media cuadrática	F	Sig.		
degradacion R4 (%)	Entre grupos	46,677	3	15,559	1,471	,260		
	Dentro de grupos	169,258	16	10,579				
	Total	215,935	19					
degradacion R26 (%)	Entre grupos	690,039	3	230,013	14,382	,000		
	Dentro de grupos	255,892	16	15,993				
	Total	945,931	19					

El resultado de la prueba de ANOVA de los grupos degradación del dióxido de nitrógeno (NO2) de los factores R4 y R26. Con respecto al mortero patrón y porcentajes al 3%,5% y 7% adicionado de TiO2, se tiene que R4 tiene un valor de significancia (Sig=0.260) frente al valor de probabilidad (α =0.05), por lo tanto se acepta la hipótesis nula el cual nos indica que las medias del mortero patrón frente a los porcentajes 3% ,5% y 7% adicionado de TiO2 son iguales, sin embargo para R26 el mortero patrón frente a los porcentajes de 3%,5% y 7% adicionado de TiO2 tiene una significancia (Sig=0.00) el cual es menor a la probabilidad (α =0.05), rechazando la hipótesis nula y se acepta la hipótesis alterna: "Al menos una de las medias de los grupos de degradación del dióxido de nitrógeno (NO2) para el factor R26 respecto a distintos tratamientos de TiO2 en las probetas de mortero es diferente"

Tabla 93. Comparaciones múltiples de degradación del dióxido de nitrógeno (NO2) para los factores R4 y R26 respecto a los diferentes tratamientos de TiO2 de probetas de mortero

		Comparac	iones múltiple	s			
HSD Tukey							
						Intervalo de con	fianza al 95%
Variable dependiente	(I) porcentaje de tio2	(J) porcentaje de tio2	Diferencia de medias (I-J)	Desv. Error	Sig.	Límite inferior	Límite superior
degradacion R4 (%)	0%tio2	3%tio2	-2,31800	2,05705	,679	-8,2033	3,567
		5%tio2	-3,02800	2,05705	,476	-8,9133	2,857
		7%tio2	-4,18200	2,05705	,217	-10,0673	1,703
	3%tio2	0%tio2	2,31800	2,05705	,679	-3,5673	8,203
		5%tio2	-,71000	2,05705	,985	-6,5953	5,175
		7%tio2	-1,86400	2,05705	,802	-7,7493	4,021
	5%tio2	0%tio2	3,02800	2,05705	,476	-2,8573	8,913
		3%tio2	,71000	2,05705	,985	-5,1753	6,595
		7%tio2	-1,15400	2,05705	,942	-7,0393	4,731
	7%tio2	0%tio2	4,18200	2,05705	,217	-1,7033	10,067
		3%tio2	1,86400	2,05705	,802	-4,0213	7,749
		5%tio2	1,15400	2,05705	,942	-4,7313	7,039
degradacion R26 (%)	0%tio2	3%tio2	-1,28200	2,52929	,956	-8,5183	5,954
		5%tio2	-6,09400	2,52929	,115	-13,3303	1,142
		7%tio2	-14,96800*	2,52929	,000	-22,2043	-7,731
	3%tio2	0%tio2	1,28200	2,52929	,956	-5,9543	8,518
		5%tio2	-4,81200	2,52929	,266	-12,0483	2,424
		7%tio2	-13,68600 [*]	2,52929	,000	-20,9223	-6,449
	5%tio2	0%tio2	6,09400	2,52929	,115	-1,1423	13,330
		3%tio2	4,81200	2,52929	,266	-2,4243	12,048
		7%tio2	-8,87400	2,52929	,014	-16,1103	-1,637
	7%tio2	0%tio2	14,96800	2,52929	,000	7,7317	22,204
		3%tio2	13,68600*	2,52929	,000	6,4497	20,922
		5%tio2	8,87400*	2,52929	,014	1,6377	16,110

De la tabla de comparaciones múltiples de TUKEY para los factores R4 y R26 de la degradación del dióxido de nitrógeno (NO2) respecto a distintos tratamientos, el resultado de los datos son los siguientes:

No existen diferencias significativas de degradación del dióxido de nitrógeno (NO2) para el factor R4, de las probetas con porcentajes de 3%, 5% y 7% adicionado con TiO2 frente al mortero patrón, en vista que los valores de p (sig.) es mayor a 0.05 para todos los factores y tratamientos.

Existen diferencias significativas de degradación del dióxido de nitrógeno (NO2) para el factor R26, de las probetas con porcentajes de 3%, 5% y 7% adicionado con TiO2 frente al mortero patrón, en vista que los valores de p (sig.) es menor a 0.05 para todos los factores y tratamientos.

Tabla 94. Homogeneidad de subconjuntos de degradación del dióxido de nitrógeno (NO2) para el factor R4 respecto a los diferentes tratamientos de TiO2

Degradacion R4 (%)							
HSD Tukey ^a							
		Subconjunto para alfa = 0.05					
Porcentaje de tio2	N	1					
0%tio2	5	7,2780					
3%tio2	5	9,5960					
5%tio2	5	10,3060					
7%tio2	5	11,4600					
Sig.		,217					
Se visualizan las medias para los grupos en los subconjuntos homogéneos. a. Utiliza el tamaño de la muestra de la media armónica = 5,000.							

Fuente: Propia

Según tabla N°94, de acuerdo a la prueba de comparaciones de las medias para los distintos tratamientos de dióxido de titanio se infiere que, la degradación del dióxido de nitrógeno (NO2) para el factor R4 respecto al mortero patrón y los tratamientos a 3%, 5%, 7% adicionado con dióxido de titanio TiO2, presentan homogeneidad entre sí, por lo tanto, se infiere que los tratamientos no presentan diferencias significativas cada una de ellas.

Tabla 95. Homogeneidad de subconjuntos de degradación del dióxido de nitrógeno (NO2) para el factor R26 respecto a los diferentes tratamientos de TiO2

Degradacion R26 (%)								
HSD Tukey ^a								
		Subconjunto para alfa = 0.05						
Porcentaje de tio2	N	1	2					
0%tio2	5	21,8400						
3%tio2	5	23,1220						
5%tio2	5	27,9340						
7%tio2	5		36,8080					
Sig.		,115	1,000					
Se visualizan las medias para los grupos en los subconjuntos homogéneos. a. Utiliza el tamaño de la muestra de la media armónica = 5,000.								

Según tabla N°95, de acuerdo a la prueba de comparaciones de las medias para los distintos tratamientos de dióxido de titanio se infiere que, la degradación del dióxido de nitrógeno (NO2) para el factor R26 respecto al mortero patrón y los tratamientos a 3%, 5%, 7% adicionado con dióxido de titanio TiO2, no presentan homogeneidad entre sí, por lo tanto, se infiere que los tratamientos presentan diferencias significativas cada una de ellas.

4.6 Análisis de costos unitarios

Se realizó el análisis de costos unitarios de la partida de tarrajeo, ya que el mortero de estudio es el de revestimiento, para lo cual incluimos la mano de obra, herramientas manuales y el material a necesario para esta partida. Los precios por unidad de medida de los recursos de la partida, son basados en presupuestos de obras actuales de la ciudad del Cusco.

Procesamiento

Se procedió a hallar el metrado para 1 m2 con un espesor de 0.025 m de tarrajeo, a partir del metrado que se tenía para 1 m3. Las unidades de medida para el cemento se dan en bolsas, de

la arena fina y el agua en m3, y para el dióxido de titanio en kg, debido a que la venta normal de estos materiales se realiza en estas unidades.

A continuación, presentamos el análisis de costos unitarios (A.C.U.) para la partida de tarrajeo sin dióxido de titanio, y con dióxido de titanio al 3%, 5% y 7%:

Tabla 96. Análisis de costos unitarios de la partida de tarrajeo de muros (mortero patrón 0% de TiO2)

Rendimiento Partida: Tarrajeo de mur	m2/DIA: os, e=2.5 cm	8		a/c:	0.85
Descripción de recurso	Unidad	Cuadrilla	Cantidad	Precio inc. IGV	Parcial
		Mano de Obi	ra		
Operario	hh	1	1.0000	S/. 10.41	S/. 10.41
Peón	hh	0.5	0.5000	S/. 7.50	S/. 3.75
					S/. 14.16
		Material			
Cemento P.T.I	bls.		0.2295	S/. 23.00	S/. 5.28
Arena Cunyac	m3		0.0121	S/. 150.00	S/. 1.82
Agua	m3		0.0083	S/. 25.00	S/. 0.21
					S/. 7.31
		Equipos			
Herramientas Manuales	%MO		3.00	S/. 14.16	S/. 0.42
		Co	osto Directo Ur	nitario por m2:	S/. 21.89

Fuente: Propia

Tabla 97. Análisis de costos unitarios de la partida de tarrajeo de muros (mortero 3% de TiO2)

Rendimiento Partida: Tarrajeo de mur	m2/DIA: os, e=2.5 cm	8		a/c:	0.85
Descripción de recurso	Unidad	Cuadrilla	Cantidad	Precio	Parcial
		Mano de Obi	ra		
Operario Peón	hh hh	1 0.5	1.00 0.50	S/. 10.41 S/. 7.50	S/. 10.41 S/. 3.75 S/. 14.16
		Material			
Cemento P.T.I	bls.		0.2295	S/. 23.00	S/. 5.28
Arena Cunyac Agua TiO2	m3 m3 kg		0.0121 0.0083 0.2926	S/. 150.00 S/. 25.00 S/. 20.00	S/. 1.82 S/. 0.21 S/. 5.85 S/. 13.16
		Equipos			5/• 15•10
Herramientas Manuales	%MO	1 1	3.00	S/. 14.16	S/. 0.42
		Co	sto Directo Un	itario por m2:	S/. 27.74

Fuente: Propia

Tabla 98. Análisis de costos unitarios de la partida de tarrajeo de muros (mortero 5% de TiO2)

Rendimiento	m2/DIA:	8		a/c:	0.85
Partida: Tarrajeo de mu	ros, e=2.5 cn	1			
Descripción de recurso	Unidad	Cuadrilla	Cantidad	Precio	Parcial
		Mano de Ob	ra		
Operario	hh	1	1.00	S/. 10.41	S/. 10.41
Peón	hh	0.5	0.50	S/. 7.50	S/. 3.75
					S/. 14.16
		Material			
Cemento P.T.I	bls.		0.2295	S/. 23.00	S/. 5.28
Arena Cunyac	m3		0.0121	S/. 150.00	S/. 1.82
Agua	m3		0.0083	S/. 25.00	S/. 0.21
TiO2	kg		0.4877	S/. 20.00	S/. 9.75
					S/. 17.06
		Equipos			
Herramientas Manuales	%MO		3.00	S/. 14.16	S/. 0.42
		Cost	to Directo Uni	tario por m2:	S/. 31.65

Fuente: Propia

Tabla 99. Análisis de costos unitarios de la partida de tarrajeo de muros (mortero 7% de TiO2)

Rendimiento	m2/DIA:	8		a/c:	0.85
Partida: Tarrajeo de mu	ros, e=2.5 cn	1			
Descripción de recurso	Unidad	Cuadrilla	Cantidad	Precio	Parcial
		Mano de Ob	ra		
Operario	hh	1	1.00	S/. 10.41	S/. 10.41
Peón	hh	0.5	0.50	S/. 7.50	S/. 3.75
					S/. 14.16
		Material			
Cemento P.T.I	bls.		0.2295	S/. 23.00	S/. 5.28
Arena Cunyac	m3		0.0121	S/. 150.00	S/. 1.82
Agua	m3		0.0083	S/. 25.00	S/. 0.21
TiO2	kg		0.6828	S/. 20.00	S/. 13.66
					S/. 20.96
		Equipos			
Herramientas Manuales	%MO		3.00	S/. 14.16	S/. 0.42
		Cost	to Directo Uni	tario por m2:	S/. 35.55

Fuente: Propia

Capítulo V: Discusión

a. Contraste de resultados con referentes del marco teórico

a.1 ¿Cómo resulta el contraste de las propiedades fisicomecánicas y fotocatalíticas encontradas respecto del antecedente de Manuel Vásquez Espinoza?

Discusión N°1: Según Vásquez Manuel (2016), el antecedente nacional, que titula: "Influencia del fotocatalizador dióxido de titanio en la propiedad autolimpiable del concreto f'c=210 Kg/cm2", fue aplicado en el concreto, sin embargo, los resultados obtenidos son relativamente parecidos al de nuestra tesis, ya que nosotros usamos el TiO2 como aditivo. Respecto al antecedente, para la propiedad fotocatalítica de autolimpieza analizado a las 26 horas, menciona que el concreto patrón logró degradarse, en el ensayo de rodamina, hasta un 19.34%, sin embargo, para el concreto modificado con el 3% de TiO2, lo degradó en 59.11% y para el 6% en un 71.20%. Aquí podemos observar que existe un contraste significativo en los resultados que obtuvimos en la presente tesis, llegando a degradar el color en el mortero para el 3% de TiO2 hasta un 72.77%, para el 5% de TiO2 un 85.53%, y para el 7% de TiO2 90.62%.

En cuanto a las propiedades mecánicas, según el antecedente mencionado, la resistencia a compresión tuvo una disminución máxima a los 28 días de un 4.7% para el concreto modificado al 15% de TiO2. Sin embargo, para la presente tesis, el mortero modificado al 7% de TiO2 disminuyó su resistencia a compresión en 17.28% a los 28 días.

De esto podemos observar que los porcentajes de los resultados obtenidos en la presente tesis, no son tan parecidos con el del antecedente, sin embargo, el contraste al que se llega, es que se mantiene la analogía de aumento para el porcentaje del factor de fotodegradación, así como la disminución en los porcentajes obtenidos en la resistencia a compresión.

a.2 ¿Cómo resulta el contraste de las propiedades fisicomecánicas encontradas respecto del antecedente de David Jiménez Cortes y Juan Moreno Burbano?

Discusión N°2: El antecedente obtuvo resultados respecto a la tasa de absorción, siendo que para un 5% de TiO2 aumenta un 5.98% respecto del mortero patrón, sin embargo, para el 10% de TiO2, la absorción disminuye en un 5.38%. En cuanto a la resistencia a compresión el aumento máximo que se obtuvo fue para el 5% de TiO2 del mortero, pero luego tuvo una

disminución del 6% para el 7.5% y 8.5% de TiO2, el contraste de nuestra investigación con ésta, se da parcialmente en la propiedad mecánica de resistencia a compresión, teniendo el TiO2 un comportamiento similar en el mortero, sin embargo para la absorción en este caso fue diferente ya que en la presente investigación si disminuye hasta un 21.8% al 7% de TiO2 respecto del mortero patrón. Un dato interesante que encontramos en el antecedente, fue que al aumentar TiO2 el porcentaje de fluidez baja, tal caso que ocurrió igualmente en nuestra investigación, dando resultados de que hasta un 3% de TiO2 el mortero es manejable, pero para el 5% y 7% ésta ya no lo es.

b. Interpretación de los resultados encontrados en la investigación

b.1 ¿Cómo intermedian las variables consideradas como objetivo en la investigación en el mortero adicionado con dióxido de titanio (TiO2) en la presente investigación?

Discusión N°3: De acuerdo a los resultados obtenidos en cuanto a las variables consideradas (propiedades físico-mecánicas y fotocatalíticas) y estableciendo la relación que tienen éstas con el mortero adicionado con dióxido de titanio (TiO2), se tienen las siguientes interpretaciones:

Propiedades físico-mecánicas

- ✓ La fluidez del mortero adicionado con dióxido de titanio respecto del mortero patrón, disminuye al aumentar la concentración de dióxido de titanio en la mezcla de mortero.
- ✓ La resistencia a la compresión del mortero adicionado con dióxido de titanio respecto del mortero patrón, aumenta hasta un cierto límite de concentración de dióxido de titanio en el mortero, pero atravesado dicho límite, al adicionar más dióxido de titanio, la resistencia a compresión del mortero tiende a disminuir.
- ✓ En cuanto a la adherencia del mortero adicionado con dióxido de titanio respecto del mortero patrón, se incrementa al añadir más cantidad de dióxido de titanio a la mezcla de mortero.
- ✓ La tasa de absorción del mortero adicionado con dióxido de titanio respecto del mortero patrón, disminuye al aumentar la concentración del dióxido de titanio en la mezcla de mortero.

Propiedades fotocatalíticas

✓ En cuanto a la propiedad de autolimpieza y degradación de gas dióxido de nitrógeno medidos mediante el factor de fotodegradación del mortero adicionado con dióxido de titanio respecto del mortero patrón, incrementan al adicionar dióxido de titanio.

c. Comentario de la demostración de la hipótesis

c.1 ¿Cómo se explica la conformidad de la hipótesis general con los resultados obtenidos?

Discusión N°4: La conformidad de la hipótesis general con los resultados obtenidos es parcial. Esto debido a que en el mortero de tarrajeo, las propiedades físico-mecánicas de resistencia a compresión y fluidez, tuvieron una mejora parcial, resultando conveniente modificarlo hasta un 3% de TiO2. En cuanto a las propiedades físico-mecánicas (adherencia y tasa de absorción) y fotocatalíticas (autolimpieza y degradación del gas dióxido de nitrógeno), si hubo una mejora total para todos los porcentajes (3%, 5% y 7%) de modificación de TiO2 en el mortero.

d. Aporte de la investigación

d.1 ¿Cuál es el aporte de la presente investigación realizada?

Discusión N°5:

- ✓ Se pretende dar a conocer la influencia que genera el dióxido de titanio adicionado al mortero para su utilización en el sector construcción, específicamente en el tema del tarrajeo, dando un aporte con la mejora de las propiedades físico-mecánicas y fotocatalíticas en el mortero.
- ✓ La mejora de las propiedades físico-mecánicas (resistencia a la compresión, adherencia y tasa de absorción) y fotocatalíticas (autolimpieza, degradación del gas NO2), confrontan el problema que generalmente se presenta en el tarrajeo, que por lo general está expuesto al intempersimo, que incluyen los factores de humedad (que produce eflorescencia), suciedad, contaminación ambiental, contribuyendo a la durabilidad del tarrajeo.

- ✓ Pretende dar a conocer la utilización del dióxido de titanio TiO2 como un fotocatalizador mediante la utilización en los materiales de construcción.
- ✓ Se tiene un aporte en la reducción de las concentraciones de NO2 que emite el tráfico automotor de las ciudades y también de las concentraciones de COVS (compuestos orgánicos volátiles) a través de edificaciones expuestas a la intemperie revestidas con morteros adicionados de dióxido de titanio TiO2.
- ✓ Reducen la capacidad adherencia de partículas extrañas, polvo o impurezas sobre las superficies, de manera que su limpieza y su estética, es más duradera que un mortero convencional.

e. Incorporación de temas nuevos que se han presentado durante el proceso de la investigación

Discusión N°6:

- ✓ Se tuvo que investigar el tema de radiación solar que llega a la tierra, ya que éste era de importancia para generar la propiedad fotocatalítica en el mortero.
- ✓ La fluidez del mortero es muy importante para realizar el diseño de mezcla, en el cual influye el incremento o disminución del agua, de acuerdo al tipo de consistencia que se desea lograr.
- ✓ Se tuvo que investigar el proceso químico de oxidación del cobre con la utilización del ácido nítrico para la producción del gas contamínate dióxido de nitrógeno (NO2).
- ✓ Se investigaron las patologías que existen en la construcción, causas de alteración de la durabilidad de los materiales de construcción como el mortero, principalmente causas físicas como la erosión, humedad; mecánicas como los agrietamientos y químicas como la eflorescencia.
- ✓ Se incorporó el tema contrastación de hipótesis, mediante la prueba estadística ANOVA y TUKEY para determinar el grado de relación entre las variables dependientes e independientes y/o existencia de diferencias significativas.

Glosario

ABSORCIÓN: Incremento de la masa del agregado debido al agua que existe en los poros del mismo, no incluye el agua superficial adherida en la superficie exterior de las partículas del agregado.

ADHERENCIA: La adherencia del mortero indica la resistencia a tracción que existe entre la unión entre el mortero y la unidad de albañilería.

AGLUITNANTE: Material capaz de unir partículas para formar un conjunto compacto.

ÁLCALI: Óxido o hidróxido metálico soluble en agua que genera reacción básica, éstos se encuentran en el cemento.

ALOTRÓPÍA: Propiedad que tienen ciertos elementos químicos de aparecer con distintas características, como con una distinta estructura molecular.

AUTOLIMPIEZA: Capacidad que tiene un elemento de poder realizar su propia limpieza.

CAPILARIDAD: Propiedad en la cual un líquido puesto en contacto con un sólido sube o baja mediante la estructura interna capilar del sólido.

CATALIZADOR: Acelera o retarda una reacción química sin ser parte de ella.

CIZALLAMIENTO: Es la resistencia al corte que se produce por una fuerza externa.

COLORÍMETRO: Instrumento que permite la medición del color.

CONSISTENCIA: Capacidad de deformación de la mezcla de mortero o concreto.

CURADO: Proceso para mantener el concreto o mortero a una temperatura y humedad adecuada para garantizar su debida hidratación y endurecimiento.

DELETÉREA: Que produce daño y es perjudicial.

DIÓXIDO DE TITANIO (TiO2): Molécula compuesta de titanio y oxígeno.

ELECTRÓN: Partícula que constituye a los átomos y que presenta carga negativa.

FOTOACTIVACIÓN: Activación que se produce de un fenómeno cuando ciertas sustancias se exponen a la luz.

FOTOCATÁLISIS: Reacción fotoquímica, que convierte la energía solar en energía química, que se acelera mediante un material llamado fotocatalizador.

FOTOCATALIZADOR: Material semiconductor que acelera la velocidad de reacción.

FOTODEGRADACIÓN: Degradación de alguna superficie que se genera por la acción de la radiación ultravioleta.

FRAGUADO: Acción de endurecer un material.

INORGÁNICO: Aquello que carece de órganos aptos para la vida.

MAMPOSTERÍA: Sistema de construcción que consiste en levantar muros, mediante unidades de albañilería y un elemento de pega.

MORTERO: Mezcla echa de cemento, agua y agregado fino o con un aditivo adicional, que se utiliza en la construcción para fijar unidades de albañilería o revestir superficies de concreto.

NEUTRALIZAR: Hacer que disminuya o quede anulado el efecto de una acción.

ORGÁNICO: Compuestos orgánicos son aquellos que tiene como elemento principal el carbono, sintetizado generalmente por seres vivos.

ÓXIDOS DE NITROGENO (NOx): Grupo de gases muy reactivos como el óxido nítrico (NO) y el dióxido de nitrógeno (NO2).

REACTIVO: Sustancia que tiene la capacidad de provocar reacciones.

RELACIÓN AGUA/CEMENTO: Relación que existe entre la cantidad de agua y cemento, el cual influye en la resistencia de la mezcla de concreto o mortero.

RESISTENCIA: Capacidad de resistir a cargas de distintos tipos, éstas puedes ser cargas de compresión, adherencia, tracción, flexión, etc.

REVESTIMIENTO O TARRAJEO: Aplicación de mezcla de mortero en la superficie de estructuras de concreto con el fin de revestir dicha estructura, brindando protección y un mejor aspecto.

RODAMINA B: Es un compuesto químico de color violeta, que pertenece a la familia de rodaminas.

SEMICONDUCTOR: Son conductores que tienen la capacidad de pasar libremente energía eléctrica.

PATOLOGIA: estudio sistemático de procesos y características de los daños que puede sufrir el concreto.

EFLORESCENCIA: proceso patológico el cual las sales solubles presentes en materiales son arrastrados a la superficie y cristalizando sobre la misma, causada principalmente por la aparición de humedad.

RAYOS ULTRAVIOLETA (UV): Radiación electromagnética cuya longitud de onda es menor que cualquiera de las del espectro visible.

206

FLUIDEZ: la consistencia de una mezcla, término general que se refiere al carácter de la mezcla.

Conclusiones

Conclusión 1

Se consiguió demostrar parcialmente la hipótesis general "El resultado de la evaluación de las propiedades físico mecánicas y fotocataliticas del mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85 mejora las propiedades mecánicas, adquiriendo la propiedad fotocatalitica del mortero"

Respecto a las propiedades físicas mecánicas del mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7%, para la adherencia al corte por cizalle del mortero incrementó, resultando para el mortero adicionado al 7% de TiO2, 6.98 kg/cm2 y para el mortero patrón se obtuvo un valor de 5.20 kg/cm2. De igual manera la tasa de absorción de agua del mortero fue menor para la concentración de 7 % de TiO2 con un resultado de 61.52 gr/100 cm2 frente al mortero patrón que obtuvo 78.65 gr/100 cm2. Sin embargo, se obtuvo el decremento de la resistencia a la compresión, para el mortero patrón resultó 162.80 kg/cm2 y para el mortero adicionado al 7% de TiO2 se obtuvo un resultado de 134.67 kg/cm2 para un tiempo de curado de 28 días. Así mismo, la consistencia del mortero patrón resultó de 118.33 % de fluidez, más para el mortero adicionado al 7% de TiO2 fue de 85.00%.

Respecto del mortero adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% se obtuvo la propiedad respecto del mortero patrón de cemento portland tipo I relación A/C=0.85. Para la propiedad fotocatalítica de autolimpieza, los valores del factor de fotodegradación fueron de 72.77%,85.53% y 90.62% para el 3%, 5% y 7% respectivamente, frente al mortero patrón que obtuvo un 15.29%. En cuanto a la propiedad de degradación del gas NO2, los valores obtenidos fueron de 23.12%, 27.93% y 36.81% para el 3%, 5% y 7% respectivamente, frente al mortero patrón que obtuvo un 21.84%

Conclusión 2

Se logró demostrar parcialmente la sub hipótesis "Las propiedades mecánicas "adherencia, absorción y resistencia a compresión" obtenidas de los testigos de mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85 tendrán una mejora sustancial de las mismas.

La resistencia a la compresión obtenida de los morteros adicionados con dióxido de titanio en concentraciones de 3% 5% y 7% de a/c = 0.85 a un tiempo de curado de 28 días fueron de 163.73 ± 6.11 ; 148.93 ± 7.11 ; 134.67 ± 2.72 kg/cm2 respectivamente, respecto a la resistencia a compresión del mortero patrón cuyo resultado fue de 162.80 ± 5.60 . El cual indica que hubo una mejoría de la resistencia a compresión solo en la concentración del 3% de dióxido de titanio. Teniendo un decremento de la resistencia para los porcentajes 5 % y 7% de dióxido de titanio respecto al mortero patrón.

La adherencia corte por cizalla de los morteros adicionados con dióxido de titanio en concentraciones de 3% 5% y 7% de a/c = 0.85 a un tiempo de curado de 7 días fueron de 5.64; 6.13; 6.98 kg/cm2 respectivamente, resultados mayores respecto a un mortero patrón de adherencia corte por cizalla 5.20 kg/cm2.

La tasa de absorción de agua de los morteros adicionados con dióxido de titanio en concentraciones de 3% 5% y 7% de a/c = 0.85 sumergidos durante 48 horas y secado en horno a temperatura 110 ± 5 C° durante 24 horas fueron de 74.22; 69.28; 61.52 gr/100cm2 respectivamente, resultados menores respecto a un mortero patrón tasa de absorción de agua de 78.65 gr/100cm2.

En cuanto a la fluidez del mortero adicionado con dióxido de titanio en concentraciones de 5% y 7%, dieron como resultado un porcentaje de fluidez promedio de 95.09% y 85% respectivamente, pero el mortero adicionado al 3% de dióxido de titanio dio un porcentaje de fluidez promedio de 105.83% encontrándose aún en el rango plástico, es decir con una buena trabajabilidad para el mortero de tarrajeo.

Los morteros adicionados con dióxido de titanio en concentraciones de 5% y 7% cuyas resistencias son bajas respecto a lo esperado, esto es producido por la incorporación del dióxido de titanio a la mezcla haciendo que los elementos que conforman la mezcla no tengan una combinación homogénea entre sí, para que conformen una mezcla adecuada y alcancen resistencias altas.

Conclusión 3

Se logró demostrar la sub hipótesis "La auto limpieza aumenta respecto a la exposición a radiación de tipo ultravioleta del mortero de cemento portland tipo I relación A/C 0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85."

La auto limpieza obtenida de la degradación de la rodamina B de los morteros adicionados con dióxido de titanio en concentraciones de 3% 5% y 7% de a/c = 0.85 para los factores R4 y R26 cumplió con la norma UNI 11259, obteniendo valores más altos para el factor R26 con 72.77%,85.53% y 90.62% para las concentraciones de 3% ,5% y 7% respectivamente, respecto a la degradación de la rodamina B del mortero patrón cuyo resultado fue de 15.29%.

Conclusión 4

Se logró demostrar la sub hipótesis "La influencia del dióxido de titanio adicionado en mortero de cemento portland tipo I relación A/C 0.85 en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85 aumenta la degradación del gas dióxido de nitrógeno NO2.

La degradación del gas NO2 obtenida del ensayo de fotodegradación de los morteros adicionados con dióxido de titanio en concentraciones de 3% 5% y 7% de a/c = 0.85 para los factores R4 y R26 cumplió con la norma UNI 11259, obteniéndose los valores más altos para el factor R26 con 23.12%, 27.93% y 36.81% para las concentraciones de 3% ,5% y 7% respectivamente, respecto a la fotodegradación del mortero patrón cuyo resultado fue de 21.84%.

Conclusión 5

Se logró demostrar la sub hipótesis "La variación de los costos de elaboración de mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% aumenta frente al mortero patrón de cemento portland tipo I relación A/C=0.85."

El análisis de costos unitarios para el tarrajeo en exteriores acabado con mortero de cemento sin dióxido de titanio TiO2 es de S/. 21.89 el cual es un costo menor comparado con los precios unitarios de los morteros adicionados con dióxido de titanio (TiO2), siendo entre estos el más económico el mortero adicionado con 3% de dióxido de titanio TiO2 con un costo de S/.27.74.

Recomendaciones

Recomendación N°1:

Se recomienda el uso de la presente investigación en el mortero de revestimiento en el contexto de la construcción civil, el cual puede ser aplicado en interiores o exteriores como tarrajeo, aprovechando las propiedades brindadas del mortero adicionado con TiO2 al 3%, mejorando la adherencia de los morteros, degradación de contaminantes o presencia del gas contaminante óxido de nitrógeno sobre las superficies.

Recomendación N°2:

La presente investigación nos da a conocer un tipo de tecnología fotocatalítica, que se debería aplicar a las futuras edificaciones mediante su uso como material de construcción, ya que brinda propiedades fotocatalíticas al mortero de tarrajeo, como la degradación de agentes contaminantes presentes en el medio ambiente y de autolimpieza.

Recomendación N°3:

Se recomienda realizar la prueba de fotocatálisis mediante la "degradación de la rodamina B" con probetas de mortero adicionados al 3%, 5% y 7% de dióxido de titanio TiO2, que se encuentren en estado saturado y superficialmente saturado, ya a que la tasa de absorción según la presente investigación disminuyó hasta un 21.8% al 7% de TiO2 respecto del mortero patrón, por lo que, se podría afirmar que la degradación de rodamina B, funciona en superficies saturadas. Con el fin de usarlo en tarrajeos exteriores, en climas donde la precipitación pluvial sea elevada.

Recomendación N°4:

Se recomienda realizar un estudio de tratamiento antibacteriano de agua, en sistemas de recolección de aguas residuales como canales, para mejorar la calidad del consumo de agua en

beneficio de la sociedad, mediante la utilización de concreto adicionado con dióxido de titanio TiO2, de acuerdo con el ensayo descrito en la norma industrial japonesa traducidas por las siglas en inglés (Japanese Industrial Standard) JIS R 1702.

Recomendación N°5:

Se recomienda realizar el ensayo de fotocatálisis, probando diferentes gases contaminantes presentes en el medio ambiente, mediante el uso de morteros y/o concretos, ya que según el ensayo realizado en la presente investigación se logró degradar el gas dióxido de nitrógeno (NO2) hasta un 68.5% más respecto del mortero patrón al modificarlo con 7% de TiO2, con el fin de aplicarlo en el tarrajeo de interiores y/o exteriores en la construcción.

Recomendación N°6:

Se recomienda investigar la patología de la carbonatación de concretos que generalmente se presenta en estructuras de edificaciones expuestas al CO2 acompañado de la humedad. Esto mediante el ensayo de la degradación de la rodamina B del concreto adicionado con dióxido de titanio al 3%,5% y 7%, ya que debido a que la tasa de absorción según los ensayos realizados en la presente investigación, las probetas de mortero de cemento, modificadas con dióxido de titanio (TiO2) disminuyó en 21.8% al 7% de TiO2, respecto del mortero patrón, esto significa que la permeabilidad disminuye al incrementar el porcentaje de TiO2. Se sabe que un concreto más permeable se carbonatará mucho más rápido. Esto dará un aporte en la construcción de edificaciones, disminuyendo esta patología, que viene a ser la carbonatación.

Recomendación N°7:

Se recomienda realizar la prueba de adherencia del mortero de revestimiento con diferentes métodos de ensayo, como tracción indirecta, o por flexión, ya que para la presente investigación se realizó el ensayo de adherencia del mortero mediante el método de tracción directa, aumentando la adherencia hasta un 31.4% para el 7% de dióxido de titanio respecto del mortero patrón. El objetivo es verificar el comportamiento que tiene el mortero de revestimiento

adicionado con dióxido de titanio al 3%, 5% y 7% sometidos a distintos tipos de carga que podría soportar mediante los distintos tipos métodos de ensayos mencionados.

Recomendación N°8:

Se recomienda realizar la prueba de fluidez del mortero de revestimiento con diferentes dosificaciones de a/c, ya que con la presente investigación la fluidez del mortero disminuyó en 28.17% para el 7% de dióxido de titanio respecto el mortero patrón esto para la relación a/c de 0.85, el objetivo es encontrar una dosificación a/c adecuada que no disminuya mucho la fluidez para un mortero de tarrajeo, ya que el factor de fluidez en el mortero es importante porque está directamente relacionado con la resistencia a la compresión de la mezcla del mortero a la que se debe llegar para cumplir con su funcionalidad.

Recomendación N°9:

Se recomienda al personal obrero en la construcción una infraestructura en las diversas actividades de distintas partidas, la utilización de equipos de protección personal (EPPS), protección de manos (guantes), protección de cuerpo (mandil), protección ocular (gafas), protección respiratorio (barbijo), para la manipulación de dióxido de titanio (TiO2), en la producción de la mezcla de mortero modificado en porcentajes al 3%, 5% y 7% de dióxido de titanio (TiO2), para la mitigación de riesgos para la salud, que podría causar efectos agudos a corto y largo plazo, como es la irritabilidad de la nariz, ojos, garganta y cáncer a los pulmones por inhalaciones prolongadas, según la Ley de Seguridad y Salud en Obra (Ley N°29783).

Referencias

Aguilar, Ana María. (2013). Evaluación técnico ambiental del TiO2 en los morteros de cementos chilenos, Tesis de Maestria, Universidad del Bio-Bio. Santiago de Chile. Chile Barnes, K., et al. (2008). A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States - I) Groundwater. Vol. 402. En: Sci Total Environ.

Bermejo, Marina. (2018). *Fotocatálisis y su capacidad descontaminante*. Aplicación en Gran Vía. Madrid: Universidad Politécnica de Madrid.

Blanco G., J. (2002). Desarrollo de colectores solares sin concentración para aplicaciones fotoquímicas de degradación de contaminantes persistentes en agua. Tesis doctoral. España: universidad de Almería.

Blanco, J., Zarza, E. (1992). Effective Solar Radiation on the Aperture Area of Parabolic Trough Collectors with Various Orientation. Technical Report TR-13/92. Plataforma Solar de Almeria.

Böhme, D. A. L. D. M., Molina, M. F. W. G., Cruzado, C. F. R. C., Salmón, J. Q., Arnao, J. E., y Chamochumbi, F. M. (2003). *Atlas de energía solar del Perú*. Lima-Perú: Departamento de Sistemas de Producción y Manejo de Recursos Naturales del centro de la Papa (CIP).

Bolaños Susan y Guamán Mauricio. 2017. *Diseño de mortero resistente a patologías de eflorescencias en paredes de mampostería*. Sangolquí: Universidad de las Fuerzas Armadas de Ecuador.

Broto Carles. 2006. *Enciclopedia Broto Patologías e la Construcción*. Link International- 1era edición

Cardenas, Carolina. (2012). Evaluación de las propiedades físicas y fotocatalíticas de cemento adicionado con nanopartículas de dióxido de titanio. (Tesis magistral). Medellín, Colombia: Universidad Nacional de Colombia.

Cegarra, José. (2012) *Metodología de la Investigación Científica y Tecnológica*. Madrid: Díaz de Santos.

Elkoro, A. (2013). *Optimización de la aplicación de nanopartículas fotocatalíticas en morteros*. Barcelona: Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Barcelona- Universidad Politécnica de Catalunya.

Faraldos, M. (2012). *Guía práctica de la fotocatálisis aplicada a infraestructuras urbanas*. Congreso Nacional de Medio Ambiente. Asociación Ibérica de Fotocatálisis.

Fernández, P, Pértegas Díaz, S. (2002). *Unidad de Epidemiología Clínica y Bioestadística*. 8ª Edición. Coruña (España): Cad Aten Primaria.

Fiol, F. (2014). "Manual de patología y rehabilitación de edificios". Burgos: Universidad de Burgos.

Fujishima y K. Honda. (1972). *Electrochemical photolysis of water at a semiconductor electrode*. *Nature*, https://doi.org/10.1038/238037a0.

Gallegos, H., & Casanonne, C. (2005). *Albañileria Estructural*. Lima: Fondo Editorial Pontificia Universidad Católica del Perú

Garrett, P. y Moreau, M. (1986). *MTBE as a ground water contaminant. NWWA/API conference on petroleum hydrocarbons and organic chemicals in ground water: prevention, detection and restoration. Dublin, Ohio, Houston, Texas.* En: National Water Well Association. Geerdink, R.B., Niessen, W.M.A. y Brinkman, U.A.T. (2002). *Trace-level determination of pesticides in water by means of liquid and gas chromatography*. Vol. 27. En: Journal of Chromatography A.

Gil, M., Soto A., Usma J., Gutiérrez O. (2012). *Contaminantes emergentes em águas, efeitos e possíveis tratamentos*. Vol 7. No. 2. Colombia. Produccion + Limpia.

Godfrey, E.; Woessner, W. y Benotti, M. (2007). *Pharmaceuticals in on-site sewage effluent and ground water, Western Montana*. Vol. 45. En: Ground Water.

Goméz, J., Sánchez, D., Osorio, J., y Niño, R. (2010). *Tecnología del Concreto Tomo 1*. Bogotá: Nomos.

Gutierrez, Libia. 2003. *El concreto y otros materiales para la construcción*. Colombia. Universidad Nacional de Colombia – Sede Manzanales.

Hernández, S. R. (2010). Metodología de la Investigación. México: McGRAW-HILL.

INEN 2518. (2010). Morteros para unidades de mampostería: Requisitos. Ecuador Norma Técnica Ecuatoriana (NTE).

Kosmatka Steven H., Kerkhoff Beatrix, Panarese William C. y Tanesi Jussara. (2004). *Diseño y control de mezclas de concreto*. México. Portland Cement Association.

Linsebigler A., Guangquan L. y Yates J. (1995). *Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results*. Pennsylvania. Surface Science Center, Department of Chemistry, University of Pittsburgh, Pittsburgh.

Lisbona, Lucía. (2016). *Materiales fotocatlíticos y sus aplicaciones en construcción (Trabajo final de máster*). España: Universidad Politécnica de Catalunya

Malato, S. (1999). Solar photocatalytic decomposition of pentachlorophenol dissolved in water. Colección Documentos CIEMAT. Editorial Ciemat.

Martínez, Z. K. (2018). Efecto del dióxido de titanio (TiO2) en el comportamiento del mortero de cemento pórtland tipo I para fachadas -Lima Metropolitana (2018). Tesis de pregrado. Lima: Universidad Ricardo Palma.

Mayhua C. Fredy. (2019). "Estudio comparativo y modelación de la radiación global y ultravioleta en la ciudad de Arequipa". Título de licenciado en Física. Arequipa: Universidad Nacional de San Agustín de Arequipa.

Minaya, Reynaldo. (2016). *Parámetros físicos, químicos, microbiológicos, para determinar la calidad del agua en la laguna Moronacocha, época de transición creciente-vaciante*. Perú, Iquitos. Universidad Nacional de la Amazonia peruana facultad de agronomía.

Ministerio del Ambiente. (2014). *Informe nacional de la calidad del aire*, Lima-Perú. Recuperado de: http://www.minam.gob.pe/wp-content/uploads/2016/07/Informe-Nacional-de-Calidad-del-Aire-2014.pdf

Montoya, Laura. (2009). Evaluación del desempeño del cemento Pórtlan tipo III adicionado con sílice de diferentes tamaños de partícula. (Tesis de pregrado). Medellín: Universidad nacional de Colombia

Montero, I, León, O. (2002). *Clasificación y Descripción de las Metodologías de Investigación en Psicología*. Madrid: Universidad Autónoma de Madrid.

Nadia Chulluncuy, (2011). *Tratamiento de agua para consumo humano*. Lima. Universidad Nacional Mayor de San Marcos

NCh 167 (2001). "Construcción-Ladrillos-Cerámicos". Chile: Instituto nacional de normalización.

NTP 334.051 (2013). "Método de ensayo para determinar la resistencia a la compresión de morteros de cemento Portland usando especímenes cúbicos de 50 mm de lado". (Primera edición). Lima: INACAL.

NTP 334.057 (2016). "Método de ensayo para determinar la fluidez de morteros de cemento Portland". Lima: INACAL.

N.T.P. 339.185. (2001). AGREGADOS. Método de ensayo normalizado para contenido de humedad total evaporable de agregados por secado. (2da Edición). Lima, Perú: INDECOPI

N.T.P. 350.001. (2017). TAMICES DE ENSAYO: Requisitos. Lima, Perú: INACAL.

NTP 399.631 (2015). "Método de ensayo normalizado para la tasa de absorción del agua de morteros de albañilería". Lima: INACAL.

N.T.P. 400.012. (2001). AGREGADOS: Análisis granulométrico del agregado fino, grueso y global. (2da Edición). Lima, Perú: INDECOPI

N.T.P. 400.017. (2011). AGREGADOS: Método de ensayo normalizado para ("Peso Unitario") y los vacíos en los agregados. (3ra Edición). Lima, Perú: INDECOPI

NTP 400.018 (2013). "AGREGADOS. Método de ensayo normalizado para determinar materiales más finos que pasan por el tamiz normalizado 75 μ m (N° 200) por lavado en agregados". Lima: INACAL.

N.T.P. 400.022. (2013). AGREGADOS: Método de ensayo normalizado para la densidad, la densidad relativa (peso específico) y absorción del agregado fino.(3ra Edición). Lima. Perú: INDECOPI.

N.T.P. 400.037. (2014). AGREGADOS: Especificaciones normalizadas para agregados en concreto. (3ra Edición). Lima, Perú: INDECOPI.

Pasquel, C. E. (1998). *Tópicos de Tecnología del Concreto en el Perú*. Lima: Colegio de Ingenieros del Perú.

Perilla, Jorge Enrique. (2014). Estudio comparativo de las características físico-mecánicas de cuatro cementos comerciales Portland Tipo. (Trabajo de grado). Bogotá: Universidad Militar Nueva Granada.

Portela, R. (2008). Eliminación fotocatalítica de H2S en aire mediante TiO2 soportado sobre sustratos transparentes en el UV-A. (Doctorado). Santiago de Compostela: Universidad de Santiago de Compostela.

Ramírez, A. (2006). Fotocatálisis de TiO2 para crear Materiales de Construcción más durables. PROSPECTIVA, vol. 4, núm. 2. Colombia: Universidad Autónoma del Caribe Colombia.

Rivera, Gerardo A. (2013). *Tecnología del concreto y mortero*. Colombia: Universidad del Cauca.

Rivva, L. E. (2006). Ataques al Concreto. Lima: ICG.

Sánchez, Daniel. (2010). Síntesis y caracterización de nanopartículas de WO3 para la evaluación de su actividad fotocatalítica en la degradación de contaminantes orgánicos por acción de luz visible. (Tesis doctoral). México: Universidad autónoma de Nuevo León

Tamayo, M. (2004). El proceso de la investigación científica. 4ª Edición. México: Limusa.

Terzić, S., et al. (2008). *Occurrence and fate of emerging wastewater contaminants in Western Balkan Region*. Vol. 399. En: Science of the total environment.

UNI 11259 (2008) "Determinazione dell'attività fotocatalitica di liganti idraulici. Metodo della rodamina". Italia: UNI.

WHO. IARC. (1990). *Monographs on the evaluation of carcinogenic risks to humans*. Geneva: World Health Organization.

YURA. (2019). Ficha técnica del Cemento Portland Tipo IP. Arequipa.

Zuasnábar, Karen. 2019. Efecto del dióxido de titanio (TiO2) en el comportamiento del mortero de cemento pórtland tipo i para fachadas -Lima Metropolitana (2018). Lima-Perú. Universidad Ricardo Palma

Anexos

A.1 Matriz de consistencia

			ONSISTENCIA		
TÍTULO: EVALUACIÓN DE 1 CEMENTO ADICIONADO CO			ALÍTICAS DEL MORTERO P. 020	ATRÓN DE CEMENTO RESP	ECTO DEL MORTERO
PROBLEMA	OBJETVOS	HIPOTESIS	VARIABLES	INDICADODEC	IINSTRUMENTOS
Problema General	Objetivo General	Hipótesis General	Independientes	- INDICADORES	IINSTRUMENTOS
PG-1: ¿Cómo resulta la evaluación de las propiedades fisicomecánicas y fotocataliticas del mortero de cemento portland tipo I relación A/C 0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente a un mortero patrón de cemento portland tipo I relación A/C=0.85?	OG-1: Determinar el resultado de la evaluación de las propiedades mecánicas y fotocataliticas del mortero de cemento portland tipo I relación A/C 0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85.	HG-1: El resultado de la evaluación de las propiedades físico mecánicas y fotocatalíticas del mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85 mejora las propiedades mecánicas, adquiriendo la propiedad fotocatalítica del mortero.	Mortero adicionado con dióxido de titanio (TIO2).	 Parámetros que deben cumplir según las N.T.P. Método de Diseño de mezcla de mortero según norma E-070. 	Instrumentos d recolección de datos
Problemas Específicos	Objetivos Específicos	Sub Hipótesis	Dependientes		
PE-1: ¿Cómo resulta las propiedades mecánicas "fluidez, adherencia, absorción y resistencia a compresión" obtenidas de los testigos de mortero de cemento portland tipo I relación A/C 0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo	OE-1: Determinar las propiedades mecánicas "fluidez, adherencia, absorción y resistencia a compresión" obtenidas de los testigos de mortero de cemento portland tipo I relación A/C =0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al	SH-1: Las propiedades mecánicas "fluidez, adherencia, absorción y resistencia a compresión" obtenidas de los testigos de mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento	 Propiedades físico- mecánicas. 	 Diámetro inicial y promedio Peso sumergido Peso seco Fuerza de Adherencia aplicada Área de adherencia Fuerza de resistencia aplicada Área resistente 	 NTP 334.057 NTP 399.631 NCh 167 NTP 334.051
PE-2: ¿Cómo resulta la auto limpieza respecto a la exposición a radiación de tipo	mortero patrón de cemento portland tipo I relación A/C=0.85.	portland tipo I relación A/C=0.85 tendrán una mejora sustancial de las mismas.	Propiedades fotocatalíticas.	• Color	 Instrumentos d recolección de datos

ultravioleta del mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85?

PE-3: ¿Cómo influye el mortero de cemento portland tipo I relación A/C 0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85 respecto a la descontaminación del gas dióxido de nitrógeno NO2?

PE-4: ¿Cuánto será la variación de los costos de elaboración de mortero patrón de cemento portland tipo I relación A/C 0.85 frente al mortero adicionado con dióxido de titanio en concentraciones de 3% 5% y 7%?

OE-2: Determinar la auto limpieza respecto a la exposición a radiación de tipo ultravioleta del mortero de cemento portland tipo I relación A/C 0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85.

OE-3: Determinar la influencia del dióxido de titanio adicionado en mortero de cemento portland tipo I relación A/C 0.85 en concentraciones de 3% 5% y 7% y del mortero patrón de cemento portland tipo I relación A/C=0.85 respecto a la descontaminación del gas dióxido de nitrógeno NO2.

OE-4: Determinar la variación de los costos de elaboración de mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85.

SH-2: La auto limpieza aumenta respecto exposición a radiación de tipo ultravioleta del mortero de cemento portland tipo I relación A/C 0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85.

SH-3: La influencia del dióxido de titanio adicionado en mortero de cemento portland tipo I relación A/C 0.85 en concentraciones de 3% 5% y 7% frente al mortero patrón de cemento portland tipo I relación A/C=0.85 aumenta la degradación del gas dióxido de nitrógeno NO2.

SH-4: La variación de los costos de elaboración de mortero de cemento portland tipo I relación A/C=0.85 adicionado con dióxido de titanio en concentraciones de 3% 5% y 7% aumenta frente al mortero patrón de cemento portland tipo I relación A/C=0.85.

Fuente: Propia

Apéndices

A.1 Certificado de análisis del dióxido de titanio, AQCIATEX

CERTIFICATE OF ANALYSIS

PRODUCT: TITANIUM DIOXIDE FOOD GRADE CYSTAL FORM: ANATASE BATCH NO .: 1808212 QUANTITY: 10000KGS MFG. DATE: AUG. 16, 2018 PACKAGING: 25KGS/PAPER BAG EXP. DATE: AUG. 16, 2023 REPORT DATE: AUG. 22, 2018 STANDARDS E 171 (COMMISSION REGULATION (EU) NO 231/2012) TYPE: HongYuan 3200

TEST	SPECIFICATIONS	TEST RESULTS
CHARACTERISTICS	WHITE TO SLIGHTLY COLORED POWDER	WHITE POWDER
IDENTIFICATION SOLUBILITY	INSOLUBLE IN WATER AND ORGANIC SOLVENTS DISSOLVES SLOWLY IN HYDROFLUORIC ACID AND IN HOT CONCENTRATED SULPHURIC ACID	CONFORMS
LOSS ON DRYING(105°C, 3 HOURS)	0.5% MAX	0.35%
LOSS ON IGNITION A VOLATILE MATTER FREE BASIS(800°C)	1.0% MAX	0.38%
WATER SOLUBLE SUBSTANCE	0.5% MAX	0.17%
ACID SOLUBLE SUBSTANCE(0.5N HCI) ALUMINA / SILICA FREE	0.5% MAX	0.27%
ACID SOLUBLE SUBSTANCE(0.5N HCI) CONTAINING ALUMINA / SILICA	1.5% MAX	NOT APPLICABLE
LEAD (0.5N HCI SOLUBLE)	10 PPM MAX	3.54
ARSENIC (0.5N HCI SOLUBLE)	1 PPM MAX	0.55
ANTIMONY (0.5N HCI SOLUBLE)	2 PPM MAX	0.46
MERCURY (0.5N HCI SOLUBLE)	1 PPM MAX	<0.01
CADMIUM (0.5N HCI SOLUBLE)	1 PPM MAX	<0.01
AL ₂ O ₃ AND/OR SIO ₂	2.0% MAX	<0.02%
ASSAY(TIO2) ALUMINA / SILICA FREE	99.0% MIN	99.08%
MICROBIOLOGY TEST BACTERIA, MOULDS, YEASTS	100 CFU/G MAX 100 CFU/G MAX	CONFORMS CONFORMS
SPECIFIED MICROBIAL TEST ENTEROBACTERIACEAE ESCHERICHIA COLI SALMONELLA PSEUDOMONAS AERUGINOSA STAPHYLOCOCCUS AUREUS CLOSTRIDIA CANDIDA ALBICANS	NOT DETECTED NOT DETECTED NOT DETECTED NOT DETECTED NOT DETECTED NOT DETECTED NOT DETECTED NOT DETECTED	CONFORMS CONFORMS CONFORMS CONFORMS CONFORMS CONFORMS

ANALYST: PAN QINGQING